

Semi-inclusive DIS at small-x: CGC, TMDs and Sudakov factor Cyrille Marquet Centre de Physique Théorique Ecole Polytechnique & CNRS

based on: C.M., B.-W. Xiao and F. Yuan, Phys. Lett. B682 (2009) 207 T. Altinoluk, J. Jalilian-Marian and C.M., arXiv:2406.08277 and work in progress

Introduction

Collinear factorization

Large logarithms $\ln(Q^2/\Lambda_{\rm QCD}^2)$ resummed using DGLAP

TMD factorization

Additional Sudakov logarithms $\ln(Q^2/\mathbf{k}_{\perp}^2)$ resummed using CSS

Collins, Soper, Sterman ('85-'89); Ji, Ma, Yuan (2005); Collins (2011); Echevarria, Idilbi, Scimemi (2012)

4

Additional logarithms $\ln(s/Q^2) \sim \ln(1/x)$ resummed using BFKL

Catani, Ciafaloni, Hautmann ('90-'94)

5

SIDIS in the small-x limit

The dipole factorization in DIS

ep center-of-mass energy $S = (k+P)^2$ $\gamma^* p$ center-of-mass energy $W^2 = (k-k'+P)^2$

$$x_B = \frac{Q^2}{2P.(k-k')} = \frac{Q^2}{W^2 - M_h^2 + Q^2}$$

$$y = \frac{P.(k-k')}{P.k} = \frac{Q^2/x_B}{S-M_h^2}$$

The dipole factorization in DIS

ep center-of-mass energy $S = (k+P)^2$ $\gamma^* p$ center-of-mass energy $W^2 = (k-k'+P)^2$

$$x_B = \frac{Q^2}{2P.(k-k')} = \frac{Q^2}{W^2 - M_h^2 + Q^2}$$

$$y = \frac{P.(k-k')}{P.k} = \frac{Q^2/x_B}{S-M_h^2}$$

• the cross section at small x

Mueller (1990), Nikolaev and Zakharov (1991)

$$\sigma_{T,L}^{\gamma^* p \to X} = 2 \int d^2 r \, dz \, |\psi_{T,L}(z, \mathbf{r}; Q^2)|^2 \underbrace{\int d^2 b \, T_{q\bar{q}}(\mathbf{r}, \mathbf{b}, x_B)}_{\text{dipole-hadron cross-section}}$$

overlap of $\gamma^* \to q\bar{q}$ splitting functions

link to the unintegrated gluon distribution $F(q_{\perp}, x_B) = \int \frac{d^2r}{(2\pi)^2} \ e^{-iq_{\perp} \cdot \mathbf{r}} [1 - T_{q\bar{q}}(\mathbf{r}, x_B)]$

The dipole factorization in SIDIS

The dipole factorization in SIDIS

fragmentation into hadron

• the cross section at small x $\Phi(\xi, \mathbf{x}, \mathbf{y}; Q^2) = \psi(\xi, \mathbf{x}; Q^2) \psi^*(\xi, \mathbf{y}; Q^2)$ $\uparrow \qquad \uparrow$ dipoles in amplitude / conj. amplitude

 $\frac{d\sigma^{\gamma^* p \to hX}}{dz_h d^2 P_\perp} = \frac{d\sigma^{\gamma^* p \to qX}_{T,L}}{d\xi d^2 k_\perp} \left(k_\perp = \frac{\xi}{z_h} P_\perp\right) \otimes D_{h/q}(z_h/\xi)$ $\frac{d\sigma^{\gamma^* p \to qX}}{d\xi d^2 k_\perp} = \int \frac{d^2 x}{2\pi} \frac{d^2 y}{2\pi} e^{-ik_\perp \cdot (\mathbf{X} - \mathbf{y})} \Phi_{T,L}(\xi, \mathbf{x}, \mathbf{y}; Q^2) \int d^2 b \left[T_{q\bar{q}}(\mathbf{x}, x_B) + T_{q\bar{q}}(\mathbf{y}, x_B) - T_{q\bar{q}}(\mathbf{x} - \mathbf{y}, x_B)\right]$ McLerran and Venugopalan, Mueller, Kovchegov and McLerran (1999) 10

Cross section in momentum space

• the lepto-production cross section

 k_{T} factorization

$$\frac{d\sigma(ep \to e'hX)}{d\mathcal{P}} = \frac{\alpha_{em}^2 N_c}{2\pi^3 x_B Q^2} \sum_f e_f^2 \int_{z_h} \frac{dz}{z} \frac{D(z)}{z^2} \int d^2 b d^2 q_\perp F(q_\perp, x_B) \mathcal{H}\left(\xi = \frac{z_h}{z}, k_\perp = \frac{P_\perp}{z}\right)$$

phase space $d\mathcal{P} = dx_B dQ^2 dz_h dP_{\perp}^2$

Cross section in momentum space

• the lepto-production cross section

 k_{T} factorization

$$\frac{d\sigma(ep \to e'hX)}{d\mathcal{P}} = \frac{\alpha_{em}^2 N_c}{2\pi^3 x_B Q^2} \sum_f e_f^2 \int_{z_h} \frac{dz}{z} \frac{D(z)}{z^2} \int d^2 b d^2 q_\perp F(q_\perp, x_B) \mathcal{H}\left(\xi = \frac{z_h}{z}, k_\perp = \frac{P_\perp}{z}\right)$$

$$\downarrow$$
phase space $d\mathcal{P} = dx_B dQ^2 dz_h dP_\perp^2$
the unintegrated gluon distribution
$$F(q_\perp, x_B) = \int \frac{d^2 r}{(2\pi)^2} e^{-iq_\perp \cdot \mathbf{r}} [1 - T_{q\bar{q}}(\mathbf{r}, x_B)]$$

Cross section in momentum space

the lepto-production cross section

 k_{T} factorization $\frac{d\sigma(ep \to e'hX)}{d\mathcal{P}} = \frac{\alpha_{em}^2 N_c}{2\pi^3 x_B Q^2} \sum_{s} e_f^2 \int_{z_h} \frac{dz}{z} \frac{D(z)}{z^2} \int d^2b d^2q_\perp F(q_\perp, x_B) \mathcal{H}\left(\xi = \frac{z_h}{z}, k_\perp = \frac{P_\perp}{z}\right)$ phase space $d\mathcal{P} = dx_B dQ^2 dz_h dP_{\perp}^2$ F.T. of photon wave function the unintegrated gluon distribution / $\epsilon_f^2 = \xi (1 - \xi) Q^2$ $F(q_{\perp}, x_B) = \int \frac{d^2 r}{(2\pi)^2} e^{-iq_{\perp} \cdot \mathbf{r}} [1 - T_{q\bar{q}}(\mathbf{r}, x_B)]$ massless quarks $\mathcal{H}(\xi, k_{\perp}) = \left(1 - y + \frac{y^2}{2}\right) \left(\xi^2 + (1 - \xi)^2\right) \left|\frac{k_{\perp}}{k_{\perp}^2 + \epsilon_f^2} - \frac{k_{\perp} - q_{\perp}}{(k_{\perp} - q_{\perp})^2 + \epsilon_f^2}\right|^2$ photon T $+(1-y)4\xi^{2}(1-\xi)^{2}Q^{2}\left(\frac{1}{k_{\perp}^{2}+\epsilon_{f}^{2}}-\frac{1}{(k_{\perp}-q_{\perp})^{2}+\epsilon_{f}^{2}}\right)^{2}$

photon L

Large-Q² limit of small-x result

• keeping the leading 1/Q² term:

CM, Xiao and Yuan (2009)

$$\frac{d\sigma(ep \to e'hX)}{d\mathcal{P}}|_{P_{\perp}^{2} \ll Q^{2}} = \frac{\alpha_{em}^{2}N_{c}}{2\pi^{3}Q^{4}x_{B}} \sum_{f} e_{f}^{2} \left(1 - y + \frac{y^{2}}{2}\right) \frac{D(z_{h})}{z_{h}^{2}} \int d^{2}bd^{2}q_{\perp}F(q_{\perp}, x_{B})A(q_{\perp}, k_{\perp} = P_{\perp}/z_{h})$$
only transverse photons
$$A(q_{\perp}, k_{\perp}) = \int d\xi \left| \frac{k_{\perp}|k_{\perp} - q_{\perp}|}{(1 - \xi)k_{\perp}^{2} + \xi(k_{\perp} - q_{\perp})^{2}} - \frac{k_{\perp} - q_{\perp}}{|k_{\perp} - q_{\perp}|} \right|^{2}$$

Large-Q² limit of small-x result

• keeping the leading 1/Q² term:

CM, Xiao and Yuan (2009)

$$\frac{d\sigma(ep \to e'hX)}{d\mathcal{P}}|_{P_{\perp}^{2} \ll Q^{2}} = \frac{\alpha_{em}^{2}N_{c}}{2\pi^{3}Q^{4}x_{B}} \sum_{f} e_{f}^{2} \left(1 - y + \frac{y^{2}}{2}\right) \frac{D(z_{h})}{z_{h}^{2}} \int d^{2}bd^{2}q_{\perp}F(q_{\perp}, x_{B})A(q_{\perp}, k_{\perp} = P_{\perp}/z_{h})$$
only transverse photons
$$A(q_{\perp}, k_{\perp}) = \int d\xi \left| \frac{k_{\perp}|k_{\perp} - q_{\perp}|}{(1 - \xi)k_{\perp}^{2} + \xi(k_{\perp} - q_{\perp})^{2}} - \frac{k_{\perp} - q_{\perp}}{|k_{\perp} - q_{\perp}|} \right|^{2}$$

• the saturation regime can still be probed

the cross section above has contributions to all orders in $\,Q_s^2/P_{\perp}^2$

even if Q² is much bigger than Q_s², the saturation regime will be important when $P_{\perp}^2 \sim Q_s^2$

in fact, thanks to the existence of Q_s , the limit $|P_{\perp}| \rightarrow 0$ is finite, and computable with weak-coupling techniques ($Q_s \gg \Lambda_{QCD}$) eventually true at small x

SIDIS in the large-Q² limit

TMD factorization

• the cross section can be factorized in 4 pieces

Collins and Soper (1981), Collins, Soper and Sterman (1985), Ji, Ma and Yuan (2005)

$$\frac{d\sigma(ep \rightarrow e'hX)}{d\mathcal{P}} = \frac{4\pi\alpha_{em}^2}{Q^2} \left(1 - y + \frac{y^2}{2}\right) \int d^2k_{\perp}d^2p_{1\perp}d^2\lambda_{\perp}$$

$$\frac{q(x_B, k_{\perp}; x_B\zeta)D(z_h, p_{1\perp}; \hat{\zeta}/z_h) \longrightarrow \text{TMD ff}}{Ph}$$

$$\frac{g(x_B, k_{\perp}; x_B\zeta)D(z_h, p_{\perp}; \hat{\zeta}/z_h) \longrightarrow \text{TMD ff}}{Ph}$$

$$\frac{g$$

Small-x limit of large-Q² result

at small-x, the leading contribution reads:

CM, Xiao and Yuan (2009)

$$\frac{d\sigma(ep \to e'hX)}{d\mathcal{P}}|_{x_B \ll 1} = \frac{4\pi\alpha_{em}^2}{Q^4} \sum_f e_f^2 \left(1 - y + \frac{y^2}{2}\right) \frac{D(z_h)}{z_h^2} q(x_B, P_\perp/z_h)$$

and the TMD quark distribution comes from gluon splitting

$$xq(x,k_{\perp}) = \frac{N_c}{8\pi^4} \int d^2b d^2q_{\perp}F(q_{\perp},x)A(q_{\perp},k_{\perp})$$

gluon distribution gluon to quark splitting

saturation/multiple scatterings are included in this TMD formula, simply by calculating $F(q_{\perp},x)$ to all orders in Q_s^2/q_{\perp}^2

TMD-pdf / u-pdf relation

at small x and large Q^2 •

q

CM, Xiao and Yuan (2009)

ctorization

 $\ln Q^2$

the two results for the SIDIS cross section are identical, with

$$\begin{aligned} xq(x,k_{\perp}) &= \frac{N_c}{4\pi^4} \int d^2b d^2q_{\perp}F(q_{\perp},x) \left[1 - \frac{k_{\perp} \cdot (k_{\perp} - q_{\perp})}{k_{\perp}^2 - (k_{\perp} - q_{\perp})^2} \ln\left(\frac{k_{\perp}^2}{(k_{\perp} - q_{\perp})^2}\right) \right] \\ & \downarrow \\ quark TMD \qquad gluon TMD \\ in the overlaping domain of validity, \\ TMD \& kT factorization are consistent \qquad \ln\frac{1}{x} \left[\begin{array}{c} k_{\perp} \cdot (k_{\perp} - q_{\perp}) \\ k_{\perp} - (k_{\perp} - q_{\perp})^2 \end{array} \right] \\ k_{T} - factorization \prod_{t=1}^{T} k_{t} - factorization \prod_{t=1}^{T}$$

TMD-pdf / u-pdf relation

at small x and large Q^2 •

٠

CM, Xiao and Yuan (2009)

the two results for the SIDIS cross section are identical, with

$$xq(x,k_{\perp}) = \frac{N_c}{4\pi^4} \int d^2b d^2q_{\perp}F(q_{\perp},x) \left[1 - \frac{k_{\perp} \cdot (k_{\perp} - q_{\perp})}{k_{\perp}^2 - (k_{\perp} - q_{\perp})^2} \ln\left(\frac{k_{\perp}^2}{(k_{\perp} - q_{\perp})^2}\right)\right]$$
quark TMD gluon TMD in the overlaping domain of validity,
TMD & kT factorization are consistent of validity,
TMD & kT factorization are consistent of validity,
the next step can one consistently re-sum both types of large logarithms ?

NLO corrections and QCD evolution

Re-summing large logarithms

Simultaneous resummation of high-energy $\ln(1/x)$ and Sudakov $\ln(Q^2/\mathbf{k}_{\perp}^2)$ logarithms?

Longstanding problem, studied using many different

approaches, including recently:

SW: Balitsky, Tarasov (2015)
RO: Balitsky (2021-2023)
HEF: Deak, Hautmann, Jung, Kutak, van Hameren, Sapeta, Hentschinski (2016-2021)
BFKL: Nefedov (2021)
PB: Hautmann, Hentschinski, Keersmaekers, Kusina, Kutak, Lelek (2022)
CGC: Mueller, Xiao, Yuan (2011); Hatta, Xiao, Yuan, Zhou (2017-2021); Stasto, Wei, Xiao, Yuan (2018); PT, Altinoluk, Beuf, Marquet (2022); Caucal, Salazar, Schenke, Venugopalan (2022-2023)

Related talks at the workshop:

S. Mukherjee, Tuesday 18:30: TMD factorization Bridging large and small x

P. Caucal, Thursday 9:20:

NLO calculations for inclusive back-to-back dijet in DIS in the saturation regime

Real emission diagrams

Altinoluk, Boussarie, CM and Taels (2020)

linearly-polarized gluon TMD involved at NLO, even for photo-production

see also

Caucal, Salazar and Venugopalan (2021) Bergabo and Jalilian-Marian (2022) Iancu and Mulian (2023)

Virtual diagrams

Caucal, Salazar and Venugopalan (2021)

full NLO CGC is UV and soft finite

collinear divergences give DGLAP evolution of the fragmentation function rapidity divergences give Baltisky-Kovchegov evolution

see also Taels, Altinoluk, Beuf and CM (2022) Bergabo and Jalilian-Marian (2022)

Sudakov double logs in SIDIS

large-Q² (TMD) limit Altinoluk, Jalilian-Marian and CM (2024)

the standard rapidity subtraction of the small-x logarithms, which leads to BK/JIMWLK equations, is not compatible with TMD evolution

Sudakov and small-x logs aren't completely separated in phase space!

Sudakov double logs in SIDIS

large-Q² (TMD) limit Altinoluk, Jalilian-Marian and CM (2024)

the standard rapidity subtraction of the small-x logarithms, which leads to BK/JIMWLK equations, is not compatible with TMD evolution

Sudakov and small-x logs aren't completely separated in phase space!

To obtain
$$d\sigma_{\text{TMD}}^{\text{NLO}}$$
 "=" $d\sigma_{\text{TMD}}^{\text{LO}} \times \left(-\frac{\alpha_s C_F}{2\pi}\right) \ln^2(Q^2 |\mathbf{x} - \mathbf{y}|^2)$
and then write
 $q(x, k_\perp; Q^2) = \int \frac{d^2(\mathbf{x} - \mathbf{y})}{(2\pi)^2} e^{-ik_\perp \cdot (\mathbf{x} - \mathbf{y})} e^{-S_{sud}(\mathbf{Q}, \mathbf{x} - \mathbf{y})} \int d^2k'_\perp e^{ik'_\perp \cdot (\mathbf{x} - \mathbf{y})} q(x, k'_\perp)$

the rapidity subtraction must be altered This leads to a kinematically-constrained small-x evolution

Sudakov double logs in SIDIS

large-Q² (TMD) limit Altinoluk, Jalilian-Marian and CM (2024)

the standard rapidity subtraction of the small-x logarithms, which leads to BK/JIMWLK equations, is not compatible with TMD evolution

Sudakov and small-x logs aren't completely separated in phase space!

To obtain
$$d\sigma_{\text{TMD}}^{\text{NLO}}$$
 "=" $d\sigma_{\text{TMD}}^{\text{LO}} \times \left(-\frac{\alpha_s C_F}{2\pi}\right) \ln^2(Q^2 |\mathbf{x} - \mathbf{y}|^2)$
and then write
 $q(x, k_\perp; Q^2) = \int \frac{d^2(\mathbf{x} - \mathbf{y})}{(2\pi)^2} e^{-ik_\perp \cdot (\mathbf{x} - \mathbf{y})} e^{-S_{sud}(\mathbf{Q}, \mathbf{x} - \mathbf{y})} \int d^2k'_\perp e^{ik'_\perp \cdot (\mathbf{x} - \mathbf{y})} q(x, k'_\perp)$

the rapidity subtraction must be altered This leads to a kinematically-constrained small-x evolution

→ in the small-x evolved LO contribution, the kernel of the JIMWLK equation now contains an extra theta term $\theta \left[(k_g^+/k_f^+)Q^2 - \mathbf{k}_g^2 \right]$

study of single logs and the associated scheme dependence in progress

Conclusions

• to match collinear physics and small-x physics in the linear BFKL regime, the necessity of a kinematical constraint in the small-x evolution was recognized a long time ago (led to CCFM equation)

Ciafaloni ('88); Andersson, Gustafson, Samuelsson ('96); Kwiecinski, Martin, Sutton ('96); Salam ('98)

• more recently, that necessity also emerged in CGC calculations, often in connection with the issue of negative NLO cross sections

Beuf (2014); Hatta, Iancu (2016); Iancu, Madrigal, Mueller, Soyez, Triantafyllopoulos (2019)

- now it also appears in the context of two-scale processes and TMD physics
- semi-inclusive DIS provides a good testing ground for these theoretical developments → key process at the EIC