Jet & jet substructure at ATLAS & CMS

Cristian Baldenegro (MIT) for the ATLAS & CMS Collaborations

Diffraction & Low-x 2024, Palermo, Italy, Sep 8–14

Jet production at the LHC

• Crucial to our understanding of the strong interaction, from the GeV to the TeV scale

- Essential input to improve theoretical models (parton showers, hadronization), PDFs, tests of resummation, α_s extractions...
- Rich program at ATLAS and CMS!

Will focus on a selected set of recent multijet & jet substructure measurements **in pp collisions**

(but there are lots of new results in heavy-ions as well!)

Multijet event isotropies

ATLAS, JHEP 10 (2023) 060

• Energy-mover's distance (event shape observable),

$$\mathrm{EMD}_{\beta}(\mathcal{E},\mathcal{E}') = \min_{\{f_{ij} \ge 0\}} \sum_{i=1}^{M} \sum_{j=1}^{M'} f_{ij} \theta_{ij}^{\beta}.$$

minimum "amount of work" it would take to transform a shape into an idealized reference radiation pattern

• Data/theory best for dijet-like, deteriorates for more isotropic configurations (input for MC tuning)

Ring-like isotropy

ATLAS, JHEP 10 (2023) 060

Larger N_{iet} multiplicity \rightarrow more isotropic

Transverse energy-energy correlators (TEEC)

ATLAS, JHEP 07 (2023) 85

Energy-weighted angular distribution of jet pairs:

Transverse energy-energy correlators

ATLAS, JHEP 07 (2023) 85

TEEC and ATEEC observables can be used for **precision pQCD**,

e.g., sensitive to running coupling $\alpha_{s}(Q^{2})$ at high Q^{2}

TEEC, NNLO pQCD

ATEEC, NNLO pQCD

 $\alpha_{\rm s}(m_Z) = 0.1175 \pm 0.0006 \,({\rm exp.})^{+0.0034}_{-0.0017}$ (theo.)

Multidifferential dijet cross section

CMS, arXiv:2312.16669, submitted to JHEP

Double- & triple-differential for anti- k_{τ} jets with R = 0.4 & 0.8

10²⁶ CMS

2.0

2

anti-k_T (R=0.8)

500

1000

2000

5000 m1,2 (GeV)

10²¹

10¹⁶

10¹¹

10⁶

10

 10^{-4}

 10^{-9}

(pb/GeV)

cross section $\frac{d^3\sigma}{dm_{1,2}dy_bdy^*}$

Diff.

compared to fixed-order pQCD at NNLO pQCD from NNLOJET + fastNLO

QCD analysis (2D vs 3D dijet fits)

CMS, arXiv:2312.16669, submitted to JHEP

PDFs and $\alpha_s(m_z)$ determined simultaneously in fits to CMS dijet & HERA data: **Reduction** of gluon PDF uncertainty for x > 0.3 with **3D-dijet fit**

2D: $\alpha_{s}(m_{z}) = 0.1179 \pm 0.0019$ **3D:** $\alpha_{s}(m_{z}) = 0.1181 \pm 0.0022$ (compatible w/ **2D**)

The Lund jet plane Dreyer, Salam, Soyez, JHEP12(2018)064

Representation of the phase space of $1 \rightarrow 2$ splittings:

- Recluster anti- k_{τ} jets with the Cambridge–Aachen algorithm (angle-ordered tree)
- Undo clustering tree history, use subjets as proxies for emissions
- Register transverse momentum k_{τ} and splitting angle ΔR

Primary Lund plane density

CMS, JHEP 05 (2024) 116

$$\rho(k_{\rm T},\Delta R) \equiv \frac{1}{N_{\rm jets}} \frac{{\rm d}^2 N_{\rm emissions}}{{\rm d}\ln(k_{\rm T}/\,{\rm GeV}){\rm d}\ln(R/\Delta R)},$$

Measured for R = 0.4 and R = 0.8 with $p_{T} > 700$ GeV & |y| < 1.7

Flat density due to $\rho(k_T, \Delta R) \propto \alpha_S(k_T)$

Testing parton showers, hadronization models

Lund subjet multiplicities

ATLAS, arXiv:2402.13052, submitted to PLB

Count subjets above a given $k_T > k_{T,cut}$ for different jet p_T

 Test resummation at next-to-next-to-double-logarithmic accuracy

 Cristian Baldenegro (MIT)
 (NLO+NNDL)

 DiffLowx 2024

Medves, Soto, Soyez JHEP04(2023)104

other emissions

Heavy-flavor quark jet substructure

Radiation pattern of light-quark & gluon-initiated jets is governed by soft & collinear divergences of QCD

Heavy quark mass term "regularizes" QCD divergences \rightarrow Harder fragmentation, dead cone effect, ...

Fully reclustered jet

Dead-cone effect Gluon emissions are

suppressed in a cone

with $\theta_{dc} = m_0 / E_{\text{Badiator}}$

Massive splitting function

<u>Nature</u> volume 605, pages 440 (2022)

 $\theta \not \in E_{\text{Radiator}}$

DiffLowx 2024

c/b quark

Contamination of heavy-flavor hadron decays

Decays **distort** the QCD radiation pattern of interest

For c jets, one can use exclusive D meson decays (e.g., $D^0 \rightarrow K^- \pi^+$)

For b jets, exclusive decays (eg $B^+ \rightarrow J/\psi K^+$) are rarer, need to use other approaches (TMVA-based "clustering" of b hadron)

Collinear emissions are suppressed for D⁰ -tagged jets

CMS-PAS-HIN-24-007

D-jet vs inclusive jet

Bottom quark jet substructure

CMS-PAS-HIN-24-005

Collinear emissions are suppressed for **b jets** relative to **inclusive jets** (dead cone effect)

More asymmetric momentum imbalance for **b jets**

Summary

 Multijet measurements for precision physics (α_s & PDF extractions, MC generator input)

• Mapping out weakly- and strongly-coupled regimes via jet substructure.

Sensitivity to heavy quark mass effects using the Lund tree of emission

GeometryGround Measure
$$\mathcal{U}$$
Cylinder $\theta_{ij}^{cyl} = \frac{12}{\pi^2 + 16y_{max}^2} \left(y_{ij}^2 + \phi_{ij}^2\right)$ $\mathcal{U}_N^{cyl}(|y| < y_{max})$ Ring $\theta_{ij}^{ring} = \frac{\pi}{\pi - 2} \left(1 - \cos \phi_{ij}\right)$ \mathcal{U}_N^{ring} Ring (Dipole) $\theta_{ij}^{ring} = \frac{1}{1 - \frac{1}{\sqrt{3}}} \left(1 - \cos \phi_{ij}\right)$ \mathcal{U}_2^{ring}