

8-14 Sept. 2024 Hotel Tonnara Trabia, Palermo, Sicily

The 3D structure of the Nucleon in momentum space: TMD phenomenology

1

The TMD "zoo" at leading twist for spin-1/2 hadron

similar table for TMDFF (z, \mathbf{P}_{\perp} ; Q²) at leading twist for hadron with spin $\leq 1/2$

Each entry: - has a probabilistic interpretation; **x** = forbidden by parity invariance - is connected to deformations induced by spin-momentum correlations

> $f_1 \longrightarrow h_1^{\perp}, f_{1T}^{\perp} \longrightarrow g_{1T}, h_{1L}^{\perp}, h_{1T}^{\perp}$ - can be extracted from a specific measurable spin asymmetry (see next talks)

The unpolarized quark TMD

Mulders & Tangerman, N.P. **B461** (96) Boer & Mulders, P.R. D**57** (98)

Let's focus on the simplest unpolarized TMD PDF:

 f_1^q = probability density to find an unpolarized quark q with light-cone momentum fraction x and transverse momentum \mathbf{k}_{\perp} in an unpolarized hadron

Phase space for processes with factorization

Evolution of TMDs

Collins - Soper - Sterman (CSS) evolution

Evolution of TMDs

Collins - Soper - Sterman (CSS) evolution

SIDIS							
	Accuracy	HERMES	COMPASS	DY	Z production	N of points	χ^2/N_{points}
PV 2017 arXiv:1703.10157	NLL	r	~	~	~	8059	1.5
SV 2017 arXiv:1706.01473	NNLL'	×	×	>	~	309	1.23
BSV 2019 arXiv:1902.08474	NNLL'	×	×	>	~	457	1.17
SV 2019 arXiv:1912.06532	N ³ LL(-)	~	>	>	~	1039	1.06
PV 2019 arXiv:1912.07550	N ³ LL	×	×	>	~	353	1.07
SV19 + flavor dep. arXiv:2201.07114	N ³ LL	×	×	>	~	309	<1.08>
MAPTMD 2022 arXiv:2206.07598	N ³ LL(-)	~	>	>	~	2031	1.06
ART23 arXiv:2305.07473	N ⁴ LL	×	×	~	V	627	0.96
MAPTMD 2024 arXiv:2405.13833	N ³ LL	~	~	~	~	2031	1.08

CIDIC

SIDIS							
	Accuracy	HERMES	COMPASS	DY	Z production	N of points	χ^2/N_{points}
PV 2017 arXiv:1703.10157	NLL	~	~	>	~	8059	1.5
SV 2017 arXiv:1706.01473	NNLL'	×	×	~	~	309	1.23
BSV 2019 arXiv:1902.08474	NNLL'	×	×	>	>	457	1.17
SV 2019 arXiv:1912.06532	N ³ LL(-)	~	~	>	>	1039	1.06
PV 2019 arXiv:1912.07550	N ³ LL	×	×	>	>	353	1.07
SV19 + flavor dep. arXiv:2201.07114	N ³ LL	×	×	>	>	309	<1.08>
MAPTMD 2022 arXiv:2206.07598	N ³ LL(-)	~	~	>	>	2031	1.06
ART23 arXiv:2305.07473	N ⁴ LL	×	×	~	~	627	0.96
MAPTMD 2024 arXiv:2405.13833	N ³ LL	~	~	~	~	2031	1.08

increasing accuracy & precision

SIDIS							
	Accuracy	HERMES	COMPASS	DY	Z production	N of points	χ^2/N_{points}
PV 2017 arXiv:1703.10157	NLL	~	~	>	~	8059	1.5
SV 2017 arXiv:1706.01473	NNLL'	×	×	2	>	309	1.23
BSV 2019 arXiv:1902.08474	NNLL'	×	×	>	>	457	1.17
SV 2019 arXiv:1912.06532	N ³ LL(-)	~	~	>	>	1039	1.06
PV 2019 arXiv:1912.07550	N ³ LL	×	×	>	>	353	1.07
SV19 + flavor dep. arXiv:2201.07114	N ³ LL	×	×	>	~	309	<1.08>
MAPTMD 2022 arXiv:2206.07598	N ³ LL(-)	~	~	>	~	2031	1.06
ART23 arXiv:2305.07473	N ⁴ LL	×	×	~	~	627	0.96
MAPTMD 2024 arXiv:2405.13833	N ³ LL	~	~	~	~	2031	1.08

only four global fits

increasing accuracy & precision

The TMDlib repository

(Some) Tables of TMD grids available also at the TMDlib repository

TMD plotter

https://tmdlib.hepforge.org/

TMDlib is hosted by Hepforge, IPPP Durham

TMDlib

TMDlib2 and TMDplotter: a platform for 3D hadron structure studies

NEW manual released 2103.09741

- TMDplotter
- Download source from TMDlib 2.X
- Download source from TMDlib 1.X
- Any questions or comments should be directed to tmdlib@projects.hepforge.org.
- TMDlib1 Doxygen Documentation

Example: search for - MAP22_grids_PDF_[NLL/NNLL/N3LL].tgz - MAP22_grids_FF_[Pip/Pim/Kp/Km]_[NLL/NNLL/N3LL].tgz

TMD precision era: impact at the LHC

G. Bozzi, I. Scimemi (eds.) et al.,

Resummed predictions of the transverse momentum distribution of Drell-Yan lepton pairs in p-p collisions at LHC Yellow Report of CERN EW Working Group, in preparation

 q_T distribution of Z in ATLAS kin.

also potential impact on W mass extraction

Bacchetta et al., P.L. B788 (19) 542, arXiv:1807.02101

SIDIS							
	Accuracy	HERMES	COMPASS	DY	Z production	N of points	χ^2/N_{points}
PV 2017 arXiv:1703.10157	NLL	~	~	~	~	8059	1.5
SV 2017 arXiv:1706.01473	NNLL'	×	×	>	~	309	1.23
BSV 2019 arXiv:1902.08474	NNLL'	×	×	~	~	457	1.17
SV 2019 arXiv:1912.06532	N ³ LL(-)	~	~	>	~	1039	1.06
PV 2019 arXiv:1912.07550	N ³ LL	×	×	>	~	353	1.07
SV19 + flavor dep. arXiv:2201.07114	N ³ LL	×	×	>	~	309	<1.08>
MAPTMD 2022 arXiv:2206.07598	N ³ LL(-)	>	>	>	~	2031	1.06
ART23 arXiv:2305.07473	N ⁴ LL	×	×	~	~	627	0.96
MAPTMD 2024 arXiv:2405.13833	N ³ LL	~	~	~	~	2031	1.08

MAPTMD24 : introduce **flavor sensitivity of k_T-dependence**

"Normalized" MAPTMD24 TMD PDF

 impact on the extraction of W mass parameter from collider data
 Bacchetta et al., P.L. B788 (19) 542, arXiv:1807.02101 Bozzi & Signori, Adv.HighEn.Phys. 2019 (19) 2526897,

arXiv:1901.01162

Collins-Soper evolution kernel

The EIC impact

The TMD "zoo" at leading twist for spin-1/2 hadron

distortion of quark momentum distribution by nucleon spin

The Sivers TMD is not universal

in SIDIS, the color structure describes the residual **final-state** interactions between the **struck parton** and the **residual spectators**

in Drell-Yan, the color structure describes the initial-state interactions between the annihilating parton and the residual spectators

Prediction of QCD based on general principles: Sivers TMD (SIDIS) = - Sivers TMD (Drell-Yan)

The Sivers TMD is connected to the spin Odderon

Prediction: C-odd spin Odderon $\Rightarrow q$ Sivers = $-\bar{q}$ Sivers test existence of spin Odderon

Most recent Sivers extractions

	Framework	SIDIS	DY	W/Z production	forward EM jet	е+е-	N. of points	χ²/N	
JAM 2020 arXiv:2002.08384	generalized parton model	~	>	~	×	~	517	1.04	
PV 2020 arXiv:2004.14278	LO+NLL	~	>	~	×	×	125	1.08	
EKT 2020 arXiv:2009.10710	NLO+N ² LL	~	>	~	×	×	226/452	0.99 /1.45	SIDIS / +STAR
BPV 2020 arXiv:2012.05135 arXiv:2103.03270	ζ prescription	~	>	~	×	×	76	0.88	
TO-CA 2021 arXiv:2101.03955	generalized parton model	~	×	×	~	×	238	$1.05^{+0.03}_{-0.01}$	SIDIS + reweighing

lower accuracy and less data w.r.t. unpolarized TMD

0.01

all parametrizations are in fair agreement for valence flavors

sea-quarks ~ $O(10^{-3})$ smaller

Bacchetta et al., P.L. B827 (22) 136961 arXiv:2004.14278

Sign change puzzle

Perspective at future electron-ion colliders

see talk by Nadel-Turonski N.P. and by Santamaria for LHCspin perspectives

The TMD "zoo" at leading twist for spin-1/2 hadron

- flip quark helicity \rightarrow chiral-odd structures

(need a partner in cross section)

- suppressed in pQCD as m_q/Q
- connected to tensor operators not in SM Lagrangian

Integrating k_{\perp} : collinear kinematics

- the only chiral-odd structure that survives in collinear kinematics
- only way to determine the tensor "charge"

In a spin-1/2 hadron, no transversity of gluons only non-singlet evolution

$$\delta^{q}(Q^{2}) = \int_{0}^{1} dx \, h_{1}^{q-\bar{q}}(x, Q^{2})$$

scales!

contrary to axial charge g_A

$$h_1 \neq g_1$$

Potential for BSM discovery ?

Tensor (and chiral-odd) structures do not appear in the Standard Model Lagrangian at tree level.

Is it a possible low-energy footprint of BSM physics at higher scale ?

BSM coupling
$$g_T \varepsilon_T \approx \frac{M_W^2}{M_{\rm BSM}^2}$$

precision => BSM scale

<u>SMEFT with strong CP violation</u> permanent Electric Dipole Mom.

$$\mathcal{L}_{\text{SMEFT}} \rightarrow \sum_{f=u,d,s,c} d_f \bar{\psi}_f \sigma_{\mu\nu} \gamma_5 \psi_f F^{\mu\nu}$$
 ?

neutron EDM $d_n = \frac{\delta u}{\delta u} d_u + \frac{\delta d}{\delta d_d} + \frac{\delta s}{\delta s} d_s + \dots$

exp. data + tensor charge => constrain amount of CP violation

Analyzers of transversity at leading twist

Analyzers of transversity at leading twist

Most recent extractions

Collins effect	Framework	e+e-	SIDIS	Drell-Yan A_N	Lattice
Anselmino 2015 P.R. D 92 (15) 114023	parton model	~	~	×	×
Kang et al. 2016 P.R. D 93 (16) 014009	TMD / CSS	>	~	×	×
Lin et al. 2018 P.R.L. 120 (18) 152502	parton model	×	~	×	✔ g⊤
D'Alesio et al. 2020 (CA) P.L. B803 (20) 135347	parton model	>	~	×	×
JAM3D-20 P.R. D 102 (20) 054002	parton model	~	~	~	×
JAM3D-22 P.R. D 106 (22) 0340 14	parton model	~	~	~	 ✓ g⊤
Boglione et al. 2024 (TO) P.L. B854 (24) 138712	parton model	~	~	✓ reweighing	×

Dihadron mechanism	e+e- unpol. do ⁰	e+e- asymmetry	SIDIS	p-p collisions	Lattice
Radici & Bacchetta 2018 P.R.L. 120 (18) 192001	PYTHIA (separately)	 (separately) 	<	~	×
Benel et al. 2020 E.P.J. C80 (20) 5	PYTHIA (separately)	 (separately) 	<	×	×
JAMDIFF 2024 P.R.L. 132 (24) 091901	~	~	~	~	🖌 δu, δd

Pheno - lattice : tensor charge

adapted from C. Alexandrou, QCD Evolution 24

Pheno - lattice : tensor charge

green $N_f=2+1+1$

A gluor

open symbols = no continuum extrapolation

yellow N_f=2+1

tension between pheno and lattice ?

1.01

0.73

1.10

0.75

0.76

1.67

1.04

. . .

. . .

. . .

adapted from C. Alexandrou, QCD Evolution 24

to tensor charge

 $\chi^2 = 203 \rightarrow 239$

Including lattice data, JAM finds **compatibility**...

adapted from D. Pitonyak, QCD Evolution 24

Perspectives

- New data on Collins effect and dihadron mechanism in SIDIS with transversely polarized deuteron target
- New data on $\pi^- p^{\uparrow}$ Drell-Yan
- New data on $p^{\uparrow} + p \rightarrow \text{jet} + \pi^{\pm} + X$ hadron-in-jet **Collins** effect
- New data on $p^{\uparrow} + p \rightarrow \Lambda^{\uparrow} + X$ Λ spin transfer
- New data on $p^{\uparrow} + p \rightarrow (\pi^+\pi^-) + X$ dihadron mechanism

talk by Badelek

talk by Seidl

N.P. A1026 (22) 122447, arXiv:2103.05419

- First classification given in

Mulders & Rodrigues, P.R. D63 (01) 094021, arXiv:hep-ph/0009343

- Factorization, evolution & universality studied in

Ji et al., JHEP **07** (05) 020, arXiv:hep-ph/0503015 Buffing et al., P.R. D**88** (13) 054027, arXiv:1306.5897 Boer & Van Dunnen, N.P. **B886** (14) 421, arXiv:1404.6753 Echevarria et al., JHEP **07** (15) 158 [E: **05** (17) 073], arXiv:1502.05354

T-odd TMDs

many papers exploring useful channels at colliders to extract WW and dipole gluon TMDs. Handy pocket list: Boer, talk at IWHSS 2020

(see also recent review on quarkonium physics) Boer et al., arXiv:2409.03691

$f_1^{g[+,+]}$	$pp \to \gamma J/\psi X$	LHC
	$pp \to \gamma \Upsilon X$	LHC
$f_1^{g[+,-]}$	$pp \to \gamma \operatorname{jet} X$	LHC & RHIC
$h_1^{\perp g [+,+]}$	$e p \to e' Q \overline{Q} X$	EIC
	$e p \to e' \text{jet jet} X$	EIC
	$pp \to \eta_{c,b} X$	LHC & NICA
	$pp \to H X$	LHC
$h_1^{\perp g [+,-]}$	$pp \to \gamma^* \operatorname{jet} X$	LHC & RHIC
$f_{1T}^{\perp g [+,+]}$	$e p^{\uparrow} \to e' Q \overline{Q} X$	EIC
	$e p^{\uparrow} \to e' \text{jet jet} X$	EIC
$f_{1T}^{\perp g \left[-,-\right]}$	$p^{\uparrow}p \to \gamma \gamma X$	RHIC
$f_{1T}^{\perp g [+,-]}$	$p^{\uparrow}A \to \gamma^{(*)} \operatorname{jet} X$	RHIC
	$p^{\uparrow} A \to h X \ (x_F < 0)$	RHIC & NICA

many papers exploring useful channels at colliders to extract WW and dipole gluon TMDs. Handy pocket list: Boer, talk at IWHSS 2020

(see also recent review on quarkonium physics) Boer et al., arXiv:2409.03691

$f_{1}^{g[+,+]}$	$pp \rightarrow \gamma J/\psi X$	LHC
	$pp \rightarrow \gamma \Upsilon X$	LHC
$f_1^{g[+,-]}$	$pp \to \gamma \operatorname{jet} X$	LHC & RHIC
$h_1^{\perp g [+,+]}$	$e p \to e' Q \overline{Q} X$	EIC
±	$e p \to e' \text{ jet jet } X$	EIC
	$pp \to \eta_{c,b} X$	LHC & NICA
	$pp \to H X$	LHC
$h_1^{\perp g [+,-]}$	$pp \to \gamma^* \operatorname{jet} X$	LHC & RHIC
$\int_{1T}^{\perp g [+,+]}$	$e p^{\uparrow} \to e' Q \overline{Q} X$	EIC
	$e p^{\uparrow} \to e' \text{jet jet} X$	EIC
$\int_{1T}^{\perp g [-,-]}$	$p^{\uparrow}p \to \gamma \gamma X$	RHIC
$f_{1T}^{\perp g [+,-]}$	$p^{\uparrow}A \to \gamma^{(*)} \operatorname{jet} X$	RHIC
	$p^{\uparrow} A \to h X \ (x_F < 0)$	RHIC & NICA

- TMD factorization $\xrightarrow{\text{small x}}$ UGD k_t factorization $\xrightarrow{p^*A \to \gamma^*/\text{jet } X}$ $p^*A \to hX(x_F < 0)$ RHIC & NI WW $f_1^{g[+,+]} \longrightarrow$ # density of gluons in CGC dipole $f_1^{g[+,-]} \longrightarrow$ Fourier Transform of color-dipole cross section in CGC

Dominguez et al., P.R.L. **106** (11) 022301, arXiv:1009.2141 Dominguez et al., P.R. D**83** (11) 105005, arXiv:1101.0715

- small-x limit of T-odd gluon TMDs:

WW
$$f_{1T}^{\perp}, h_1, h_{1T}^{\perp} \rightarrow 0$$

dipole $xf_{1T}^{\perp} = xh_1 = xh_{1T}^{\perp} \rightarrow -\frac{k_T^2 N_c}{4\pi\alpha_s} O_{1T}^{\perp}(x, k_T^2)$ spin Odderor
Boer et al., P.R.L. III

Boer et al., P.R.L. 116 (16) 122001, arXiv:1511.03485

gluon TMDs : only models

Available experimental information on gluon TMDs is scarce.Very few attempts of pheno studies:

Lansberg et al., P.L. **B784** (18) 217 [E: P.L. **B791** (19) 420], arXiv:1710.01684 D'Alesio et al., P.R. D**96** (17) 036011, arXiv:1705.04169 D'Alesio et al., P.R. D**99** (19) 036013, arXiv:1811.02970 D'Alesio et al., P.R. D**102** (20) 094011, arXiv:2007.03353

- Many models on the market (list of references too long). Let me advertise our one, the first providing systematically all T-even and T-odd gluon TMDs at leading twist:

Bacchetta et al., E.P.J.C 80 (20) 733, arXiv:2005.02288 T-even

Bacchetta et al., E.P.J.C 84 (24) 576, arXiv:2402.17556 T-odd

spectator model of gluon TMDs

 Nucleon = gluon + spectator on-shell spin-1/2 particle

- T-odd generated by gluon-spectator FSI via 1 gluon-exchange
- Spectator mass takes continuous range of values through a parametric spectral function
- Parameters fixed by reproducing collinear gluon PDFs f_1 and g_1 from NNPDF3.0

Recap

• Precision era for unpolarized TMD, comparable to PDFs: extractions from large data sets with high perturbative accuracy

Explore impact at LHC, particularly on flavor-sensitive observables like W mass

- Polarized TMDs are a little "behind": smaller data sets and lower pert. accuracy; but newer spin asymmetry data are available for analysis
 - Important crosschecks (Drell-Yan SIDIS sign change; spin Odderon) and BSM explorations (chiral-odd structures)
- Big open problems in Phenomenology:
 - → gluon TMDs : still rely basically only on models
 - ➡ matching with fixed-order calculations at q_T ~ Q

• Very encouraging perspectives with future electron-ion colliders like the EIC

Backup

TMDs need Semi-Inclusive processes

Example: inclusive DIS

- hard scale $Q^2 = -q^2 \gg M^2$ to "see" partons X through Parton Distribution Functions (PDFs)

 - no further scale to probe hadron interior
 - PDFs and FFs depend on factorization scale $\mu^2 \equiv Q^2$

Explore \perp momentum of quarks? Need semi-inclusive processes

Semi-inclusive DIS (SIDIS)

- hard scale $Q^2 = -q^2 \gg M^2$ to "see" partons hadronic system h with soft scale $q_T^2 = P_{hT}^2/z^2 \ll Q^2$ X sensitive to internal motion of partons

 $\mathbf{q}_T \approx -\mathbf{P}_{hT}/z = -\mathbf{k}_{\perp} - \mathbf{P}_{\perp}/z + \mathcal{O}(\mathbf{k}_{\perp}^2/Q^2)$

 \rightarrow factorization of cross section into TMD PDFs and TMD FFs

TMDPDF^{*q*}($x, \mathbf{k}_{\perp}^2; \mu, \zeta$) depend on two scales: μ = factorization scale TMDFF^q $(z, \mathbf{P}^2_{\perp}; \mu, \zeta)$

 ζ = rapidity scale (can be chosen as $\zeta = \mu^2 \equiv Q^2$)

TMD factorization

Factorization Theorems only for some processes

TMD PDF TMD FF

<u>SIDIS</u> $q_T^2 = P_{hT}^2/z^2 \ll Q^2$ **h** = light-/heavy- quark hadron, jet, di-jet, di-hadron, jet substructure (hadron-in-jet),...

hadronic collisions $q_T^2 \ll Q^2$ quarks Q^2 carried by γ^* , W, Z ;gluonsby H^0, $\eta_{c,b}$ both Q^2 carried by jet with substructure
(hybrid factorization: collinear PDF - TMD FF)

 $\begin{array}{ll} \underline{\text{electron-positron annihilation}} & q_T^2 = P_{hT}^2/z^2 \ll Q^2 \\ (\mathbf{h_1}, \mathbf{h_2}) = (\text{hadron / di-hadron , hadron / di-hadron),} \\ & (\text{hadron / } \mathbf{\gamma} \text{ , jet}), \text{ hadron-in-jet} \end{array}$

TMD PDFs , TMD FFs universal (with calculable exceptions) Collins & Metz, P.R.L. **93** (04) 252001 Ji, Yuan, Ma, P.R. D**71** (05) 034005 Collins & Soper, N.P. B**193** (81) Echevarria, Idilbi, Scimemi, JHEP **07** (12)

For review, see Collins, "Foundations of Perturbative QCD" (CUP, 11)

TMD factorization: e+e-

 $e^+e^- \rightarrow h_1 + h_2 + X$

data available only as azimuthal (spin) asymmetries

used for polarized TMD FF

TMD factorization: e+e-

Complicated (and sometimes different) factorization theorems, depending on "distance" of hadron from thrust axis

For the moment, only Drell-Yan + SIDIS

Kang et al., arXiv:2007.14425 Makris et al., arXiv:2009.11871 Boglione & Simonelli, arXiv:2007.13674 arXiv:2011.07366 arXiv:2109.11497 arXiv:2306.02937

Scale dependence of TMD: the CSS scheme

$$f_{1}^{q}(x, b_{T}^{2}; \mu_{f}, \zeta_{f}) = \sum_{i} \left[C_{q \to i}(x, b_{T}^{2}; \mu_{b_{*}}) \otimes f_{1}^{i}(x, \mu_{b_{*}}) \right] \xrightarrow{\text{OPE: matching collinear} \\ \text{PDF at small } b_{T}} \\ \times \exp \left[S(\mu_{f}, \mu_{b_{*}}) \right] \xrightarrow{\text{Sudakov: evolution in } \mu \text{ scale; contains} \\ \text{anomalous dimensions } \gamma_{F}, \gamma_{K}} \\ \times \left[\frac{\zeta_{f}}{\mu_{b_{*}}^{2}} \right]^{K(b_{*}, \mu_{b_{*}})/2} \xrightarrow{\text{evolution in } \zeta \text{ scale; contains} \\ \text{Collins-Soper kernel } K} \end{array} \right]$$

perturbative	α_S^n				
accuracy	${\mathscr H}$ and C	K and γ_F	Y K	PDF and a_s evol.	FF
LL	0	-	1	-	-
NLL	0	1	2	LO	LO
NLL'	1	1	2	NLO	NLO
NNLL	1	2	3	NLO	NLO
NNLL'	2	2	3	NNLO	NNLO
N ³ LL(-)	2	3	4	NNLO	NLO
N ³ LL	2	3	4	NNLO	NNLO

Borsa et al., P.R.L. **129** (22) 012002 arXiv:2202.05060

Abdul Khalek et al., P.L. **B834** (22) 137456 arXiv:2204.10331

FF at NNLO

only recently

Scale dependence of TMD: the CSS scheme

perturbative α_S^n							
	accuracy	${\mathscr H}$ and C	\mathcal{H} and C K and γ_F γ_K PDF a		PDF and a ₅ evol.	FF	
	LL	0	-	1	-	-	
	NLL	0	1	2	LO	LO	
	NLL'	1	1	2	NLO	NLO	
	NNLL	1	2	3	NLO	NLO	
	NNLL'	2	2	3	NNLO	NNLO	
	N ³ LL(-)	2	3	4	NNLO	NLO	
	N ³ LL	2	3	4	NNLO	NNLO	

Introduces

nonperturbative part

Borsa et al., P.R.L. **129** (22) 012002 arXiv:2202.05060

Abdul Khalek et al., P.L. **B834** (22) 137456 arXiv:2204.10331

FF at NNLO

only recently

Scale dependence of TMD: the CSS scheme

NLO

NNLO

NNLO

NNLO

NLO

NNLO

NLO

NNLO

FF at NNLO

only recently

3

3

4

4

2

2

3

3

1

2

2

2

NNLL

NNLL'

 $N^{3}LL(-)$

N³LL

Borsa et al.,
P.R.L. 129 (22) 012002
arXiv:2202.05060

Abdul Khalek et al., P.L. **B834** (22) 137456 arXiv:2204.10331

The TMD formula

Data-driven nonperturbative TMD

Parametrization of non-perturbative TMD

nonperturbative TMD PDF Fourier Transform of sum of 3 Gaussians with x-dependent widths

$$f_{NP}(x, b_T; Q_0)$$

= F. T. $\left(e^{-k_\perp^2 / g_{1A}(x)} + \lambda_B k_\perp^2 e^{-k_\perp^2 / g_{1B}(x)} + \lambda_C e^{-k_\perp^2 / g_{1C}(x)} \right)$
with $g_{1X}(x) = N_{1X} \frac{(1-x)^{\alpha_X^2} x^{\sigma_X}}{(1-\hat{x})^{\alpha_X^2} \hat{x}^{\sigma_X}}$ $\hat{x} = 0.1$ 11 param.

suggested by models

Bacchetta, Gamberg, Goldstein, et al., PLB **659** (2008) Bacchetta, Conti, Radici, PRD **78** (2008) Pasquini, Cazzaniga, Boffi, PRD **78** (2008) Matevosyan, Bentz, Cloet, Thomas, PRD **85** (2012) Burkardt, Pasquini, EPJA (2016) Grewal, Kang, Qiu, Signori, PRD **101** (2020)

Parametrization of non-perturbative TMD

nonperturbative TMD PDF Fourier Transform of sum of 3 Gaussians with x-dependent widths

nonperturbative part of Collins-Soper kernel

$$f_{\text{NP}}(x, b_T; Q_0) = F \cdot T \cdot \left(e^{-k_\perp^2 / g_{1A}(x)} + \lambda_B k_\perp^2 e^{-k_\perp^2 / g_{1B}(x)} + \lambda_C e^{-k_\perp^2 / g_{1C}(x)} \right)$$

with $g_{1X}(x) = N_{1X} \frac{(1-x)^{\alpha_X^2} x^{\sigma_X}}{(1-\hat{x})^{\alpha_X^2} \hat{x}^{\sigma_X}} \quad \hat{x} = 0.1$ 11 param.

$$D_{\text{NP}}(z, b_T; Q_0) = F \cdot T \cdot \left(e^{-P_{\perp}^2 / g_{3A}(z)} + \lambda_F P_{\perp}^2 e^{-P_{\perp}^2 / g_{3B}(z)} \right)$$
with $g_{3X}(z) = N_{3X} \frac{(1-z)^{\gamma_X^2} (z^{\beta_X} + \delta_X^2)}{(1-\hat{z})^{\gamma_X^2} (\hat{z}^{\beta_X} + \delta_X^2)} \quad \hat{z} = 0.5$
9 param.

$$\left[\frac{\zeta_f}{Q_0^2}\right]^{g_K(b_T)/2} g_K(b_T) = -g_2^2 \frac{b_T^2}{4}$$
 1 param.

Total 21 param.

increasing perturbative accuracy

worsens agreement with SIDIS !

discrepancy is PhT-independent:

 $M_{\rm NLL}/M_{\rm NNLL} \sim 2$ $M_{\rm NLL}/M_{\rm N^3LL} \sim 1.5$

tensions observed also at larger q_T and also in Drell-Yan at low Q and also in e+e- annihilations

No normalization problems for collinear SIDIS $d\sigma/dxdzdQ$:

Gonzalez et al., P.R. D**98** (18) 114005 Bacchetta et al., P.R. D**100** (19) 014018 Moffat et al., P.R. D**100** (19) 094014

MAPFF1.0 (Map Collaboration)

Abdul Khalek et al., arXiv:2105.08725

but not in SV 2019 fit Scimemi & Vladimirov, arXiv:1912.06532

Normalization problem in SIDIS

Gonzalez-Hernandez, PoS DIS2019 (2019)

10

1(

1

 \mathcal{O}

discrepancy is P_{hT} -independent: $M_{NLL}/M_{NNLL} \sim 2$ $M_{NLL}/M_{N^3LL} \sim 1.5$

SIDIS data as multiplicities M: $M(x, z, q_T, Q) = \frac{d\sigma^{\text{SIDIS}}}{dxdzdq_T dQ} \left/ \frac{d\sigma^{\text{DIS}}}{dxdQ} \right|$

$$\frac{d\sigma}{dq_{T}} \qquad \text{small } q_{T} \qquad \text{large } q_{T}$$

$$\frac{d\sigma}{dq_{T}} \qquad \text{small } q_{T} \qquad \text{large } q_{T}$$

$$\frac{d\sigma}{factorization} \qquad \text{matching} \qquad \begin{array}{c} \text{collinear} \\ \text{factorization} \qquad q_{T} \\ \hline \\ W-term \qquad V-term \\ \hline \\ W-term \qquad V-term \\ \hline \\ W-term \qquad V-term \\ \hline \\ \\ \end{bmatrix} \neq \frac{d\sigma}{dxdzdQ} \Big|_{NLO}$$

$$\frac{dq_{T}}{dxdzdq_{T}dQ} = W \Big|_{NNLL} \sim \mathcal{H} \left[\text{TMDPDF} \otimes \text{TMDFF} \right] \neq \frac{d\sigma}{dxdzdQ} \Big|_{NLO}$$

$$\text{at higher order} \qquad \mathcal{H}^{SIDIS} < 1 \qquad \text{integrated W-term does not reproduce the SIDIS collinear } d\sigma \text{ at NLO} \\ \hline \\ \text{V-term contributions missing} \\ \hline \\ \hline \\ We define the \\ \text{normalization factor} \qquad \omega(x, z, Q) = \frac{d\sigma}{dxdzdQ} \Big/ \frac{d\sigma}{dq_{T}W} \\ = 1 \quad \text{at NLL} \\ \end{array} \right] \qquad \begin{array}{c} \text{Does not depend on fit parameters, precomputed} \\ \end{array}$$

Backup: SV19 SIDIS normalization

where are data w.r.t. NLL result?

Backup: SV19 power corrections

arTeMiDe includes M/Q, q_T/Q power corrections effects in the q_T tail => not a normalization effect

Drell-Yan observables

Th: for each bin [i,f] $\int_{Q_i}^{Q_f} dQ \frac{2E}{\pi\sqrt{s}} \frac{d\sigma}{dq_T^2 dx_F dQ} \Big|_{x_F = \bar{x}_F, q_T = \bar{q}_T}$

SIDIS observable

Exp: differential SIDIS cross section divided by DIS one

$$M(x, z, P_{hT}, Q) = \frac{d\sigma^{\text{SIDIS}}}{dxdzdP_{hT}dQ} \left/ \frac{d\sigma^{\text{DIS}}}{dxdQ} \right|$$

Th: for each bin [i,f]

Multiplicity

 $\mathcal{O}^{\text{SIDIS}} = \frac{1}{(\Delta Q)_{if}} \int_{Q_i}^{Q_f} dQ \, \frac{1}{(\Delta x)_{if}} \int_{x_i}^{x_f} dx \, \frac{1}{(\Delta z)_{if}} \int_{z_i}^{z_f} dz \, \frac{1}{(\Delta P_{hT})_{if}} \int_{P_{hTi}}^{P_{hTf}} dP_{hT} \, \frac{d\sigma^{\text{SIDIS}}}{dx dz dP_{hT} dQ}$ $\mathcal{O}^{\text{DIS}} = \frac{1}{(\Delta Q)_{if}} \int_{Q_i}^{Q_f} dQ \, \frac{1}{(\Delta x)_{if}} \int_{x_i}^{x_f} dx \, \frac{d\sigma^{\text{DIS}}}{dx dQ}$ $\mathcal{M}^{\text{th}}(x_{if}, z_{if}, P_{hTif}, Q_{if}) = \frac{\mathcal{O}^{\text{SIDIS}}}{\mathcal{O}^{\text{DIS}}}$

The Nanga Parbat fitting framework

All material available at the Nanga Parbat GitHub site

Nanga Parbat: a TMD fitting framework

Nanga Parbat is a fitting framework aimed at the determination of the non-perturbative component of TMD distributions.

Download

You can obtain NangaParbat directly from the github repository:

https://github.com/MapCollaboration/NangaParbat

MAPTMD22

 \vdash

N

N

N

N

PUBLISHED FOR SISSA BY D SPRINGER RECEIVED: June 23, 2022 REVISED: September 13, 2022 ACCEPTED: October 10, 2022 PUBLISHED: October 19, 2022

Unpolarized transverse momentum distributions from a global fit of Drell-Yan and semi-inclusive deep-inelastic scattering data

The MAP Collaboration¹

Alessandro Bacchetta ^a, ^{a,b} Valerio Bertone ^b, ^c Chiara Bissolotti ^b, ^{a,d} Giuseppe Bozzi ^b, ^{e,f} Matteo Cerutti ^b, ^{a,b} Fulvio Piacenza, ^a Marco Radici ^b and Andrea Signori ^b, ^{a,b,2} ^aDipartimento di Fisica, Università di Pavia, via Bassi 6, I-27100 Pavia, Italy ^bINFN — Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy ^cIRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France ^dHEP Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL, 60439 U.S.A. ^eDipartimento di Fisica, Università di Cagliari, Cittadella Universitaria, I-09042 Monserrato (CA), Italy ^fINFN — Sezione di Cagliari, Cittadella Universitaria, 1-09042 Monserrato (CA), Italy *E*-mail: alessandro.bacchetta@unipv.it, valerio.bertone@cea.fr, cbissolotti@anl.gov, giuseppe.bozzi@unica.it, matteo.cerutti@pv.infn.it, fu.piacenza@gmail.com,

marco.radici@pv.infn.it, andrea.signori@unipv.it

arXiv:2206.07598

The MAPTMD22 data sets

kinematic cuts

 $\langle Q \rangle > 1.4 \text{ GeV}$ 0.2 < z < 0.7 Drell-Yan SIDIS

 $q_T < 0.2 Q$ $P_{hT} < \min\left[\min\left[0.2 Q, 0.5 Qz\right] + 0.3 \text{ GeV}, zQ\right]$

The (x,Q^2) phase space of available data

smaller than for PDFs, but starts to be comparable...

MAPTMD22: Error treatment

bootstrap method: fitting 250 replicas of fluctuated exp. data quality indicator: χ_0^2 of *central* replica (fitting not """") **MAPTMD22** at N³LL⁽⁻⁾: N_{data} =**2031**, **21** parameters, $\chi_0^2/N_{data} = 1.06$ $\chi_0^2 \sim \langle \chi^2 \rangle_{replicas}$

(exp. / th.) errors can be uncorrelated or correlated

$$\chi^{2} = \chi^{2}_{D} + \chi^{2}_{\lambda} \qquad \text{penalty for correlated errors}$$

$$\sum_{\substack{bins\\\sigma^{2} = \sigma_{stat}^{2} + \sigma_{uncorr}^{2}} \left(\frac{\exp - \overline{th}}{\sigma}\right)^{2} \qquad \overline{th} = th + \sum_{\alpha} \lambda_{\alpha} \sigma_{corr}^{(\alpha)} \qquad \chi^{2}_{\lambda} = \sum_{\alpha} \lambda^{2}_{\alpha} \qquad \text{nuisance params.}$$

Examples of (partly) correlated errors :

- exp.: some normalization systematic errors
- th. : uncertainties of PDFs MMHT2014 FFs DSS14 for π^{\pm} DSS17 for K^{\pm}

MAPTMD22 N³LL⁽⁻⁾ global fit $\chi_0^2/N_{data} = 1.06$

th. error band = 68% of all replicas

data set	N _{data}	χ^2_D	χ^2_{λ}	χ_0^2
Tevatron total	71	0.87	0.06	0.93
PHENIX 200	2	2.21	0.88	3.08
STAR 510	7	1.05	0.10	1.15
LHCb total	21	1.15	0.3	1.45
ATLAS total	72	4.56	0.48	5.05
CMS total	78	0.53	0.02	0.55
collider total	251	1.86	0.2	2.06
fixed target tot	233	0.85	0.4	1.24

MAPTMD22 N³LL⁽⁻⁾ global fit $\chi_0^2/N_{data} = 1.06$

extremely small exp. errors \rightarrow very sensitive to small th. corrections

Examples:

- numerical implementation of lepton cuts
- power corrections
- effects of matching Y term

Chen et al., arXiv:2203.01565 Camarda et al., arXiv:2111.14509 Buonocore et al., arXiv:2111.13661

data set	N _{data}	χ^2_D	χ^2_{λ}	χ_0^2
ATLAS 7 TeV	18	6.43	0.92	7.35
ATLAS 8 TeV	48	3.7	0.32	4.02
ATLAS 13 TeV	6	5.09	0.5	6.4
ATLAS total	72	4.56	0.48	5.05
collider total	251	1.86	0.2	2.06

Visualizing MAPTMD22 TMD PDF

TMD PDF for unpolarized up quark

Visualizing MAPTMD22 TMD FF

 $up \rightarrow \pi^+$

MAPTMD22: χ^2 breakout

	N ³ LL ⁻				
Data set	$N_{\rm dat}$	χ^2_D	χ^2_{λ}	χ^2_0	
CDF Run I	25	0.45	0.09	0.54	
CDF Run II	26	0.995	0.004	1.0	
D0 Run I	12	0.67	0.01	0.68	
D0 Run II	5	0.89	0.21	1.10	
D0 Run II (μ)	3	3.96	0.28	4.2	
Tevatron total	71	0.87	0.06	0.93	
LHCb 7 TeV	7	1.24	0.49	1.73	
LHCb 8 TeV	7	0.78	0.36	1.14	
LHCb 13 TeV	7	1.42	0.06	1.48	
LHCb total	21	1.15	0.3	1.45	
ATLAS 7 TeV	18	6.43	0.92	7.35	
ATLAS 8 TeV	48	3.7	0.32	4.02	
ATLAS 13 TeV	6	5.9	0.5	6.4	
ATLAS total	72	4.56	0.48	5.05	
CMS 7 TeV	4	2.21	0.10	2.31	
CMS 8 TeV	4	1.938	0.001	1.94	
CMS 13 TeV	70	0.36	0.02	0.37	
CMS total	78	0.53	0.02	0.55	
PHENIX 200	2	2.21	0.88	3.08	
STAR 510	7	1.05	0.10	1.15	
DY collider total	251	1.86	0.2	2.06	
E288 200 GeV	30	0.35	0.19	0.54	
E288 300 GeV	39	0.33	0.09	0.42	
E288 400 GeV	61	0.5	0.11	0.61	
E772	53	1.52	1.03	2.56	
E605	50	1.26	0.44	1.7	
DY fixed-target total	233	0.85	0.4	1.24	
HERMES $(p \to \pi^+)$	45	0.86	0.42	1.28	
HERMES $(p \to \pi^-)$	45	0.61	0.31	0.92	
HERMES $(p \to K^+)$	45	0.49	0.04	0.53	
HERMES $(p \to K^-)$	37	0.18	0.13	0.31	
HERMES $(d \to \pi^+)$	41	0.68	0.45	1.13	
HERMES $(d \to \pi^-)$	45	0.63	0.35	0.97	
HERMES $(d \to K^+)$	45	0.2	0.02	0.22	
HERMES $(d \to K^-)$	41	0.14	0.08	0.22	
HERMES total	344	0.48	0.23	0.71	
COMPASS $(d \to h^+)$	602	0.55	0.31	0.86	
COMPASS $(d \rightarrow h^{-})$	601	0.68	0.3	0.98	
COMPASS total	1203	0.62	0.3	0.92	
SIDIS total	1547	0.59	0.28	0.87	
Total	2031	0.77	0.29	1.06	

MAPTMD22: NNLL and NLL fits

	N ³ LL ⁻		NNLL		NLL	
Data set	$N_{\rm dat}$	$\langle \chi^2 \rangle \pm \delta \langle \chi^2 \rangle$	$N_{ m dat}$	$\langle \chi^2 \rangle \pm \delta \langle \chi^2 \rangle$	$N_{\rm dat}$	$\langle \chi^2 \rangle \pm \delta \langle \chi^2 \rangle$
ATLAS	72	5.01 ± 0.26	/	/	/	/
PHENIX 200	2	3.26 ± 0.31	2	0.81 ± 0.11	/	/
STAR 510	7	1.16 ± 0.04	7	0.99 ± 0.03	/	/
Other sets	170	0.83 ± 0.01	170	2.37 ± 0.11	/	/
DY collider	251	2.06 ± 0.07	179	2.3 ± 0.1	/	/
E772	53	2.48 ± 0.12	53	2.05 ± 0.22	/	/
Other sets	180	0.87 ± 0.04	180	0.71 ± 0.04	180	0.81 ± 0.04
DY fixed-target	233	1.24 ± 0.04	233	1.01 ± 0.05	180	0.81 ± 0.04
HERMES	344	0.71 ± 0.04	344	1.1 ± 0.06	344	0.51 ± 0.02
COMPASS	1203	0.95 ± 0.02	1203	0.6 ± 0.06	1203	0.41 ± 0.01
SIDIS	1547	0.89 ± 0.02	1547	0.71 ± 0.05	1547	0.43 ± 0.01
Total	2031	1.08 ± 0.01	1959	0.89 ± 0.01	1727	0.47 ± 0.01

data sets requiring higher pert. accuracy need to be excluded. Still, these fits useful for polarized situations with less available accuracy

MAPTMD22: Kinematic cuts

MAPTMD22: validity of TMD region?

validity of TMD factorization seems to extend well beyond $P_{hT}/z \ll Q$!

Backup: SV19 cut on COMPASS

more stringent cut => 1/3 of MAPTMD22 SIDIS data points

Visualizing the Collins-Soper evolution kernel

Collins-Soper kernel

$$K(b_T, \mu_{b_*}) = K(b_*, \mu_{b_*}) + g_K(b_T)$$

drives evolution in rapidity ζ

perturbative

non-perturbative (fitted)

Bermudez Martinez & Vladimirov, arXiv:2206.01105

MAPTMD24

Flavor dependence of unpolarized quark Transverse Momentum Distributions from a global fit

The MAP (Multi-dimensional Analyses of Partonic distributions) Collaboration

Alessandro Bacchetta,^{1, 2, *} Valerio Bertone,^{3, †} Chiara Bissolotti,^{4, ‡} Giuseppe Bozzi,^{5, 6, §} Matteo Cerutti,^{7, 8, ¶} Filippo Delcarro,^{1, 2, **} Marco Radici,^{2, ††} Lorenzo Rossi,^{1, 2, ‡‡} and Andrea Signori^{9, 10, §§}

¹Dipartimento di Fisica, Università di Pavia, via Bassi 6, I-27100 Pavia, Italy ²INFN - Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy ³IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France ⁴Argonne National Laboratory, Lemont, IL, USA ⁵Dipartimento di Fisica, Università di Cagliari, Cittadella Universitaria, I-09042, Monserrato (CA), Italy ⁶INFN - Sezione di Cagliari, Cittadella Universitaria, I-09042, Monserrato (CA), Italy ⁷Hampton University, Hampton, Virginia 23668, USA ⁸Jefferson Lab, Newport News, Virginia 23606, USA ⁹Department of Physics, University of Turin, via Pietro Giuria 1, I-10125 Torino, Italy ¹⁰INFN, Section of Turin, via Pietro Giuria 1, I-10125 Torino, Italy

MAPTMD24

arXiv:2405.13833

Results with contributions from...

Alessandro Bacchetta Univ. Pavia

Valerio Bertone IRFU, CEA, Univ. Paris-Saclay

Matteo Cerutti postdoc Hampton Univ. - JLab

Chiara Bissolotti ANL

Giuseppe Bozzi Univ. Cagliari

Filippo Delcarro postdoc Univ. Pavia

Lorenzo Rossi Ph.D. student Univ. Pavia

Andrea Signori Univ. Torino

$\mathsf{MAPTMD22} \rightarrow \mathsf{MAPTMD24}$

$MAPTMD22 \rightarrow MAPTMD24$

$MAPTMD22 \rightarrow MAPTMD24$

	Data set χ_0^2/N_{dat}			
Collinear sets	DY total	SIDIS total	Total	
MMHT + DSS (MAP22)	1.66	0.87	1.06	
NNPDF + MAPFF (MAP24 FI)	1.58	1.34	1.40	

TMD PDFs from MAPTMD24 are compatible with MAPTMD22

$\mathsf{MAPTMD22} \to \mathsf{MAPTMD24}$

	Data set χ_0^2/N_{dat}		
Collinear sets	DY total	SIDIS total	Total
MMHT + DSS (MAP22)	1.66	0.87	1.06
NNPDF + MAPFF (MAP24 FI)	1.58	1.34	1.40

TMD FFs from MAPTMD24 are different from MAPTMD22

MAPFF1.0nnlo

- NNLO
- smaller uncertainties
- Neural Network approach

$\mathsf{MAPTMD22} \rightarrow \mathsf{MAPTMD24}$

Fit results for SIDIS

Fit results for Drell-Yan

data set	N _{data}	χ^2_D	χ^2_{λ}	χ^2
HERMES	344	0.81	0.24	1.05
COMPASS	1203	0.67	0.27	0.94
SIDIS total	1547	0.70	0.26	0.96
DY fixed target	233	0.63	0.31	0.94
DY collider	251	1.37	0.28	1.65
Total	2031	0.81	0.27	1.08

very good agreement

good agreement

Fit results for Drell-Yan

MAPTMD24 flavor channels

total of 96 parameters but with ~diagonal correlation matrix

Visualizing MAPTMD24 TMD PDF

Visualizing MAPTMD24 TMD PDFs

Q=2 GeV

Visualizing MAPTMD24 TMD PDFs

"Normalized" MAPTMD24 TMD FF

- favored better constrained than unfavored
- signs of favored ≠ unfavored
- structure from nonperturbative parametrization

• evidence of final-hadron dependence

MAPTMD24: **x**² breakout

	N ³ LL			
Data set	$N_{\rm dat}$	χ^2_D	χ^2_{λ}	χ^2_0
Tevatron total	71	1.10	0.07	1.17
LHCb total	21	3.56	0.96	4.52
ATLAS total	72	3.54	0.82	4.36
CMS total	78	0.38	0.05	0.43
PHENIX 200	2	2.76	1.04	3.80
STAR 510	7	1.12	0.26	1.38
DY collider total	251	1.37	0.28	1.65
E288 200 GeV	30	0.13	0.40	0.53
E288 300 GeV	39	0.16	0.26	0.42
E288 400 GeV	61	0.11	0.08	0.19
E772	53	0.88	0.20	1.08
E605	50	0.70	0.22	0.92
DY fixed-target total	233	0.63	0.31	0.94
HERMES total	344	0.81	0.24	1.05
COMPASS total	1203	0.67	0.27	0.94
SIDIS total	1547	0.70	0.26	0.96
Total	2031	0.81	0.27	1.08

MAPTMD24: fit parameters

Parameter	Value	Parameter	Value	Parameter	Value
$g_2 \; [\text{GeV}]$	0.12 ± 0.0033				
$N_{1d} [\mathrm{GeV}^2]$	0.21 ± 0.017	$N_{2d} [{\rm GeV}^2]$	0.015 ± 0.0013	$N_{3d} [{\rm GeV}^2]$	$(40 \pm 2.2) \times 10^{-4}$
α_{1d}	0.86 ± 0.11	α_{2d}	5.5 ± 0.041	α_{3d}	2.38 ± 0.032
σ_{1d}	-0.21 ± 0.013	$\sigma_{2d} = \sigma_{3d}$	9.91 ± 0.061		
$\lambda_{1d} \; [\text{GeV}^{-1}]$	0.32 ± 0.038	$\lambda_{2d} \; [\text{GeV}^{-1}]$	0.052 ± 0.0022		
$N_{1\bar{d}} \; [{\rm GeV^2}]$	0.68 ± 0.038	$N_{2\bar{d}} \; [\text{GeV}^2]$	0.0037 ± 0.0037	$N_{3\bar{d}} \; [{ m GeV}^2]$	$(5.9 \pm 5.8) \times 10^{-5}$
$\alpha_{1\bar{d}}$	0.64 ± 0.18	$lpha_{2ar d}$	5.69 ± 0.64	$lpha_{3ar{d}}$	1.57 ± 0.53
$\sigma_{1ar{d}}$	0.075 ± 0.012	$\sigma_{2\bar{d}}=\sigma_{3\bar{d}}$	10.19 ± 0.09		
$\lambda_{1\bar{d}} [\text{GeV}^{-1}]$	0.7 ± 0.67	$\lambda_{2\bar{d}} [\text{GeV}^{-1}]$	0.051 ± 0.0071		
$N_{1u} \; [{\rm GeV}^2]$	0.35 ± 0.0063	$N_{2u} \; [{\rm GeV}^2]$	0.019 ± 0.00015	$N_{3u} \; [{ m GeV}^2]$	$(355 \pm 4.5) \times 10^{-6}$
α_{1u}	0.18 ± 0.1	$lpha_{2u}$	5.42 ± 0.0037	$lpha_{3u}$	2.14 ± 0.0068
σ_{1u}	-0.26 ± 0.0079	$\sigma_{2u} = \sigma_{3u}$	10.17 ± 0.011		
$\lambda_{1u} [\text{GeV}^{-1}]$	0.49 ± 0.0037	$\lambda_{2u} [\text{GeV}^{-1}]$	0.081 ± 0.0009		
$N_{1\bar{u}} [\mathrm{GeV}^2]$	0.48 ± 0.0074	$N_{2\bar{u}} \left[\text{GeV}^2 \right]$	0.022 ± 0.00037	$N_{3\bar{u}} [\mathrm{GeV}^2]$	$(21 \pm 1.5) \times 10^{-5}$
$\alpha_{1\bar{u}}$	0.95 ± 0.077	$lpha_2ar u$	5.38 ± 0.0099	$lpha_{3ar{u}}$	1.77 ± 0.052
$\sigma_{1ar{u}}$	-0.026 ± 0.01	$\sigma_{2\bar{u}} = \sigma_{3\bar{u}}$	10.21 ± 0.02		
$\lambda_{1\bar{u}} [\text{GeV}^{-1}]$	0.53 ± 0.0067	$\lambda_{2\bar{u}} [\text{GeV}^{-1}]$	0.11 ± 0.0055		
$N_{1sea} \; [\mathrm{GeV}^2]$	0.16 ± 0.035	$N_{2sea} \; [{\rm GeV}^2]$	0.029 ± 0.0027	$N_{3sea} \; [\mathrm{GeV}^2]$	0.0039 ± 0.002
α_{1sea}	0.65 ± 0.48	α_{2sea}	5.24 ± 0.032	$lpha_{3sea}$	1.48 ± 0.74
σ_{1sea}	-0.018 ± 0.022	$\sigma_{2sea} = \sigma_{3sea}$	10.72 ± 0.037		
$\lambda_{1sea} [\text{GeV}^{-1}]$	2.43 ± 0.97	$\lambda_{2sea} [\text{GeV}^{-1}]$	0.015 ± 0.0083		
$N_{4u\pi} [{\rm GeV^2}]$	$(82 \pm 1.8) \times 10^{-5}$	$N_{5u\pi} [{\rm GeV}^2]$	0.095 ± 0.0008	$\beta_{1u\pi}$	5.19 ± 0.066
$\beta_{2u\pi}$	2.3 ± 0.041	$\delta_{1u\pi}$	0.017 ± 0.0084	$\delta_{2u\pi}$	0.19 ± 0.0049
$\gamma_{1u\pi}$	1.46 ± 0.015	$\gamma_{2u\pi}$	0.8 ± 0.0095	$\lambda_{Fu\pi} [\text{GeV}^{-2}]$	0.089 ± 0.003
$N_{4sea\pi} \; [\mathrm{GeV}^2]$	$(83 \pm 2.4) \times 10^{-5}$	$N_{5sea\pi} \ [{ m GeV}^2]$	0.094 ± 0.0012	$\beta_{1sea\pi}$	5.38 ± 0.21
$\beta_{2sea\pi}$	2.31 ± 0.072	$\delta_{1sea\pi}$	0.022 ± 0.0064	$\delta_{2sea\pi}$	0.19 ± 0.0044
$\gamma_{1sea\pi}$	1.44 ± 0.026	$\gamma_{2sea\pi}$	0.8 ± 0.012	$\lambda_{Fsea\pi} [\text{GeV}^{-2}]$	0.086 ± 0.004
$N_{4uK} [{\rm GeV}^2]$	$(87 \pm 5.7) \times 10^{-5}$	$N_{5uK} [{ m GeV}^2]$	0.14 ± 0.0026	β_{1uK}	8.52 ± 0.081
β_{2uK}	3.86 ± 0.19	δ_{1uK}	0.0061 ± 0.0035	δ_{2uK}	0.19 ± 0.0059
γ_{1uK}	1 ± 0.041	γ_{2uK}	0.19 ± 0.054	$\lambda_{FuK} [\text{GeV}^{-2}]$	0.14 ± 0.0048
$N_{4\bar{s}K} [\mathrm{GeV}^2]$	$(4.5 \pm 3.7) \times 10^{-4}$	$N_{5\bar{s}K} \ [{ m GeV}^2]$	0.16 ± 0.016	$\beta_{1\bar{s}K}$	7.17 ± 1.4
$\beta_{2\bar{s}K}$	5.1 ± 1.04	$\delta_{1ar{s}K}$	1.51 ± 1.51	$\delta_{2\bar{s}K}$	0.16 ± 0.033
$\gamma_{1\bar{s}K}$	0.71 ± 0.42	$\gamma_{2ar{s}K}$	0.36 ± 0.19	$\lambda_{F\bar{s}K} [{ m GeV}^{-2}]$	0.34 ± 0.2
$N_{4seaK} [{\rm GeV}^2]$	$(78 \pm 2.8) \times 10^{-5}$	$N_{5seaK} [{\rm GeV}^2]$	0.15 ± 0.0059	β_{1seaK}	8.63 ± 0.24
β_{2seaK}	4.19 ± 0.14	δ_{1seaK}	0.0075 ± 0.0051	δ_{2seaK}	0.2 ± 0.0029
γ_{1seaK}	0.96 ± 0.036	γ_{2seaK}	$0.\overline{17\pm0.092}$	$\lambda_{FseaK} [\text{GeV}^{-2}]$	0.15 ± 0.0055

Correlation matrix

Average transverse momenta

clusters = 68% of all replicas

Impact studies

MAPTMD22 impact studies

MAPTMD22 impact on the EIC

kinematics 10x100

major improvements at smaller x

MAPTMD22 impact on JLab20+

kinematics JLab20

major improvements at valence x

Potential impact on W mass

SM expectation: $M_W = 80357 \pm 6 \,\, {
m MeV}$

our work

explore sensitivity of M_W to non-perturbative flavor-dependent k⊥ distribution

intrinsic k_{\perp} + resummation $\rightarrow q_{TW} \rightarrow p_{T\ell}$

 $u\bar{u}, d\bar{d} \rightarrow Z^0$ main channels $u\bar{d} \rightarrow W^+$ main channel

but all analyses assume flavor-independent Gaussian k_{\perp} distribution

Alessandro Bacchetta ^{a,b,*}, Giuseppe Bozzi ^{a,b}, Marco Radici ^b, Mathias Ritzmann ^c, Andrea Signori ^d

^a Dipartimento di Fisica, Università di Pavia, via Bassi 6, I-27100 Pavia, Italy
^b INFN, Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy
^c Nikhef, Science Park 105, NL-1098 XCA Amsterdam, the Netherlands
^c Theory Center, Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA

P.L. B788 (19) 542, arXiv:1807.02101

Potential impact on W mass

- take the DYRES code and modify the $f_{NP}(x,b_T)$

$$\exp\left[-g_2 b_T^2 \log \frac{Q^2}{Q_0^2}\right] \longrightarrow \exp\left[-\left(g_2 \log \frac{Q^2}{Q_0^2} + g^q\right) b_T^2\right]$$

flavor dependent range of variation from Signori et al., JHEP **11** (13) 194,

arXiv:1309.3507

flavor independent, ~[0.2-0.4] GeV²
MAPTMD22 ~ 0.25, see also
PV 2017 Bacchetta et al., JHEP 06 (17) 081, arXiv:1703.10157 Guzzi et al., P.R. D90 (14) 014030

- generate p_T^z spectrum with g_2 and assigned CDF/ATLAS errors in each bin; generate sets of p_T^z spectra with $g^q = \{g^{u_v}, g^{d_v}, g^{u_{sea}}, g^{d_{sea}}, g^s\}$ and keep those with global $\chi^2/d.o.f. < 1.3$
- with these "Z-equivalent" sets, generate pseudodata for lepton p_T distribution at $M_W^0 = 80.370$ GeV
- with g_2 , generate 30 template lepton p_T distributions with M_W in $M_W^0 \pm 0.015$ GeV
- perform template fits for each pseudodata

Potential impact on W mass

 repeat impact study on extraction of W mass using MAPTMD24 flavor-dependent k_T distributions

Phase space for polarized TMDs

For polarized TMDs, available phase space is less than unpol. TMD, particularly at high $Q^2 \rightarrow$ more difficult to study evolution properties. Where collider data can be most useful

Most recent extractions

