The RHIC Spin physics program

Diffraction and Low-x 2024, Palermo, Sicily September 12

Ralf Seidl (RIKEN)

The RHIC ring(s) with polarized protons RHIC pC Polarimeters Absolute Polarimeter (H jet) Siberian Snakes **BRAHMS & PP2PP** Рновоз Siberian Snakes Spin Flipper 8 PHENIX **S**TAR $L_{\rm max} = 2 \times 10^{32} \,{\rm s}^{-1} {\rm cm}^{-2}$ **Spin Rotators** $50 < \sqrt{s} < 500 \, GeV$ **Partial Snake Helical Partial** +++ Strong Snake Snake ~ 70% Polarization LINAC AGS BOOSTER 200 MeV Polarimeter Rf Dipole **AGS Internal Polarimeter** 2×10^{11} Pol. Protons / Bunch AGS pC Polarimeter ε = 20 π mm mrad

9/12, Diffraction + Low-x

Ralf Seidl: RHIC Spin

RIKEN

RHIC, PHENIX, sPHENIX and STAR

RHIC

STAR

Polarized proton beams from \sqrt{s} of 62-510 GeV

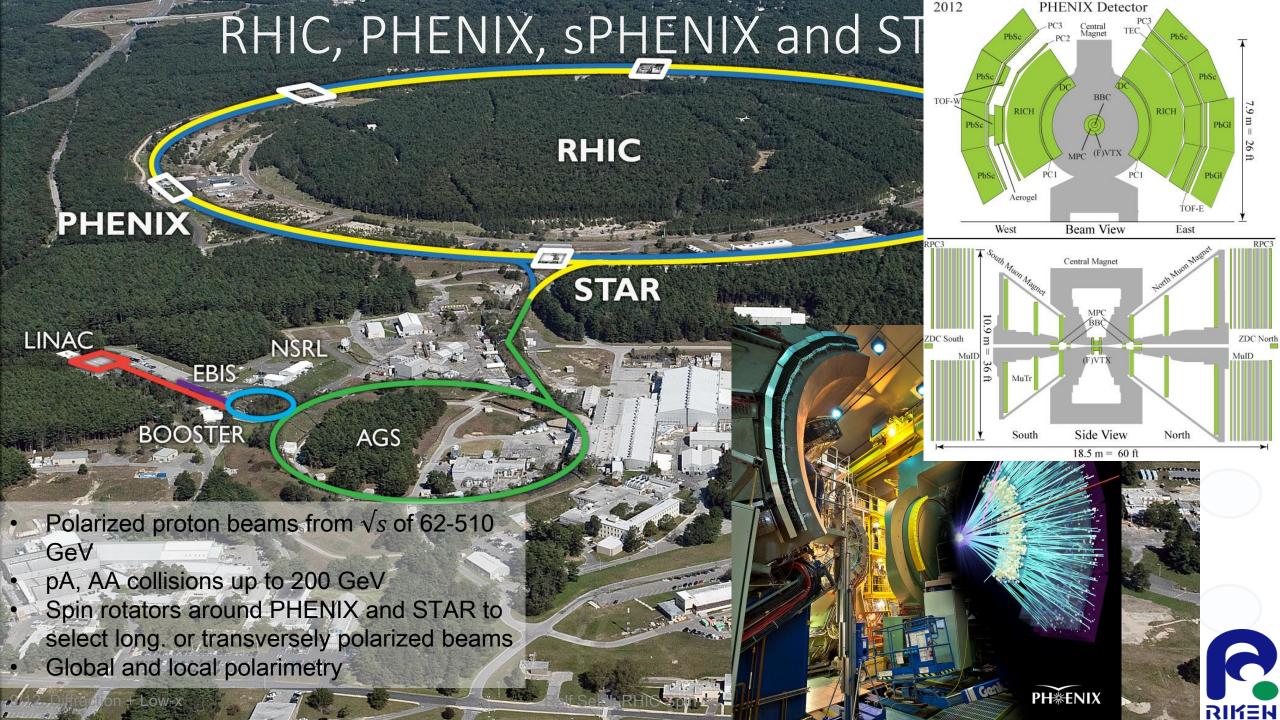
EBIS ...

BOOSTER

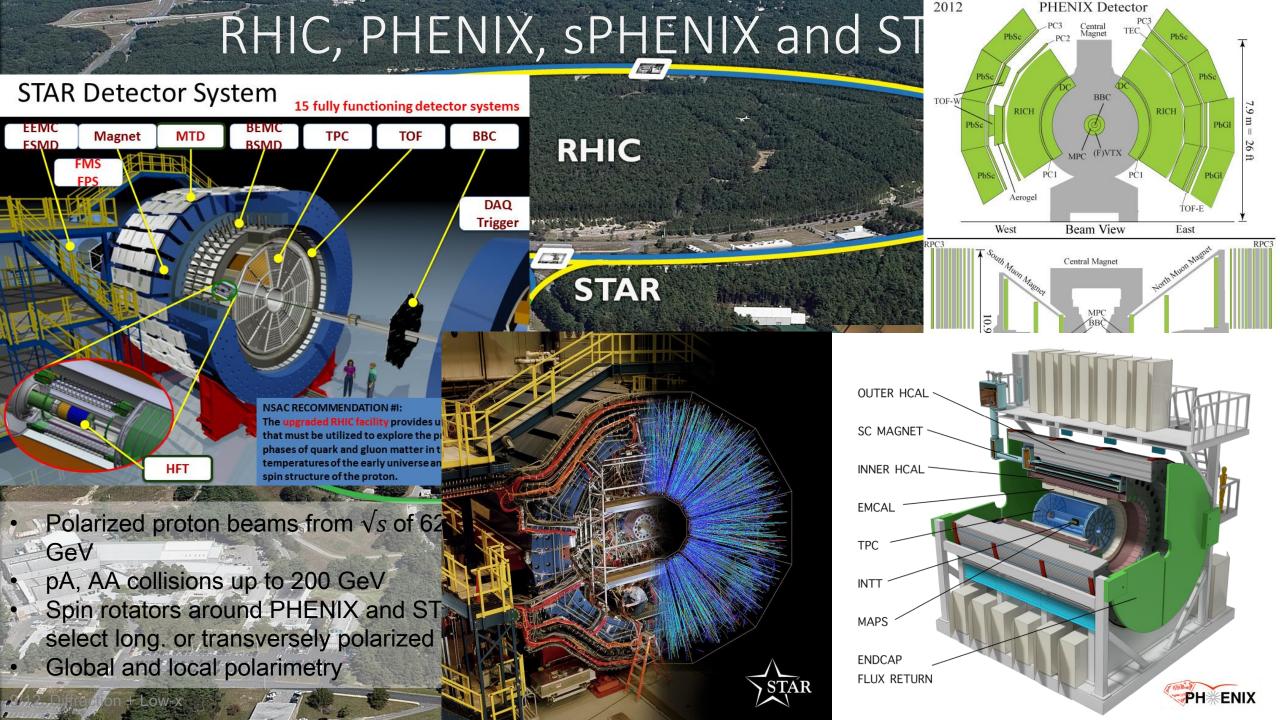
Low-x

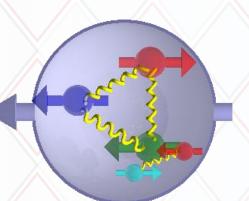
NSRL

AGS


PHENIX

LINAC


pA, AA collisions up to 200 GeV Spin rotators around PHENIX and STAR to select long. or transversely polarized beams


Global and local polarimetry

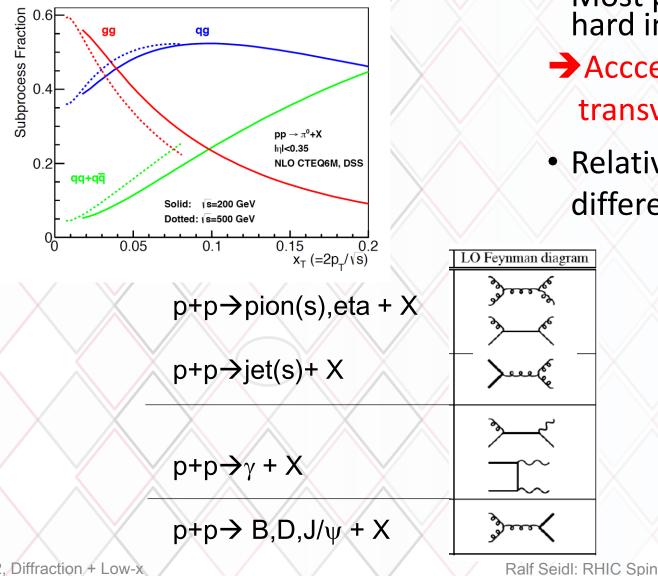
Helicity PDFs, longitudinal spin

9/12, Diffraction + Low-x

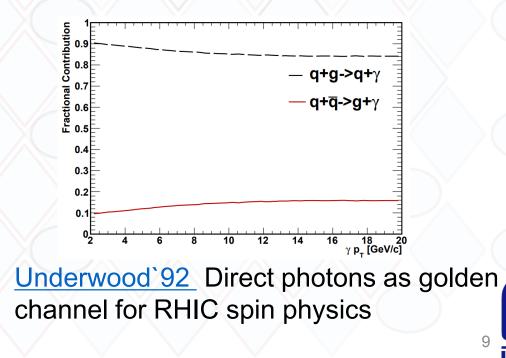
Naïve Quark Model picture: 3 valence quarks make up the spin of the nucleon:

The Spin sum rule

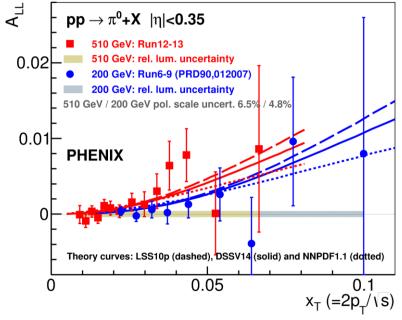
$$\longrightarrow = \longrightarrow + \longrightarrow + \longleftarrow$$

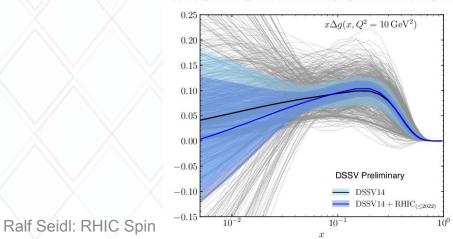

 $=\frac{1}{2}\Delta\Sigma+\Delta G+L \quad \text{Jaffe, Manohar} \\ \begin{array}{c} \text{Quark} \\ \text{spin} \end{array} \quad \begin{array}{c} \text{Gluon} \quad \text{Orbital angular} \\ \text{momentum} \end{array}$

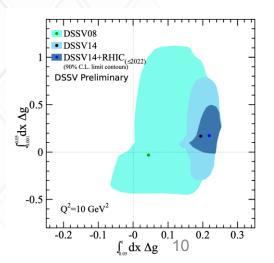
 $\Delta \Sigma = \int dx \left[(\Delta u(x) + \Delta \overline{u}(x)) + (\Delta d(x) + \Delta \overline{d}(x)) + (\Delta s(x) + \Delta \overline{s}(x)) \right]$


- Spin Crisis (1980s): Quark spin contributes only little
- $\Delta\Sigma$ and ΔG can be accessed in longitudinally polarized (SI)DIS and pp collisions (currently for x>0.01)
- Where is the rest of the spin? Gluons? Lower momentum fractions? Orbital angular momentum?

Hard processes at RHIC


- Most processes are dominated by gluon hard interactions at RHIC energies
- Acccess to Gluon related spin and transverse spin effects!
- Relative contributions different for different final states (flavor sensitivity)


RIKEN


Nonzero Gluon spin: access to lower x with higher energies

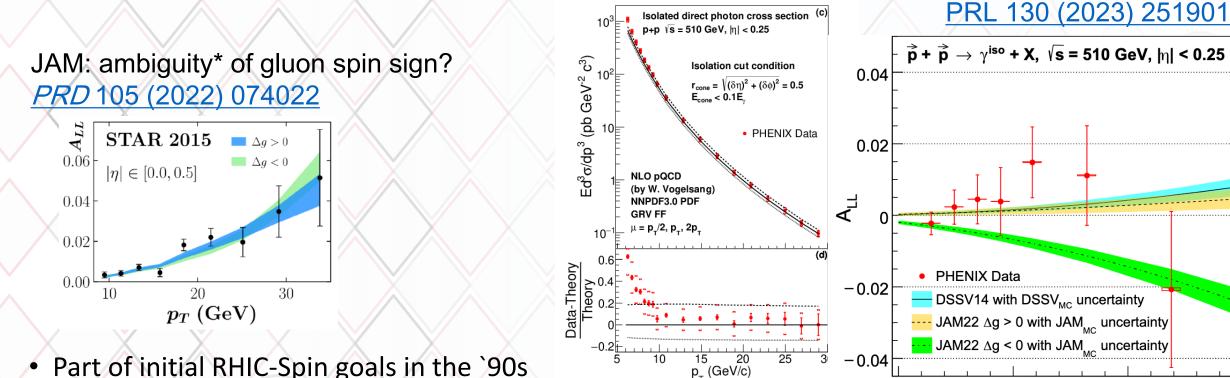
- Nonzero gluon polarization established with RHIC Vs = 200 GeV data
- RHIC 510 GeV data (>2011) confirmed it in workhorse (jet, pion) measurements
- Extend access to lower x by higher energy (now~ 10⁻²)

PRD 93 (2016) 011501

Q(x)

First direct photon xsec and A₁₁ at 510 GeV

Q(x)

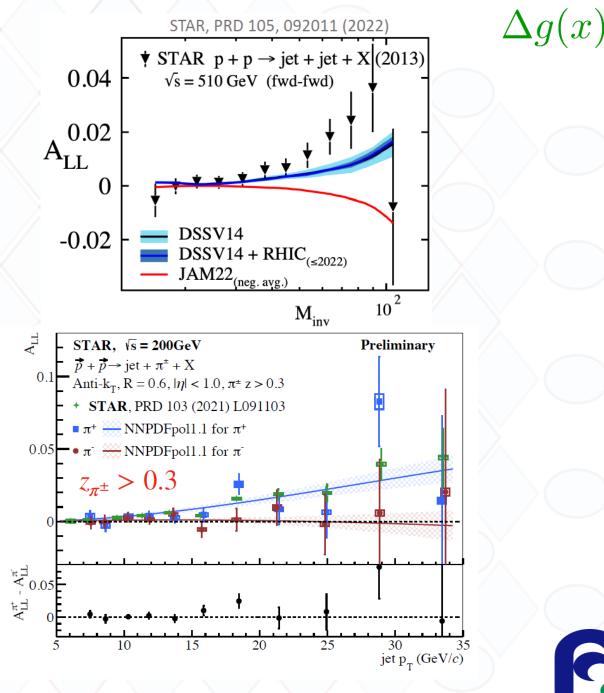

10

p_T [GeV/c]

15

20

RIKEN



- Part of initial RHIC-Spin goals in the `90s
- Theoretically, the Golden channel to access gluon polarization as hard interaction mostly q-g
- Since EM process, statistically limited but consistent with global fit results
- Clear preference for positive gluon polarization in measured range

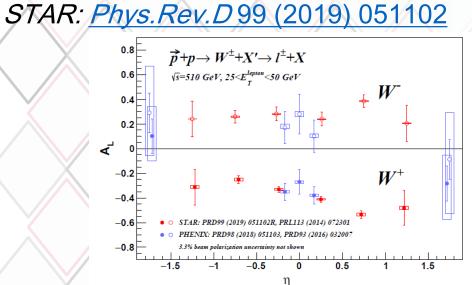
DOE Science Highlight

Jet A_{LL}s

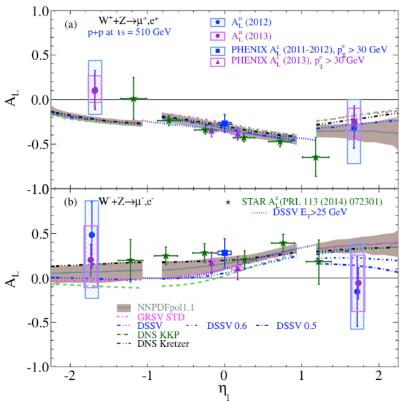
- Single jet measurements workhorse measurements at STAR
- Di-jet A_{LL}s with good x sensitivity via invariant mass and jet rapidities
- Pion tagged jets: clear separation by pion charge – ordering confirms positive gluon polarization

RIKEN

RIKE


Real W production as access to (anti)quark helicities phelicity + phelicity -

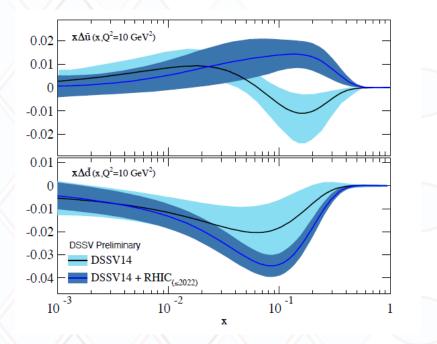
- Maximally parity violating V-A interaction selects only lefthanded quarks and righthanded antiquarks:
- → Having different helicities for the incoming proton then selects spin parallel or antiparallel of the quarks
- → Difference of the cross sections gives quark helicities ∆q(x)
- No Fragmentation function required
- Very high scale defined by W mass

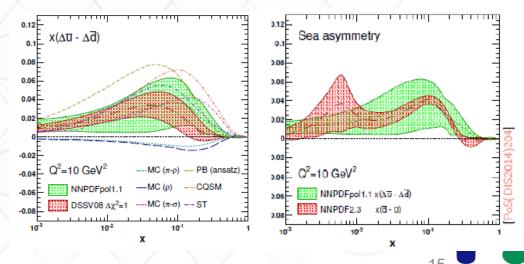

Bourrely, Soffer Nucl.Phys. B423 (1994) 329-348

Ralf Seidl: RHIC Spin

Forward W+Z $\rightarrow \mu$ asymmetries

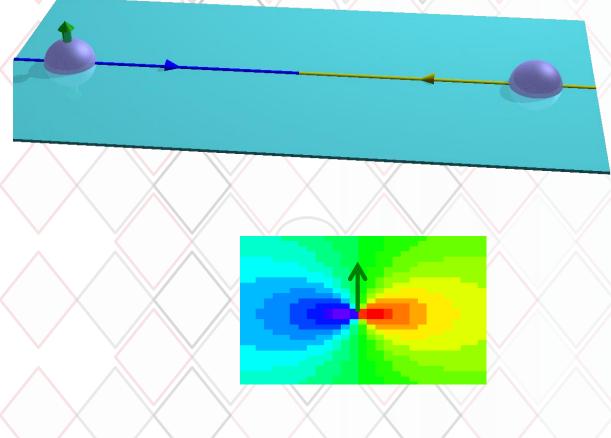
- Precise measurements of $W \rightarrow e/m$ asymmetries
- Asymmetries overall as expected (dominated by quark helicities)
- clear preference wrt to parameterization uncertainty bands determines sea quark helicities


PHENIX: <u>Phys.Rev.D</u>98 (2018) 032007 , <u>Phys.Rev.D</u>93 (2016) 051103


$\Delta q(x) \ \Delta \bar{q}(x)$

Sea quark helicites

- RHIC data at boundary of DSSV/NNPDFpol1.1 uncertainty bands
- Reweighted NNPDFpol1.1 and DSSV14 fits shows substantial polarized light sea asymmetry
- opposite sign to most pion cloud models (where polarized and unpolarized light sea asymmetries have same sign)

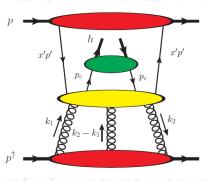


Transverse Single spin asymmetries (TSSAs)

• Left-Right asymmetries :

 $A_N = \frac{1}{P} \frac{N^L - N^R}{N^L + N^R}$

- Relative to the polarized proton spin direction more particles get produced to the left than to the right wrt. spin direction
- The cross section is spin (and azimuthal angle) dependent
- Initially expected to be zero in perturbative QCD (helicity-flip of nearly massless quarks) - G. L.
 Kane, J. Pumplin, and W. Repko *PRL*41, 1689 (1978):


 $A_N \propto \frac{m_q \alpha_S}{P_T} \approx 0.001$

TSSAs at RHIC→Quark-gluon dynamics!

- Sivers and Collins effects rely on an explicitly transverse momentum dependent (TMD) framework where two scales are observed: high scale (typically Q²) and intermediate scale (transverse momentum $P_T << Q^2$)
- In inclusive pp measurements usually only one, hard scale accessible (transverse momentum P_T)
- → requires higher Twist, collinear framework, contributions are multi-parton correlators (both in initial state and final state)
- Both frameworks found to be related via moments over intrinsic transverse momenta

q-g correlation (↔ quark Sivers)

 $p^{\uparrow}(p)$

 $(x_2 - x_1)p^+$

 $p^{\dagger}(p)$

g-g correlation (trigluon ↔ gluon Sivers)

q-g FF correlation (\leftrightarrow Collins)

 P_h, S_h

 P_h/z

Single spin asymmetry contributions in p+p

unpol proton PDF* FS particle FF* pol proton PDF*

a,b,c $\sum \delta q_{a/A}(x,s) \otimes \phi_{b/B}^{(3)}(x_1',x_2') \otimes D_{c \to C}(z)$ a,b,c

 $\sum \delta q_{a/A}(x,s) \otimes \phi_{b/B}(x') \otimes D^{(3)}_{c o C}(z_1,z_2)$ a,b,c

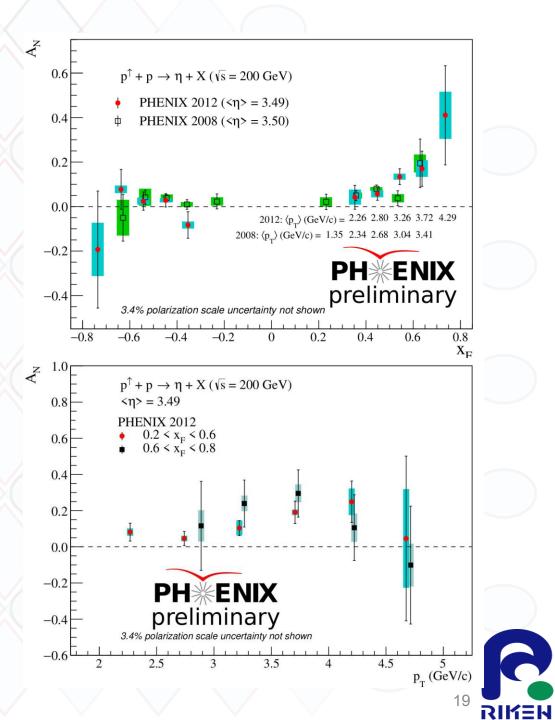
> a,b/c initial/final parton flavors A,B/C initial/final hadron/particle types

Efremov, Teryaev Phys.Lett.B 348 (1995) 577 Qiu, Sterman Phys. Rev. D 59 (1999) 014004 Kanazawa, Koike Phys.Lett.B 478 (2000) 121-126 Metz, Pitonyak Phys.Lett.B723 (2013) 365-370

 $\sum \phi_{a/A}^{(3)}(x_1, x_2, s) \otimes \phi_{b/B}(x') \otimes D_{c \to C}(z)$ • Generally three pieces to p+p single transverse spin asymmetries:

- Twist three correlation functions (quarks or gluons) in polarized proton \leftrightarrow Sivers function
- Twist three correlation function in unpolarized proton (with transversity) \leftrightarrow Boer Mulders function
- Twist three correlation in fragmentation ↔ Collins function

Different final states single out different contributions (via hard processes)

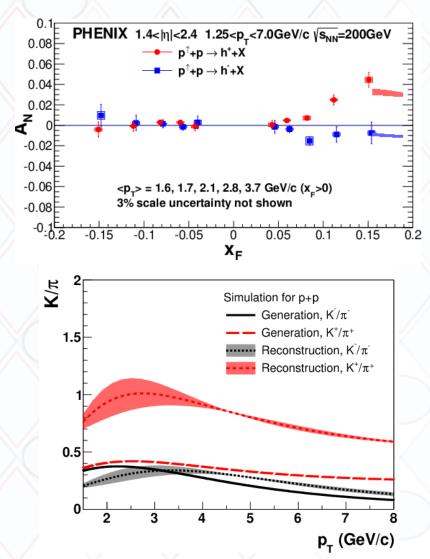

9/12, Diffraction + Low-x

+

 A_N

Forward eta A_Ns

- Update of forward η A_N measurements with better statistics
- Asymmetries sizeable, maybe a hint of turnaround expected at higher p_T due to HT nature of asymmetries



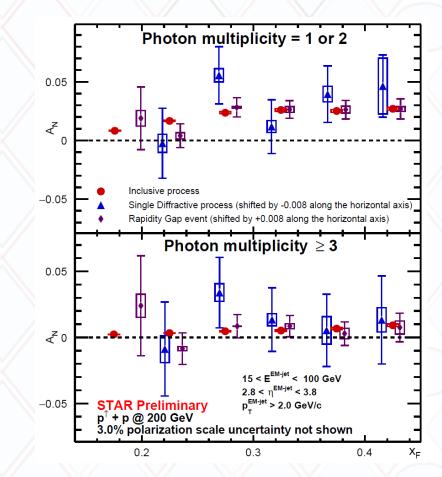
Forward charged hadron A_ns

- Also more detailed forward (1.4<η<2.4) charged hadrons
- For proton collisions sizeable positive asymmetries for h⁺, slightly negative for h⁻
- h⁻ results expected due to mix of pions (negative) and kaons (positive)
- Negative kaons are enhanced due to the absorbing material

Ralf Seidl: RHIC Spin

PRD 108 (2023) 072016

20


RIKE

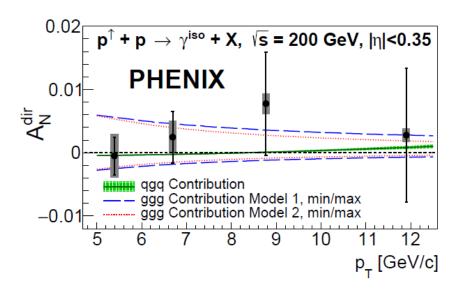
Diffractive contributions?

- Both single diffractive and rapidity gap events show asymmetry comparable to inclusive asymmetry
- To compensate for small contribution of diffractive events to inclusive events asymmetry had to be much larger
- Conclusion: Diffractive events are not main cause for nonzero A_Ns

STAR forward EM-"jet" ANs

 \rightarrow Liang, Tuesday

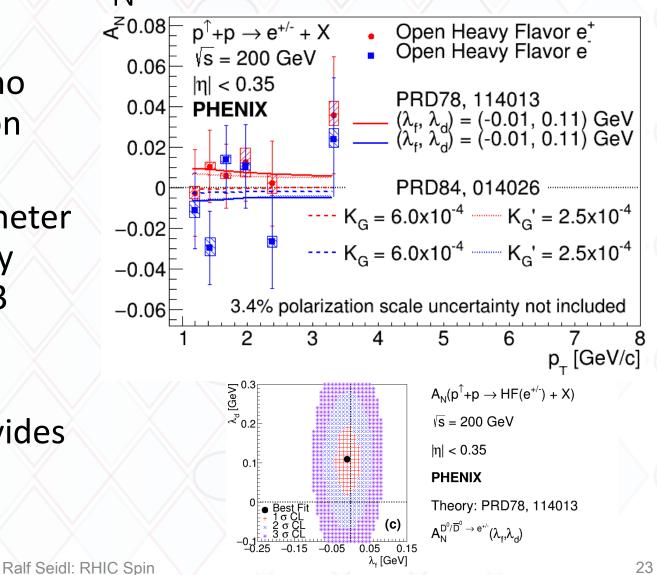
First direct photon A_Ns


- First direct photon A_N extracted at RHIC
- Mostly sensitive to initial state effects (no fragmentation) → quark-gluon and gluon-gluon correlation functions
- Power to constrain gluon-gluon correlation function well, since quark impact expected to be small

RIKEN Press release: <u>https://www.riken.jp/press/</u> 2021/20211015_1/index.html

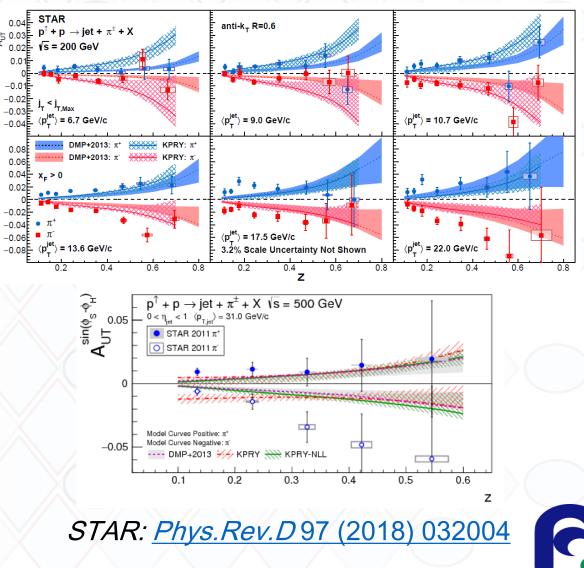
BNL Press release:

https://www.bnl.gov/newsroom/news.php?a=119077


PRL 127 (2021) 162001

Heavy Flavor electron A_Ns PRD 107 (2023) 052012.

- Almost only gluon related, no final state effects → tri-gluon correlation
- Potential to constrain parameter ranges in D meson A_N theory calculations: <u>PRD78</u>, 114013 (Z.B. Kang, J.W. Qiu, W. Vogelsang, F. Yuan)
- Comparison or charges provides further sensitivity



RIKEN

Transversity in proton collisions

- Nonzero Collins asymmetries (hadron in jets) at central rapidities at 200 and 500 GeV
- Substantial theoretical progress for hadron in jet measurements
 - unpolarized: Kaufmann et al.
 - polarized Kang et al.
- For roughly same x and kt similar size → evolution effects moderate?
- But generally slightly larger than global fits from SIDIS/e⁺e⁻
- More to come from sPHENIX in near future

STAR: Phys.Rev.D 106 (2022) 072010, 2022

Towards the Sivers sign change

 $f_{1T,q}^{\perp DY}(x,k_T) \stackrel{?}{=} -f_{1T,q}^{\perp DIS}(x,k_T)$ $\rightarrow \text{Chiu, Tuesday}$

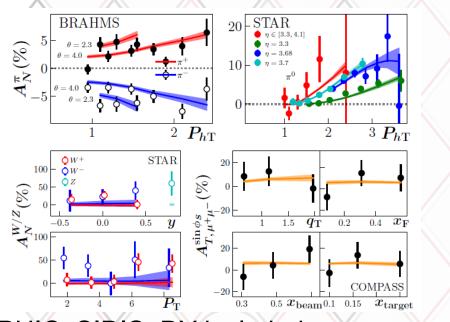
- STAR: Using recoil method reconstruct W transverse momentum and azimuthal asymmetry
- First indication of expected sign change! Weaker after including 2017 data
- Evolution effects could reduce size of asymmetries
- Now also Z cross sections and asymmetries

STAR: PRL 116 (2016) 132301

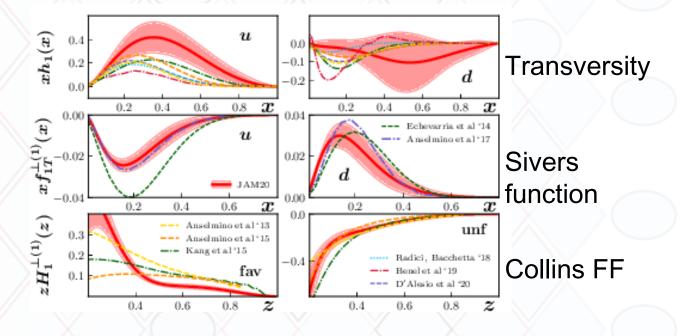
 $\begin{array}{c} 0.6 \\ 0.4 \\ 0.2 \\ 0 \\ -0.2 \\ -0.4 \\ -0.6 \\ -0.8 \\ -0.8 \\ -0.6 \\ -0.8 \\ -0.6 \\ -0.4 \\ -0.6 \\ -0.4 \\ -0.2 \\ 0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.2 \\ 0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ y_{W,reco} \\ \end{array}$

.4% polarization uncertainty not shown

STAR <u>*PLB 854</u></u> (2024) 138715</u>*

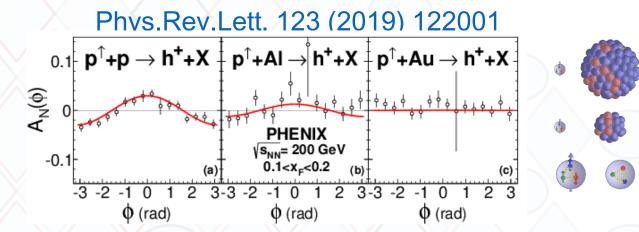


Di-jet spin-dependent imbalance

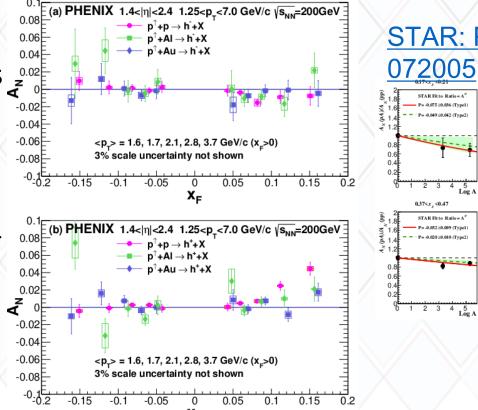

- Use di-jet imbalance and calculate single spin asymmetry
- Sensitive to spin dependent intrinsic transverse momentum k_t kick (from Sivers effect)
- First indications seen by STAR after enhancing up or down flavors via jet charge selection
- Model-dependent extraction of up, down and g+sea contributions

Where to go from here? Global fits on transverse quark-gluon structure

Cammarota et al, PRD 102 (2020) 054002

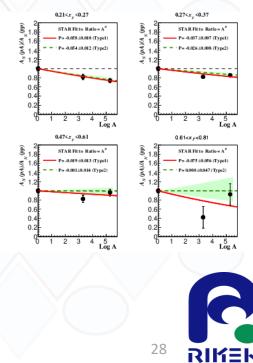

RHIC, SIDIS, DY included

- Recent central rapidity PHENIX results (π , η ,Heavy flavor electons, direct photons) NOT yet included
- Impact on gluon Sivers function (tri-gluon correlator) expected

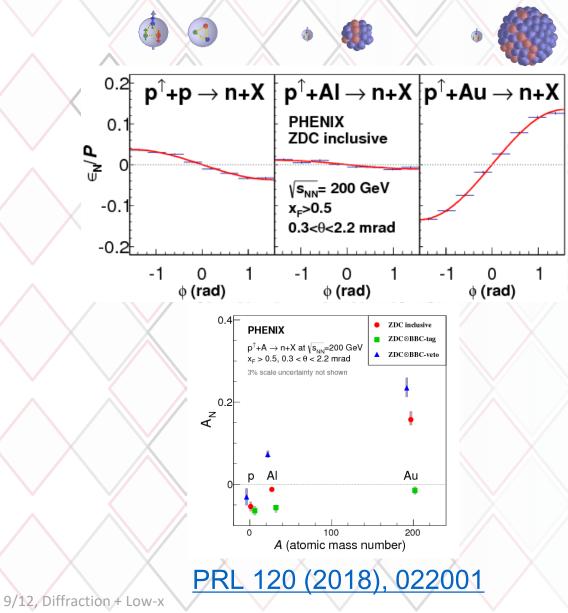


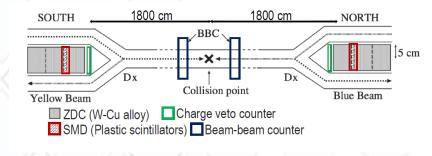
A dependence of A_Ns

- Asymmetries consistent with A^{1/3} dependence as (initially) predicted by some CGC related nuclear effects (Hatta`17)
- No A dependence is ruled out
- Also consistent with suppression with increasing number of binary collisions
- Lower suppression seen by STAR for neutral pions at slightly higher x_F
- Probed x and scale too large for expected CGC effects! (S.Benic and Y.Hatta, PRD99(2019), 094012 - Twist-3 fragmentation + gluon saturation)
- A^{-1/3} dependence also suggested by Gao et.al <u>PRC 81 (2010) 065211</u>



PRD 108 (2023) 072016

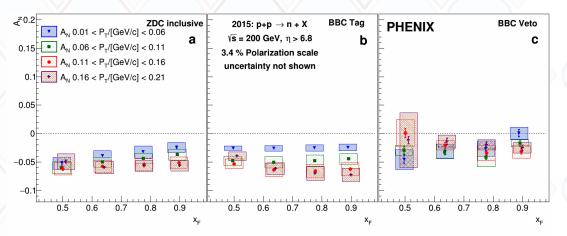



STAR: PRD 103 (2021)

4 5 Log A

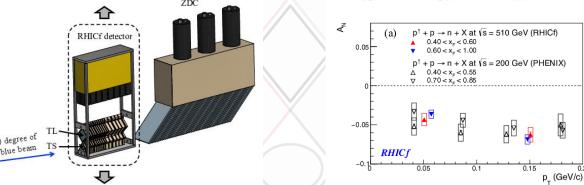
neutron asymmetries from p+p to p+A

- Unexpectedly large A dependence in neutron asymmetries, sign change
- OPE model does not predict such a change in asymmetries
- Coincidence with charged particle activity in forward and backward region (BBC) enhances hard interactions → asymmetries stay negative
- Veto enhances UPC contribution → p+Al asymmetries already positive

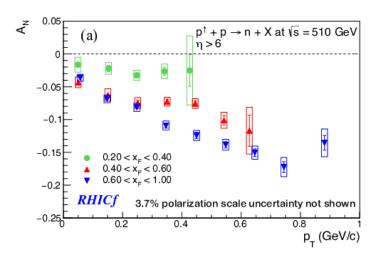

 \Rightarrow study also the actual x_F and P_T dependence for actual interplay

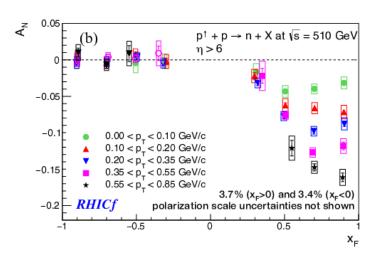
Inclusive neutron asymmetries in p+p

PRD 105 (2022) 032004 ₹ 0.15 PHENIX 2015: $p+p \rightarrow n + X$ $0.40 < x_{c} < 0.55$ $0.55 < x_c < 0.70$ **ZDC** inclusive s = 200 GeV. n > 6.3 0.1 incertainty not shown 0.05 . -0.05 -0 1 _____ Z 0.15 Pol3 (x_avg 0.70 < x_e < 0.85 0.85 < x_e < 1.00 Power Law(x_ avg) Exponential(x_ avg) $p+p \rightarrow n+X$. . -0.05 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.02 0.04 0.06 0.08 0.2 0.22 p_ [GeV/c] p_ [GeV/c]


Dashed areas: best parameterizations of x_F integrated asymmetries using Pol3, Power law or Exponential

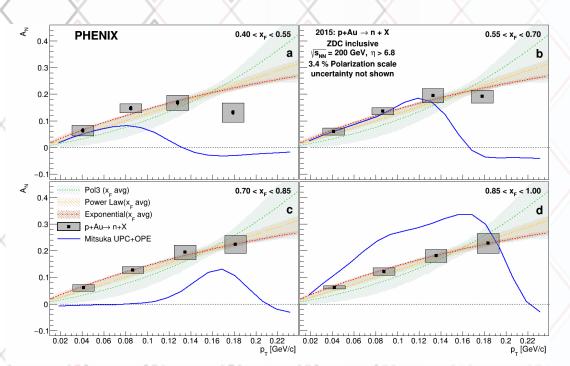
- Magnitude increasing with P_T except for low x_F
- Only weak x_F dependence in hadronic events, slightly larger in BBC vetoed events
- Comparable to (OPE dominated) model curves




P_{T} range extension by RHICf experiment @510 GeV

- Movable detector allows to scan a larger range in transverse momentum
- Overlap consistent with PHENIX results at 200 GeV
- Higher x_F range also consistent with OPE model <u>Kopeliovich et al: PRD 84</u> (2011) 114012

RHICf: PRD 109 (2024) 012003



31

RIKEN

Very forward neutron asymmetries in p+Au

PRD 105 (2022) 032004

Model calculations: <u>Mitsuka PRC95 (2017) 044908</u> + <u>Kopeliovich et al: PRD 84 (2011) 114012</u> (OPE) Large, increasing asymmetries seen with likely a hint of decrease at high P_T for lower x_F

 Roughly similar behavior in model seen but details shifted – possibly due to inclusion of single pion resonances only

9/12, Diffraction + Low-x

Summary

- Longitudinal spin measurements from PHENIX and STAR for various final states pin down gluon and sea quark spins
- "Golden Channel" direct photon A_{LL} to clearly provide sign of gluon spin contribution, also from di-jet measurments
- Improved measurements for transverse spin asymmetries in p+p collisions will provide more information about quark-gluon and tri-gluon correlations
- nontrivial A dependence in inclusive hadron asymmetries
- Far forward neutron asymmetries with A dependence through UPC contribution, now also x_F and p_T dependence
- Also, new STAR and sPHENIX results expected from 2024 and recent runs

