Jet and Jet Substructure: ALICE Results

Haidar Mas'ud Alfanda (on behalf of the ALICE Collaboration) Central China Normal University

Jets and jet substructure

ALICE

- Heavy-ion collisions create a deconfined phase of QCD matter - the QGP
- The QGP is too small and short-lived to be studied with external probes
- Jets are collimated sprays of particles resulting from quarks and gluons produced at high energy
- Jets are produced at the early stage of collisions, and interact strongly with the medium
 - Jets provide unique probes of the QGP at multiple scales
- Jet substructure is a set of tools to exploit information from the radiation pattern inside jets
- Jet-medium interactions manifests in different ways:
 - Energy loss energy transport outside jet cone
 - Jet deflection via multiple soft scatters or single hard scatter
 - Jet fragmentation and substructure insight into the microscopic modification

Jet measurement with the ALICE detector

- General purpose heavy-ion experiment at the LHC
- Coverage of central barrel: $|\eta| < 0.9$
- Excellent PID information
- High precision tracking capabilities down to 150 MeV/c
- Reconstructs jets at mid-rapidity with a high-precision tracking system (TPC and ITS) and EMCal in pp, p—Pb and PbPb collisions

Jets and jet substructure

- Heavy-ion collisions create a deconfined phase of QCD matter the QGP
- The QGP is too small and short-lived to be studied with external probes
- Jets are collimated sprays of particles resulting from
- quarks and gluons produced at high energy
- Jets are produced at the early stage of collisions, and interact strongly with the medium
 - Jets provide unique probes of the QGP at multiple scales
- Jet substructure is a set of tools to exploit information from the radiation pattern inside jets
- Jet-medium interactions manifests in different ways:
 - Energy loss energy transport outside jet cone
 - Jet deflection via multiple soft scatters or single hard scatter
 - Jet fragmentation and substructure insight into the microscopic modification

- R_{pPb} is consistent with unity no significant modification within uncertainties
- Jet quenching, if present, is smaller than the sensitivity of the current measurement
- The NLO POWHEG+PYTHIA8 prediction describes the data within uncertainties
- Effects of nuclear-modified PDFs introduced by the nPDFs have minor impact on jet production

Inclusive jet R_{AA} and R dependence

ALICE

- New ML-based techniques allow for the extension to lower- p_T jet and large R =0.6
 - Important since more substantial impact of quenching at low jet p_T
- R = 0.6 jets are more suppressed than R = 0.2 jets – R dependence of quenched jets
 - The jet energy is transferred mostly to soft particles, found at large angles relative to the jet axis
- Good agreement between data and model predictions

Jets and jet substructure

- Heavy-ion collisions create a deconfined phase of QCD matter the QGP
- The QGP is too small and short-lived to be studied with external probes
- Jets are collimated sprays of particles resulting from
- quarks and gluons produced at high energy
- Jets are produced at the early stage of collisions, and interact strongly with the medium
 - Jets provide unique probes of the QGP at multiple scales
- Jet substructure is a set of tools to exploit information from the radiation pattern inside jets
- Jet-medium interactions manifests in different ways:
 - Energy loss energy transport outside jet cone
 - Jet deflection via multiple soft scatters or single hard scatter
 - Jet fragmentation and substructure insight into the microscopic modification

Semi-inclusive jet I_{AA}

- Measure the yield of chargedparticle jets recoiling from a high-p_T trigger hadron
- Enhancement at $p_{T,jet} < 20 \text{ GeV/c}$
 - Surface bias trigger hadrons are produced close to the edge of the QGP and escape it with little energy loss
- Suppression at $20 < p_{T,jet} < 60 \text{ GeV}/c$
 - Jet energy loss
- Rising trend with increasing jet $p_{T,jet}$
 - Interplay of jet quenching and jet production

Jets and jet substructure

- Heavy-ion collisions create a deconfined phase of QCD matter the QGP
- The QGP is too small and short-lived to be studied with external probes
- Jets are collimated sprays of particles resulting from
- quarks and gluons produced at high energy
- Jets are produced at the early stage of collisions, and interact strongly with the medium
 - Jets provide unique probes of the QGP at multiple scales
- Jet substructure is a set of tools to exploit information from the radiation pattern inside jets

• Jet-medium interactions manifests in different ways:

- Energy loss energy transport outside jet cone
- Jet deflection via multiple soft scatters or single hard scatter
- Jet fragmentation and substructure insight into the microscopic modification

The primary jet Lund Plane

 Decluster jets using C/A algorithm by reversing the clustering to identify emissions – measure density of emissions in Lund Jet Plane

$$\Delta R = \sqrt{(\eta^{a} - \eta^{b})^{2} + (\varphi^{a} - \varphi^{b})^{2}}$$
$$k_{T} = p_{T,b} \sin(\Delta R)$$

Lund diagram can be used to isolate regions of QCD phase space

JHEP 12 (2018) 064

The primary jet Lund Plane

اn(k_T/GeV) 1.2

0.5

0

Ϊ**Λ**

ALI-PREL-480020

0.2

-0.5

1.2

 $\ln(R/\Delta R)$

1.4

• Differentially looking at the Lund Plane in $20 < p_{T,iet} < 120 \text{ GeV}/c$

0.6

0.4

• Compliments measurements by ATLAS ($p_{T,iet}$ > 675 GeV, <u>PRL 124, 2020</u>) and CMS (*p*_{T.iet}>700 GeV, <u>JHEP 05 (2024) 116</u>) 11

0.8

ALICE-PUBLIC-2021-002

• Models reasonably describe the data within uncertainties

Jet grooming

- Jet grooming is a technique to remove soft, wide-angle radiations in vacuum, and reduce contamination from soft backgrounds in heavy-ion collisions
- Soft drop algorithm: select hard splittings satisfying the Soft Drop condition:

$$z_{g} \equiv \frac{\min(p_{T1}, p_{T2})}{p_{T1} + p_{T2}} > z_{cut} \left(\frac{\Delta R}{R}\right)^{\beta}$$

• IRC safe – can be calculated analytically

PRL 128 (2022) 102001

Jet grooming

PRL 128 (2022) 102001

Groomed D⁰-tagged jets

PRL 131 (2023) 192301

Jet grooming

PRL 128 (2022) 102001

The cores of jets are narrower in Pb-Pb compared to pp collisions Most models capture the qualitative feature of the narrowing

Generalized angularities

 A set of substructure observables to probe constituents and angular distributions of jets with relative weightings κ and β

$$\lambda_{\alpha}^{\kappa} = \sum_{i \in jet} \left(\frac{p_{T,i}}{p_{T,jet}}\right)^{\kappa} \left(\frac{\Delta R_{i,jet}}{R}\right)^{\beta}$$

R

• IRC safe for $\kappa = 1$ and $\beta > 0$

Generalized angularities

- Semi-inclusive jet girth vs D⁰-tagged jet
- D⁰-tagged jets have lower angularities than semi-inclusive jets
- Charm jets are more collimated than semi-inclusive jets
 - The dead cone around the charm quark charm quark fragments less
 - The smaller color charge of quarks compared to gluons

Subjet fragmentation

JHEP 05 (2023) 245

- Hint of hardening at intermediate $z_{\rm r}$ and a hint of suppression as $z_{\rm r} \to 1$
 - Could be due to quark/gluon differences
- Good agreement with model predictions

Energy-energy correlators (EEC)

- EEC probes the transition region from free quarks into hadrons
- MPI and UE suppressed by the energy weight
- Can be compared to pQCD calculation
- EEC (R_L) corresponds to
 - at small R_{L} : free hadrons
 - at large $R_{\rm L}$: perturbative quark and gluon interactions
 - At mid $R_{\rm L}: R_{\rm L} \propto \frac{\Lambda_{\rm QCD}}{p_{\rm T}^{\rm jet}}$

Energy-energy correlators (EEC)

- EEC measured in pp collisions at $\sqrt{s} = 5.02$ and 13 TeV
- No significant collision energy dependence observed
- Different scaling behavior observed in the perturbative (large R_L) and NP region (small R_L)
- Transition position shifts to lower $R_{\rm L}$ for higher jet $p_{\rm T}$ range

QCD hadronization scale

Quarks/gluons

pQCD scaling deviates near transition region – increasing NP effects

- ALICE has measured a diverse collection of jet and jet substructure observables useful for exploring different physics questions
- Run 3 data will focus on increasing precision
- Many more new and exciting results on the way! Stay tuned!

Recent ALICE jet measurements

ALICE

- Dijet invariant mass https://alice-figure.web.cern.ch/node/16256
- Full jets in p-Pb collisions https://alice-figure.web.cern.ch/node/26208
- Jet R_{AA} using mixed-event method <u>https://alice-figure.web.cern.ch/node/26490</u>
- Jet energy flow within jets https://alice-figure.web.cern.ch/node/26307
- Di-jet acoplanarity in high-multiplicity JHEP 05 (2024) 229
- Fragmentation function in minimum-bias and high-multiplicity arXiv:2311.13322
- Time reclustering https://alice-figure.web.cern.ch/node/28410
- Jet axis difference JHEP 07 (2023) 201, arXiv:2303.13347
- Hardest k_T splittings <u>https://alice-figure.web.cern.ch/node/18030</u>
- Three-point energy correlator https://alice-figure.web.cern.ch/node/28272
- First measurements of in-jet fragmentation of charmed mesons and baryons <u>PRD 109</u> (2024) 7
- Charm jets tagged with D⁰ mesons <u>JHEP 06 (2023) 133</u>

Many recent exciting jet measurements by ALICE – this presentation only shows a few highlights

Extra slides