
Bose-Einstein correlations in small collision systems at LHCb



Marcin Kucharczyk on behalf of LHCb collaboration IFJ PAN, Krakow

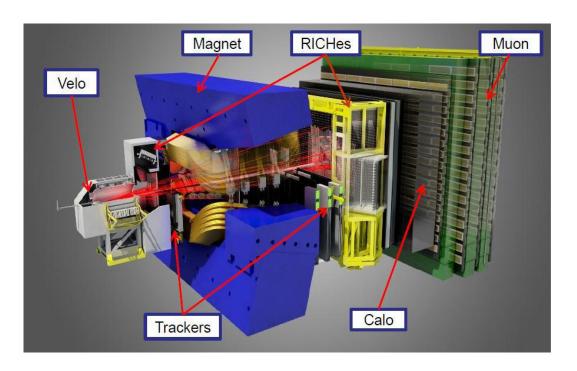
**Diffraction and Low-x 2024**Palermo, 08-14 September 2024

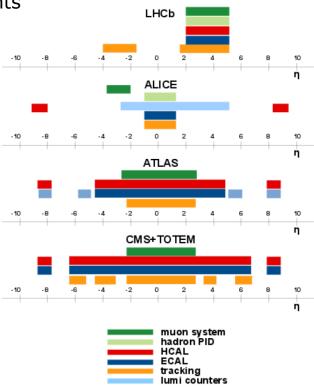
### Outline



- LHCb general purpose forward experiment
- BEC for pion pairs in *pp* collisions at 7 TeV
- BEC in *pPb* at 5 TeV
- Three-paricle correlations in pp collisions ongoing
- Conclusions

### **Motivation**





- BEC useful tool to probe geometric size of the particle-emitting source at the kinetic freeze-out
- Small systems (e.g. pp, pPb) are of particular interest for theoretical models of particle production
  - → shorter lifetimes than heavy-ion systems
  - → provide better experimental insight into early system dynamics & initial geometry
- Analysis for pp (JHEP 12 (2017) 025) and pPb/Pbp (JHEP 09 (2023) 172)
- Direct comparison of the results in two different small systems
  - → may give additional constraints for theoretical models
- First such measurements for pp & pPb collisions in the forward direction
  - → unique contribution to study dependence of source size on rapidity

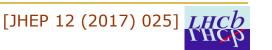
### LHCb detector



- single arm spectrometer fully instrumented in forward region → GPD in forward region
- designed to study CP violation in B, but also fixed target, heavy ion physics
- precision coverage unique for LHCb:  $2 < \eta < 5$
- complementary results with respect to other LHC experiments





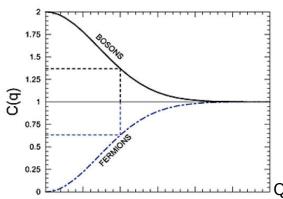

- momentum resolution between 0.5% at 5 GeV to 1.0% at 200 GeV
- [IJMPA 30 (2015) 1530022]

- impact parameter resolution of 20  $\mu$ m for high- $p_T$  tracks
- good PID separation up to 100 GeV (misID ( $\pi \rightarrow K$ )  $\approx 5\%$  at 95% efficiency)

## Bose-Einstein correlations in pp collisions

[JHEP 12 (2017) 025, Nucl. Phys. A982 (2019) 347-350]

### Correlation function




- Correlations exist between indistinguishable particles emitted from the same emitter volume
- Useful tool to probe the spatial and temporal structure of the hadron emission volume

Experimentally: 
$$C_2(Q) = \frac{N(Q)^{DATA}}{N(Q)^{REF}}$$
,  $REF = mix, MC, unlike$ 

 $N(Q)^{DATA}$  - distribution for same-sign pairs in data (BEC present)  $N(Q)^{REF}$  - distribution for reference sample with no BEC effect

$$Q = \sqrt{-(q_1 - q_2)^2} = \sqrt{M^2 - 4\mu^2}$$



#### **Event-mixed reference sample used**

- pions from different events from PVs with same VELO track multiplicity (long-range correl.)
- derived from data
- other correlations also removed → construct double ratio (next slide)

#### **Parametrization of correlation function**

- Lévy parametrization with  $\alpha$  =1 (Cauchy) + long-range correlations

$$C_2(Q) = N(1 + \lambda e^{-|RQ|^{\alpha}}) \times (1 + \delta \cdot Q)$$

- R the radius of a spherical static source
- λ intercept parameter
   (0 coherent source, 1 chaotic case)
- *N* normalisation factor
- $\delta$  long range correlations

### Double ratio



5

#### Improved correlation function - double ratio $(r_d)$

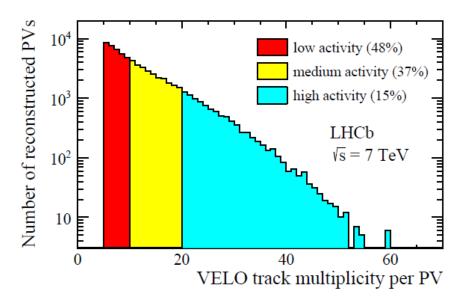
$$r_{
m d}(Q) \equiv rac{C_2(Q)^{
m data}}{C_2(Q)^{
m simulation}}$$
 simulation without BEC

- reduce possible imperfections in the construction of the reference sample
- eliminate second order effects to large extent
- correct for long range correlations (if properly simulated)

#### By construction the correlation function is largely independent of

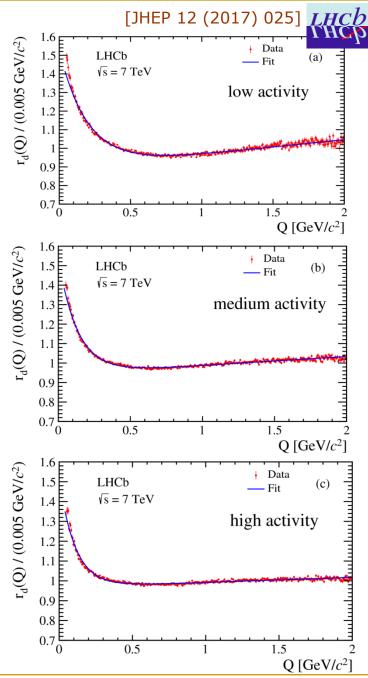
- single particle acceptance and efficiency
- effects due to the detector occupancy, acceptance and material
- selection cuts
- two-track efficiency effects if properly simulated

#### **Coulomb effect**


Removed with Gamov penetration factor for Q distribution in data:

$$G_2(Q) = \frac{2\pi\zeta}{e^{2\pi\zeta} - 1}$$
, where  $\zeta = \pm \frac{\alpha m}{Q}$ 

 $\rightarrow$  systematics due to Coulomb correction found to be negligible


### Results

Fits to  $r_d$  with Levy parametrization for 3 activity bins

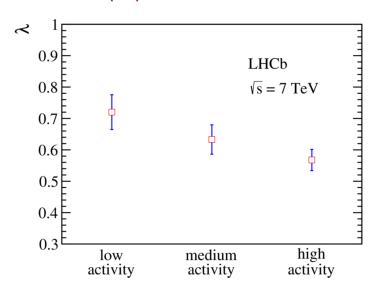


| Activity | R [fm]                   | λ                        |
|----------|--------------------------|--------------------------|
| Low      | $1.01 \pm 0.01 \pm 0.10$ | $0.72 \pm 0.01 \pm 0.05$ |
| Medium   | $1.48 \pm 0.02 \pm 0.17$ | $0.63 \pm 0.01 \pm 0.05$ |
| High     | $1.80 \pm 0.03 \pm 0.16$ | $0.57 \pm 0.01 \pm 0.03$ |

Systematic uncertainty (~10%) dominated by the generator tunings and pile-up effects



### Results




7

#### Source size increases with activity

#### 

#### Intercept par. decreases with activity



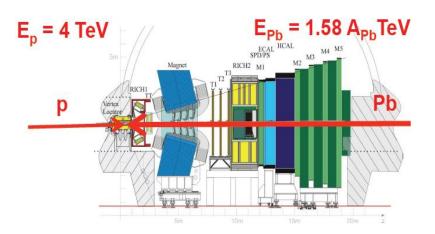
Direct comparison between experiments not straightforward (different  $\eta$  ranges)

A trend compatible with previous observations at LEP and the other LHC experiments and with some theoretical models

R and  $\lambda$  parameters measured in the forward region lower wrt central rapidity detectors, e.g. ATLAS

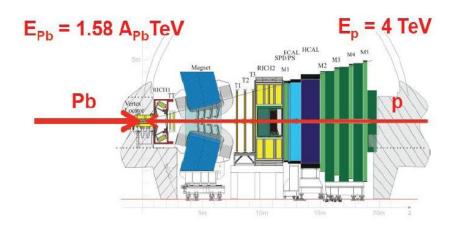
## Bose-Einstein correlations in *pPb* collisions

[JHEP 09 (2023) 172]


## Setup for proton-lead



- p-Pb / Pb-p data collected at  $\sqrt{s_{NN}} = 5$  TeV
- **Asymmetric beams:** nucleon-nucleon center-of-mass system shifted by  $\Delta y = 0.47$  in the proton beam direction

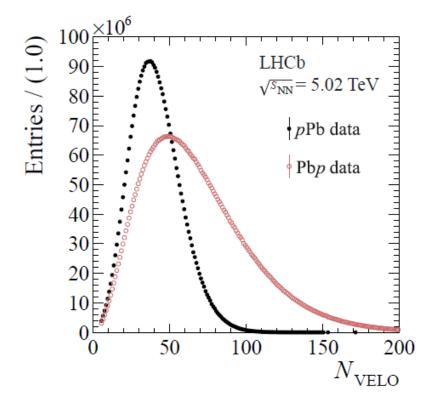

#### Forward production (p-Pb)

rapidity coverage:  $1.5 < y_{CMS} < 4.5$  collected data (2013):  $\sim 1.1 \text{ nb}^{-1}$ 



#### **Backward production (Pb-p)**

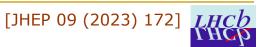
rapidity coverage:  $-5.5 < y_{CMS} < -2.5$  collected data (2013):  $\sim 0.5 \text{ nb}^{-1}$ 




 $y_{CMS}$  = rapidity in nucleon-nucleon centre-of-mass system, with forward direction (positive values) in direction of the proton/beam

## Multiplicity bins




- Single PV sample
- Common  $N_{VFLO}$  bins for pPb/Pbp to enable direct comparison between pPb/Pbp samples



 $N_{VELO}$  distribution for signal pairs

|               |               |                     | 1 C ( [07]     |
|---------------|---------------|---------------------|----------------|
|               |               | Sample fraction [%] |                |
| $_{ m bin\#}$ | $N_{ m VELO}$ | $p\mathrm{Pb}$      | $\mathrm{Pb}p$ |
| 1             | 5–9           | < 2                 | < 2            |
| 2             | 10 - 14       | 2                   | 2              |
| 3             | 15 - 19       | 4                   | 2              |
| 4             | 20-24         | 7                   | 3              |
| 5             | 25 - 29       | 10                  | 4              |
| 6             | 30 - 34       | 13                  | 5              |
| 7             | 35 - 39       | 14                  | 6              |
| 8             | 40 - 44       | 10                  | 5              |
| 9             | 45 - 49       | 10                  | 6              |
| 10            | 50 - 54       | 8                   | 6              |
| 11            | 55 - 59       | 7                   | 7              |
| 12            | 60 - 64       | 5                   | 6              |
| 13            | 65 - 79       | 6                   | 15             |
| 14            | 80-89         | _                   | 7              |
| 15            | 90-99         | _                   | 7              |
| 16            | 100 - 114     | _                   | 6              |
| 17            | 115-139       | _                   | 7              |
| 18            | 140 – 179     | _                   | 4              |

### **Parametrization**

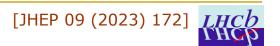


#### Parametrization using Bowler-Sinyukov formalism

[Phys. Lett. B270 (1991) 69, Phys. Lett. B432 (1998) 248]

$$C_2(Q) = N \left[ 1 - \lambda + \lambda K(Q) \times \left( 1 + e^{-|RQ|} \right) \right] \times \Omega(Q)$$

 $\Omega(Q)$  - describes background contribution


K(Q) - correction for final-state Coulomb interactions in the pair

N - normalisation factor

Lévy parametrization with index of stability fixed to unity used to describe the BEC effect [Eur. Phys. J. C36 (2004) 67-78]

- $\lambda$  intercept parameter: strength of the correlation at  $Q \rightarrow 0$  GeV
  - → fraction of pairs containing products of long-lived particles decays
  - → coherence of the particle emission
  - → experimental effects, such as nonidentical particles in the signal pairs

### Coulomb correction



Coulomb interactions in particle pairs may affect the shape of  $C_2(Q)$  in BEC signal region

- $\rightarrow$  point-like sources: Gamov penetration factor  $K_{Gamov}(Q)$
- $\rightarrow$  extended sources: full correction K(Q)

Approximation valid for Levy sources with  $\alpha = 1$ , developed by CMS in pPb analysis [Phys. Rev. C97 (2018) 42]

$$K(Q) = K_{Gamov}(Q) \left( 1 + \frac{\alpha \pi m R_{\text{eff}}}{1.26 + Q R_{\text{eff}}} \right)$$

$$\zeta = \alpha m / Q$$

$$K_{Gamov}^{SS}(\zeta) = \frac{2\pi \zeta}{e^{2\pi \zeta} - 1} , K_{Gamov}^{OS}(\zeta) = \frac{2\pi \zeta}{1 - e^{-2\pi \zeta}}$$

- pion pairs (relatively small source size)
  - → no significant difference between full correction and simple Gamov factor is expected



## Background parametrization

Non-femtoscopic background studied using DATA in  $C_2(Q)$  for oppositely-charged (OS) pions

- No theoretical models describing the shape of the non-femtoscopic background
- 'Ad-hoc' parametrizations commonly used to describe the data
  - $\rightarrow$  cluster contribution: reasonable description in low-Q region using simple Gaussian with  $A_{bkg}$  and  $\sigma_{bkg}$
  - $\rightarrow$  **long-range correlations:** commonly used linear form with factor  $\delta$

$$\Omega(Q) = (1+\delta Q) \times \left[1+z\frac{A_{\rm bkg}}{\sigma_{\rm bkg}\sqrt{2\pi}}\exp\left(-\frac{Q^2}{2\sigma_{\rm bkg}^2}\right)\right]$$
 long-range correlations [Phys. Rev. C97 (2018) 064912]

- long range correlations dominate higher-Q range
- cluster contributions mostly in low-Q region
- z parameter fitted with parametrization motivated by OS/SS combinatorics

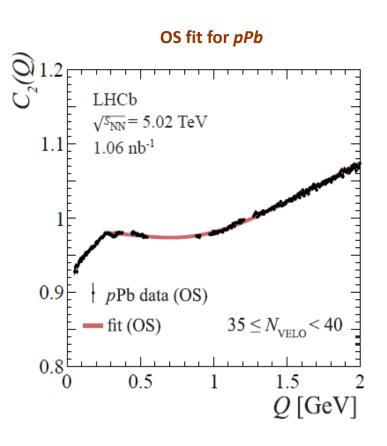
Removal of resonances that may disturb the background fit



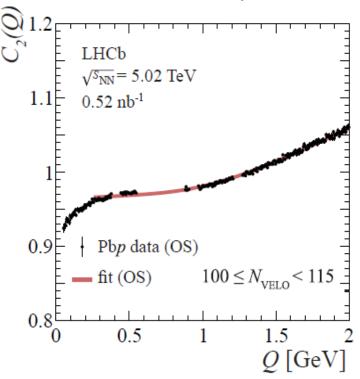
Correlation function for opposite sign pairs

$$C_2^{\text{OS}}(Q) = N \times K(Q) \times \Omega(Q)$$

- ullet Background parameters determined in global OS fit in all  $N_{VELO}$  bins
- Negative log-likelihood function minimized for all bins simultaneously
- ullet Common background parameters across bins and free N,  $\delta$


$$\sigma_{\text{bkg}}(N_{\text{VELO}}) = \sigma_0 + \sigma_1 \exp\left(-\frac{N_{\text{VELO}}}{N_0}\right) \quad A_{\text{bkg}}(N_{\text{VELO}}) = \frac{A_0}{(N_{\text{VELO}})^{n_A}}$$

[Phys. Rev. C97 (2018) 064912]


- ullet best stability of fits obtained with fixed scale  $N_0$  of multiplicity dependence for  $\sigma_{bkg}$
- the value based on the results obtained with  $N_0$  free for the pPb sample
- choice of this scale is studied in systematics

## Global background fit - results





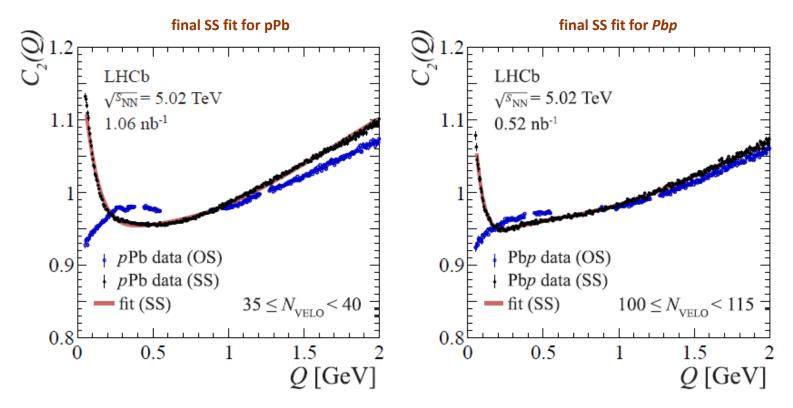
#### OS fit for *Pbp*



#### MinFcn/ndf ~2

2 separate sets of params for *pPb/Pbp* samples

→ independent datasets cover diff. η regions


| Dataset        | $A_0 [{ m GeV}]$  | $n_A$               | $\sigma_0 \; [\mathrm{GeV}]$ | $\sigma_1 [{\rm GeV}]$ |
|----------------|-------------------|---------------------|------------------------------|------------------------|
| pPb            | $2.838 \pm 0.109$ | $0.8438 \pm 0.0111$ | $0.4799 \pm 0.0018$          | $0.1744 \pm 0.0060$    |
| $\mathrm{Pb}p$ | $1.107\pm0.022$   | $0.5036 \pm 0.0049$ | $0.5613 \pm 0.0013$          | $0.0 \pm 10^{-3}$      |

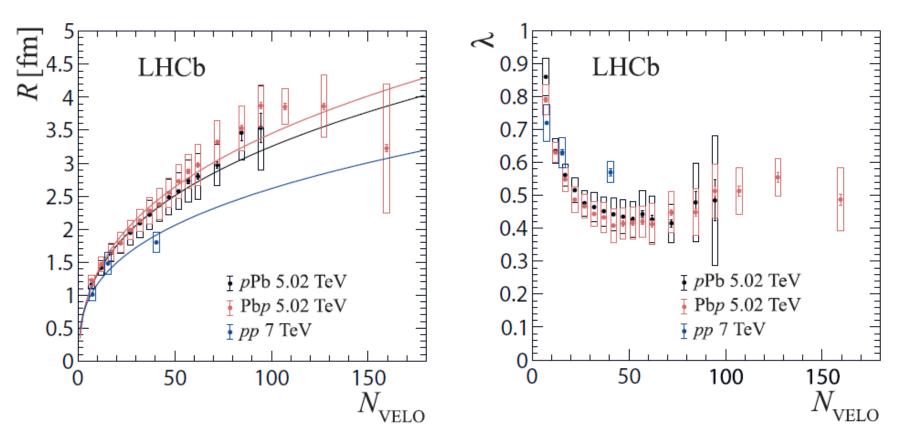
## Final fit for signal pairs



#### Fully data-driven approach

- Background parametrization extracted from the OS distributions
- Determine the scaling of the background amplitude between OS/SS pairs
- Use the scaled background parametrization in the final SS fits




Systematic uncertainty (from 5% / 6% up to 12.0% / 16.5% for the R /  $\lambda$  parameter)

→ dominated by background scaling procedure, pion PID and ghosts removal





- Scaling of R with the cube root of  $N_{VELO}$ 
  - → hydrodynamic models
- Two beam modes (pPb/Pbp): studying the system in the forward/backward direction



Central R-values for Pbp sample systematically higher as compared to pPb

→ hints for the dependence of correlation parameters on rapidity

## Three-particle BEC within core-halo model



- Inspired by Phenix analysis in Au-Au [Universe 4 (2018) 57]
- Measure of coherence and thermalization in the source
- First time in proton-proton collisions in frame of core-halo model

$$C_3(Q_{12}, Q_{13}, Q_{23}) = N(1 + \delta_{12}Q_{12})(1 + \delta_{13}Q_{13})(1 + \delta_{23}Q_{23})G_2(Q_{12})G_2(Q_{13})G_2(Q_{23})$$
$$(1 + \ell_3 e^{-0.5|R(Q_{12} + Q_{13} + Q_{23})|} + \ell_2(e^{-|Q_{12}R|} + e^{-|Q_{13}R|} + e^{-|Q_{23}R|})),$$

- → Coulomb factorized according to generalized Riverside method [Phys. Rev. C92, 014902]
- $\rightarrow$  R and  $\lambda_2$  from 2-particle BEC

$$f_c = \frac{N_{core}}{N_{core} + N_{halo}}$$
 fraction of core

$$f_c = rac{N_{core}}{N_{core} + N_{halo}}$$
 fraction of core  $p_c = rac{N_{coherent}}{N_{coherent} + N_{incoherent}}$  partial coherence

$$\lambda_3 = l_3 + 3l_2$$
  $\kappa_3 = 0.5(\lambda_3 - 3\lambda_2)/\lambda_2^{3/2}$ 

 $\kappa_3$  - describes additional effects like partial coherence or not fully thermalized core

Not published yet (under review)

→ signs of coherent particle emission

### Conclusions



Bose-Einstein correlations studied in 2 types of small systems (pp/pPb)

#### Both are first measurements of BEC in the forward region

- 2 alternative methods for non-femtoscopic background
- scaling of R with cube root of  $N_{ch}$  (hydrodynamic models)
- hints for dependence of correlation parameters on rapidity
- 3-particle BEC within core-halo model (ongoing)

#### What is the origin of correlations in small systems?

- do they have the same origin as in heavy-ion collisions?
- what exactly are the conditions needed to produce a quark-gluon plasma?

# Backup

## Results - pPb/Pbp



|               | pPb dataset                 |                             | Pbp dataset                 |                             |  |
|---------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|--|
| $N_{ m VELO}$ | R [fm]                      | $\lambda$                   | R [fm]                      | $\lambda$                   |  |
| 5–9           | $1.159 \pm 0.010 \pm 0.070$ | $0.860 \pm 0.006 \pm 0.056$ | $1.227 \pm 0.013 \pm 0.080$ | $0.791 \pm 0.007 \pm 0.045$ |  |
| 10-14         | $1.413 \pm 0.010 \pm 0.105$ | $0.635 \pm 0.004 \pm 0.037$ | $1.469 \pm 0.013 \pm 0.108$ | $0.630 \pm 0.005 \pm 0.031$ |  |
| 15-19         | $1.638 \pm 0.011 \pm 0.131$ | $0.562 \pm 0.004 \pm 0.033$ | $1.658 \pm 0.014 \pm 0.135$ | $0.548 \pm 0.005 \pm 0.036$ |  |
| 20-24         | $1.790 \pm 0.011 \pm 0.161$ | $0.516 \pm 0.004 \pm 0.036$ | $1.801 \pm 0.015 \pm 0.148$ | $0.487 \pm 0.005 \pm 0.038$ |  |
| 25-29         | $1.944 \pm 0.012 \pm 0.189$ | $0.476 \pm 0.004 \pm 0.039$ | $1.989 \pm 0.017 \pm 0.150$ | $0.467 \pm 0.005 \pm 0.036$ |  |
| 30 - 34       | $2.088 \pm 0.014 \pm 0.214$ | $0.464 \pm 0.004 \pm 0.044$ | $2.130 \pm 0.019 \pm 0.169$ | $0.444 \pm 0.005 \pm 0.037$ |  |
| 35 - 39       | $2.218 \pm 0.016 \pm 0.225$ | $0.452 \pm 0.005 \pm 0.044$ | $2.279 \pm 0.021 \pm 0.206$ | $0.433 \pm 0.006 \pm 0.045$ |  |
| 40-44         | $2.364 \pm 0.019 \pm 0.250$ | $0.443 \pm 0.005 \pm 0.049$ | $2.380 \pm 0.024 \pm 0.233$ | $0.409 \pm 0.006 \pm 0.051$ |  |
| 45-49         | $2.482 \pm 0.023 \pm 0.271$ | $0.435 \pm 0.006 \pm 0.052$ | $2.554 \pm 0.027 \pm 0.220$ | $0.415 \pm 0.007 \pm 0.047$ |  |
| 50-54         | $2.575 \pm 0.028 \pm 0.281$ | $0.427 \pm 0.008 \pm 0.053$ | $2.725 \pm 0.031 \pm 0.259$ | $0.416 \pm 0.008 \pm 0.048$ |  |
| 55-59         | $2.730 \pm 0.036 \pm 0.322$ | $0.443 \pm 0.010 \pm 0.070$ | $2.875 \pm 0.035 \pm 0.252$ | $0.420 \pm 0.009 \pm 0.046$ |  |
| 60 - 64       | $2.799 \pm 0.046 \pm 0.341$ | $0.427 \pm 0.012 \pm 0.070$ | $2.972 \pm 0.040 \pm 0.306$ | $0.412 \pm 0.010 \pm 0.062$ |  |
| 65 - 79       | $2.972 \pm 0.045 \pm 0.318$ | $0.415 \pm 0.011 \pm 0.059$ | $3.322 \pm 0.028 \pm 0.324$ | $0.448 \pm 0.007 \pm 0.062$ |  |
| 80-89         | $3.462 \pm 0.115 \pm 0.410$ | $0.479 \pm 0.033 \pm 0.118$ | $3.531 \pm 0.043 \pm 0.337$ | $0.449 \pm 0.011 \pm 0.070$ |  |
| 90-99         | $3.535 \pm 0.219 \pm 0.635$ | $0.485 \pm 0.062 \pm 0.196$ | $3.871 \pm 0.052 \pm 0.320$ | $0.513 \pm 0.015 \pm 0.081$ |  |
| 100-114       | _                           | _                           | $3.854 \pm 0.049 \pm 0.270$ | $0.513 \pm 0.015 \pm 0.072$ |  |
| 115 - 139     | _                           | _                           | $3.863 \pm 0.049 \pm 0.468$ | $0.555 \pm 0.016 \pm 0.057$ |  |
| 140-179       | _                           | _                           | $3.225 \pm 0.053 \pm 0.979$ | $0.487 \pm 0.016 \pm 0.096$ |  |

## Systematics – pPb / Pbp

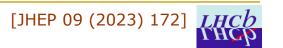


Listed ranges correspond to the lowest and highest values of the given input determined across most of the  $N_{VFIO}$  bins in the pPb and Pbp samples

|                              | pPb dataset                |                                  | Pbp dataset                |                                  |
|------------------------------|----------------------------|----------------------------------|----------------------------|----------------------------------|
| Contribution                 | $\sigma_{\rm syst}(R)$ [%] | $\sigma_{\rm syst}(\lambda)$ [%] | $\sigma_{\rm syst}(R)$ [%] | $\sigma_{\rm syst}(\lambda)$ [%] |
| Background scaling           | 4.5 – 9.0                  | 3.5–11.0                         | 4.5 – 6.5                  | 3.0 – 9.5                        |
| Background fit range         | 1.0 – 3.0                  | 0.5 – 3.5                        | 2.0 – 3.5                  | 0.5 – 4.0                        |
| Background fit – fixed $N_0$ | 0.5 – 3.0                  | 0.5 – 3.0                        | < 0.5                      | < 0.5                            |
| Background fit – resonances  | 0.5 – 4.0                  | 0.5 – 4.0                        | 1.5 – 3.0                  | 0.5 – 3.5                        |
| PID optimisation             | 0.5 - 1.5                  | 0.5 - 5.0                        | 0.5 – 10.5                 | 0.5 – 8.5                        |
| Fake tracks                  | 0.5 – 5.5                  | 1.0 - 8.0                        | 0.5 – 4.5                  | 0.5 – 8.0                        |
| Requirement on $z_{PV}$      | 0.5 - 1.5                  | 0.5 – 3.0                        | 0.5 - 2.0                  | 0.5 – 3.5                        |
| Coulomb correction           | 0.5 - 1.5                  | 1.0 - 2.5                        | 0.5 - 2.0                  | 0.5 – 3.0                        |
| SS fit range (min)           | 1.5 - 5.0                  | 1.0 - 8.5                        | 0.5 – 3.5                  | 0.5 – 5.5                        |
| SS fit range (max)           | 0.5 - 1.0                  | 0.5 – 2.0                        | 0.5 – 2.0                  | 0.5 – 3.0                        |
| Reference sample             | 0.5 – 2.0                  | 0.5 – 3.0                        | 0.5 – 2.0                  | 0.5 – 4.0                        |
| Total                        | 6.0 – 12.0                 | 6.0 – 16.5                       | 6.5 – 12.0                 | 5.0 – 16.0                       |

Negligible contributions are not listed

### Removal of resonances




- Goal is to remove most peaking ones that may significantly disturb the background fit
  not aiming to completely remove all the Q-regions affected by resonances
- Effects related to resonances wear off quickly with growing particle multiplicity
- Choice of both list of resonances and widths of excluded ranges optimized in similar analyses (e.g. Phys. Rev. C96 (2017) 064908, Phys. Rev. C97 (2018) 064912)

| resonance          | Q range [GeV] |
|--------------------|---------------|
| $\rho^{0}(770)$    | 0.55 – 0.88   |
| $K_{\rm S}^0(497)$ | 0.38 – 0.44   |
| $f_0(980)$         | 0.91 – 0.97   |
| $f_2(1270)$        | 1.21 – 1.27   |

• Effects related to resonance removal are included in systematics with relatively small contribution (max. 4%)

## Background scaling



As the cluster contribution is expected to be larger for OS pairs as compared to SS ones, due to charge conservation, additional scaling factor is introduced with a theoretically motivated form (OS/SS pairs combinatorics):

$$z(N_{\text{VELO}}) = \frac{aN_{\text{VELO}} + b}{1 + aN_{\text{VELO}} + b}$$

Parameters a and b are determined by first fitting same-sign pair correlation function in each bin with fixed background and z as free parameter, and then performing fit of  $z(N_{VELO})$ 

# In low multiplicity bins the distortions related to background / resonances etc. are more prominent

• expect to have more significant fluctuations in the fits in such bins

This is why we follow theoretically-motivated method (used also e.g. in Phys. Rev. C97 (2018) 064912 or JHEP 03 (2020) 014) to have a smooth description in all multiplicity bins

- avoid in this way transmitting such fluctuations to the final SS fits
- avoid potential biases in the final results

#### Exact shape of the z distribution not so relevant

we study the systematic uncertainty related to this method