Tagged Deep Inelastic Scattering: Exploring meson structure function and beyond at JLab

Diffraction & Low-x, Palermo, Sicily Sept 8-14, 2024

Outline

- 1. Introduction
 - Mesonic content and structure of nucleons
- 2. Tagged& Meson structure functions
 - Sullivan process and access to meson cloud of nucleon
 - The TDIS experiment at 11 GeV & 22 GeV
- 3. Moving beyond meson structure functions
- 4. Summary

Pions and kaons are the simplest bound states of QCD and its mass-less Nambu-Goldstone bosons

emergence of mass via dynamical chiral symmetry breaking

Pion and kaon mass emerge due to dynamical chiral symmetry breaking

Mass budget for mesons and nucleons are vastly different

D. Binosi, Few-Body Systems, 63, 42 (2022)

Knowledge of meson structure is critical for a complete understanding of the emergence of hadron mass

difference between meson PDFs: direct information on emergent hadron mass

Lack of stable meson targets \Rightarrow scant experimental data

Dutta

How about mesons in nucleons?

D. Binosi, Few-Body Systems, 63, 42 (2022)

Mississi	ppi State	U. I	D
----------	-----------	------	---

There is ample indirect evidence that nucleons have pionic content in them.

No direct measurements

Mississippi State U.

D. Dutta

There is no direct measurement of magnitude of mesonic content of nucleons.

In the valence region some data from Drell-Yan experiments

Calculations with the gluonic contributions can explain data

Need more and precise data

L. Chang, C. Mezrag, H. Moutarde, C. D. Roberts, J. Rodriguez-Quintero, P. C. Tandy, Phys. Lett. B420, 267 (2014)

Mississippi State U.

D. Dutta

C. Chen, L. Chang, C. D. Roberts, S. Wan and H.-S. Zong, Phys. Rev. D 93, 074021 (2016)

Diffraction &

Deep-inelastic Scattering off a virtual-meson cloud is a possible experimental technique.

The Sullivan process

direct measurement of the mesonic content of the nucleon

DIS events with forward going neutrons in coincidence

Successfully demonstrated at HERA for very low-x used to measure the pion structure function

Mississippi State U.

Diffraction & Low-x, Sept 13, 2024

9 /23

Spectator Tagging can be used to tag the "meson cloud" target.

DIS event – reconstruct x, Q², W², also M_X of recoiling hadronic system

$$R^{T} = \frac{d^{4}\sigma(ep \rightarrow e^{'}Xp^{'})}{dxdQ^{2}dzdt} / \frac{d^{2}\sigma(ep \rightarrow e^{'}X)}{dxdQ^{2}} \Delta z\Delta t \sim \frac{F_{2}^{T}(x,Q^{2},z,t)}{F_{2}^{p}(x,Q^{2})} \Delta z\Delta t.$$

Tagged structure function a direct measure of the mesonic content of nucleons

$$F_2^T(x,Q^2,z,t) = \frac{R^T}{\Delta z \Delta t} F_2^p(x,Q^2).$$

Mississippi State U.

D. Dutta

Phenomenological models can be used to interpret the measured tagged structure function.

Mississippi State U.

D. Dutta

11/23

Spectator Tagging - a well established technique at JLab - can be used to tag the "meson cloud" target.

The TDIS experiment will use spectator tagging in a cylindrical recoil detector

TDIS will be a pioneering experiment that will be the first direct measure of the mesonic content of nucleons.

The techniques used to extract meson structure function will be a necessary first step for future experiments

Mississippi State U.

D. Dutta

A signal to accidental ratio > 0.1 will allow measurement of proton rates > 0.1% of DIS rate

The TDIS experiment will measure tagged structure functions for protons and neutrons

proton target

neutron target

Full momentum range (collected simultaneously) - all momentum bins in MeV/c Error bars largest at highest x points - at fixed x, these are the lowest t values

```
some kinematic limits:
150 < k < 400 MeV/c corresponds to z < ~0.2</li>
Also, x < z</li>
```

• Low x, high W at 11 GeV means Q² ~ 2 GeV²

The TDIS experiment will also extract the pion structure function.

It requires extrapolation to the pion pole

low momentum protons helps cover a range of low [t]

- Low t extrapolation to the pion pole

The uncertainty in extrapolation to the pion pole within ~5% at JLab kinematics

virtuality-independent form factor

D. Dutta

We have converged on a design for the recoil detectora multi-Time Projection Chamber (mTPC)

High rate multiple time projection chamber (mTPC) to tag recoiling/spectator hadrons

Each TPC unit of the composite mTPC will be exposed to a fraction of the background rate.

The drift field is parallel to the magnetic field, leading to reduced drift times and significantly simplified track reconstruction.

Target: 40 cm long, 25 um wall thickness Kapton straw at room temperature and 3 atm. pressure.

A square prototype has been constructed

Testing is currently underway at UVa and JLab to validate the time projection field cage and the readout configuration.

A cylindrical prototype will be built after validation.

Mississippi State U.

D. Dutta

Diffraction & Low-x, Sept 13, 2024

16/23

The TDIS experiment will provide a unique extraction of the pion structure function at large x.

Large x behavior will help verify resummed Drell-Yan results;

Large x, low Q complementary to HERA low x, high Q

Will also measure (π^-, π^0) difference - look for isospin dependence

C1 conditionally approved for 27 PAC days with A- rating

Simulations of a TDIS experiment using a 22 GeV beam indicate very significant advantages

The 11 GeV TDIS data could be impacted by resonances at low W_{π} e' e^{-Q^2} γ^* χ_{π} W_{π}^2

Using $W_{\pi^2} > 1.04$ GeV² to remove ρ meson contribution would significantly reduce kinematic coverage at 11 GeV but not at 22 GeV

Based on simulations by P. Barry (JLab)

Mississippi State U.

TDIS experiment with a 22 GeV beam would allow a more complete extraction of the pion structure functions

Projected results

Mississippi State U.

D. Dutta

TDIS experiment with a 22 GeV beam will also provide access to pion TMDs

Mississippi State U.

D. Dutta

Diffraction & Low-x, Sept 13, 2024

20/23

"Nuclear pions" is a long-standing prediction in nuclear physics

Bertsch, Frankfurt & Strikman, Science 259, 773 (1993)

TDIS experiment with light nuclear targets will allow exploring "nuclear pions"

Pion structure function from ²H, ³He and ⁴He will allow a pionic EMC effect measurement @ 22 GeV high W² coverage of 0.05 < x < 0.3

Mississippi State U.

Summary

- 1. Tagged DIS: Spectator tagging, provide new tools to access to the mesonic content of the nucleon structure and the meson structure function.
- 2. The TDIS experiments at JLab take advantage of these new avenue using the 11 GeV beam, it will be a pioneering experiment. It will help demonstrate the feasibility of the technique.
- 3. The upgrade of the beam to 22 GeV would vastly improve the kinematic coverage and the possible impact of these type of experiments.
- 4. It may also provide access to pion TMDs and the "nuclear pions"

This work is supported by US Dept. Of Energy under contract # DE-FG02-07ER41528

Mississippi State U.

Backup Slides

Readout pixel configuration and simulated hits

CAD design: K. Gnanvo

Plot credit: M. Carmignotto

SBS in Hall C

Solenoid & Target

spiral wound 25 um kapton straw Target

UVa 4T Solenoid

Pressure tested to 60 psi

Mississippi State U.

D. Dutta

