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Introduction



Collinear factorization

Oeonl = 6(Q%) ® f(z, Q%) + O(Aqcp/Q)"

Large logarithms In(Q*/A¢-p,) resummed using DGLAP



TMD factorization

TMD = Transverse Momentum Dependent

. Aqep ki\™
O'TMD:U(Q2)®f($akJ_aQ2)®+O( SR )
Q Q
Additional Sudakov logarithms In(Q?/k?5)  Collins, Soper, Sterman ('85-'89);

: Ji, Ma, Yuan (2005); Collins (2011);
resummed using CSS Echevarria, Idilbi, Scimemi (2012)



High-energy factorization

Q ki

P X

ouer = 6(k1,Q°%) ® G(z,k1,Q%) + O(A%CD)TL

Additional logarithms In(s/Q?) ~ In(1/x) resummed using BFKL

5
Catani, Ciafaloni, Hautmann (’90-'94)



SIDIS in the small-x limit



The dipole factorization in DIS

ep center-of-mass energy

k'
i S = (k+PY
’ photon Virtua”ty AN Y center-of-mass energy

-4 Q2= - (k-K)2 > 0 W2 = (k-K'+P)?
k; 7 Q2 Q2

> BTOP(k—K)  W?—MZ+Q
p X
_ P(k—FK) Q%/zp

=T Pr T S—M?




The dipole factorization in DIS

ep center-of-mass energy

k’
S = (k+P)?
K photon virtuality 7" P center-of-mass energy

2 g Q®=- (k-k)*>0 W2 = (k-K+P)?
Zk rp = Q2 — Q2
% 2Pk = k) W= My QP
P X
_P(k—Fk) _ Q/zp
YT TTPE  S— M2

* the cross section at small x
Mueller (1990), Nikolaev and Zakharov (1991)

*

—X
orr = 2/d27“ dz |1 (2,1, QQ)IQ/de T,7(r,b,z)

Y ~ . - ,
Overlap Of ’)/* — qq

splitting functions

link to the unintegrated gluon distribution D
d?r i > \
Flav.ap) = [ G € M1 = Tyglr.op) ;




The dipole factorization in SIDIS

€

@_’_/ € '/‘
SIDIS

Q Q hadron(P,) z,

__Xf




The dipole factorization in SIDIS

e €
6_/ 6_._/
Q SIDIS . Q hadron(P,) z,
X A ’
P /'* P X
* the cross section at small x fragmentation into hadron
(&, x,y; Q%) = Qb(f,?; Q2)¢*(€,3Tf; Q?)

dipoles in amplitude / conj. amplitude

* v p—qX
do? p—hX B dJT,L

§
- = —P D

*psq X
dU%,f 7 _ dZ_Qj@ e—ikzj_-(X—y)(I)TL(g X,V Q2)/d2b [T —(X IB)‘FT _(y xB)—T —(x—y xB)]
déd?k | 2m 2w I e e " |

McLerran and Venugopalan, Mueller, Kovchegov and McLerran (1999) 10



Cross section in momentum space

» the lepto-production cross section
kt factorization

do(ep — €'hX) / dz D(z 9, o P
d°bd“q, F =k =
dP 2773553@2 Z q.L (QJ_a ZUB) f 1 =

zz2 z

phase space dP = dxpdQ?dz,dP?
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Cross section in momentum space

» the lepto-production cross section
kt factorization

do(ep — €'hX) / dz D(z 9, o P
d°bd“q, F =k =
dP 27T3CUBQ2 Z q.L (QJ_a ZCB) f 1 =

zz2 z

phase space dP = dxpdQ?dz,dP?

the unintegrated gluon distribution

F(qi,zp) = / (37:52 e "L — T o(r,zp)]
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Cross section in momentum space

» the lepto-production cross section
kt factorization

do(ep — €'hX) / dz D(z / 9, o P
= d°bd“q F = = k —
7= W%ch Z qLF (gL, zp) H| &= 1=

|

phase space dP = dxpdQ?*dz,dP} F.T. of photon

wave function
the unintegrated gluon distribution

d*r .. r et =E(1-6)Q°
Fqi,zp) = / (27)2 e "1 = Toq(r, z)] massless quarks
2
2
Y 2 2 k1 ki —q.
— (1-— L 1 — _
H(E kL) ( Y+ 5 ) &+ (1-¢)) K2 +6?C (k1 —q1) +6?€ photon T
1 1 :
1 — y)4€%(1 — £)2Q? —
+(1—-y)4" (1 -¢)°Q (kiﬂ%? i _ql)2+€%) photon L
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Large-Q? limit of small-x result

- keeping the leading 1/Q2 term: CM, Xiao and Yuan (2009)
do(ep — €' hX) a?, N, y*\ D(zp)
5 P22 = FECToT Ze? (1 —yt g 2 /d2bd2QLF(QLa rp)A(qL, k1L = P1/z)

f

/ simple function/

kilkl —ql| ki —q1
A d —
(q1,kL) = 5‘ Ok + &k —qu)? kL —qu|

only transverse photons
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Large-Q? limit of small-x result

- keeping the leading 1/Q2 term: CM, Xiao and Yuan (2009)

do(ep — €'hX) o2, Ne 2 y*\ D(zn) / 27 12
202 = ——D2 —— 1— — d“bd“q | F A ki, =P
7P P2 <@ STETaI. Ef e} vt 2 g1 F(qL,vB)A(qL, kL 'L/ #n)

/ simple function/

kilkl —qu] kL — a1
A(q., k d B
(qi, k1) 5‘ Ok +E(kL —qu)? |kl —qd]

only transverse photons )

» the saturation regime can still be probed

the cross section above has contributions to all orders in Q2/P?
even if Q2 is much bigger than Q42, the saturation regime will be important when P% ~ @2
in fact, thanks to the existence of Qg, the limit |P.| — 0Ois finite,
and computable with weak-coupling techniques (Qs > Agcp )

eventually true at small x /
15



SIDIS in the large-Q? limit
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TMD factorization

« the cross section can be factorized in 4 pieces
Collins and Soper (1981), Collins, Soper and Sterman (1985), Ji, Ma and Yuan (2005)

lo(ep — ¢'hX)  4ma? 21 d
(o(ep—> e'hX) _ 2T (1 —y+ y_) /d2kldzl)ud2/\L

dP Q2 2
/ q(xp, k1 xpC)D(2h, pro: CA/Zh) TMD ff
TMD quark distribution SAL:p)H(Q?, xR, 2 p)5(2)(zhkl +piL+AL—p1)
soft factor i
hard part

valid to leading power in 1/Q? and to all orders in
(the gluon TMD piece is power-suppressed)

however we shall only discuss the leading o4 order




Small-x limit of large-Q?2 result

at small-x, the leading contribution reads: CM, Xiao and Yuan (2009)
do(ep — e’hX e’ y?\ D(zp,
( dP )’w3<<1:7 6?«? (1—y—|—7 i;% ) Q(ZC‘B,PJ_/Z}L)

and the TMD quark distribution comes from gluon splitting

zq(z, k) = d*bd®q1 F(qu,x)A(qL, kL)

/ j

gluon distribution  gluon to quark splitting

0000

— — — %
— S .
Q0Q00QQ0QA0Q0QQ0

(a) (b)

[ | g s | o saturation/multiple scatterings are included
- N in this TMD formula, simply by calculating
: % | F(q.,7) to all orders in Q2/q7
© @)
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TMD-pdf / u-pdf relation

 atsmall x and large Q2 CM, Xiao and Yuan (2009)

the two results for the SIDIS cross section are identical, with

_Ne [ 2 0 ki (kL —qu) k1
qu(xakl) - 47‘{'4 /d bd QJ_FL((]JJ'CB) [1 ki - (kJ_ - qJ_)2 In ((kJ_ - qJ_)Q
quark TMD gluon TMD
in the overlaping domain of validity, In 1 4
TMD & KT factorization are consistent T kT-factoriz:ation %
| o
__________________________ Q.
-]
3
Q
=
>
In Q?
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TMD-pdf / u-pdf relation

 atsmall x and large Q2 CM, Xiao and Yuan (2009)

the two results for the SIDIS cross section are identical, with

N, ky (kL —q1) k7
k) = d?bd?q, F(q,, [1— = 1 ( L
.leql(x J_) Ard / ql i((]J_ .CL') ki . (kJ_ _ QJ_)2 I (]{IJ_ _ QJ_)2
quark TMD gluon TMD BKFL/BK evolution
in the overlaping domain of validity, In 1 I T 4
TMD & KT factorization are consistent T kT-factorizfation % 8
: 1 (0))
__________________________ o .. 2
- next step | 5] S
N’ S
N =
can one consistently re-sum both > S
types of large logarithms ? -
In Q?
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NLO corrections
and
QCD evolution
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Re-summing large logarithms

Simultaneous resummation of high-energy In(1/x) and Sudakov
In(Q?/ ki) logarithms?

Longstanding problem, studied using many different
approaches, including recently:

SW: Balitsky, Tarasov (2015)

RO: Balitsky (2021-2023)

HEF: Deak, Hautmann, Jung, Kutak, van Hameren, Sapeta, Hentschinski (2016-2021)
BFKL: Nefedov (2021)

PB: Hautmann, Hentschinski, Keersmaekers, Kusina, Kutak, Lelek (2022)

CGC: Mueller, Xiao, Yuan (2011); Hatta, Xiao, Yuan, Zhou (2017-2021); Stasto, Wei, Xiao,
Yuan (2018); PT, Altinoluk, Beuf, Marquet (2022); Caucal, Salazar, Schenke, Venugopalan
(2022-2023)

Related talks at the workshop:

S. Mukherjee, Tuesday 18:30:
TMD factorization Bridging large and small x

P. Caucal, Thursday 9:20:

NLO calculations for inclusive back-to-back dijet in DIS in the saturation regime 9



Real emission diagrams

Altinoluk, Boussarie, CM and Taels (2020)

b t— D1 E%ﬁl kil — p1
1 I k
M AN P . T Fs

QSW QFS RI

linearly-polarized gluon TMD involved at NLO, even for photo-production

see also

Caucal, Salazar and Venugopalan (2021)
Bergabo and Jalilian-Marian (2022)
lancu and Mulian (2023)
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Virtual diagrams

Caucal, Salazar and Venugopalan (2021)

GESW GEFS

full NLO CGC is UV and soft finite
collinear divergences give DGLAP evolution of the fragmentation function
rapidity divergences give Baltisky-Kovchegov evolution

| Taels, Altinoluk, Beuf and CM (2022)
€€ also Bergabo and Jalilian-Marian (2022) o4



Sudakov double logs in SIDIS

large-Q? (TMD) limit Altinoluk, Jalilian-Marian and CM (2024)

the standard rapidity subtraction of the small-x logarithms, which leads to
BK/JIMWLK equations, is not compatible with TMD evolution

Sudakov and small-x logs aren’t completely separated in phase space!

25



Sudakov double logs in SIDIS

large-Q? (TMD) limit Altinoluk, Jalilian-Marian and CM (2024)

the standard rapidity subtraction of the small-x logarithms, which leads to
BK/JIMWLK equations, is not compatible with TMD evolution
Sudakov and small-x logs aren’t completely separated in phase space!

OéSCF
27

To obtain doff "= drkQp = (-

and then write
Q(ZU,]?J_;Qz) _/% e—ik:J_-(x—Y)e—Ssud(Q,X—Y)/d2ki eikj_-(x—}’)q(x7ki)
the rapidity subtraction must be altered

This leads to a kinematically-constrained small-x evolution

)@ - yP)
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Sudakov double logs in SIDIS

large-Q? (TMD) limit Altinoluk, Jalilian-Marian and CM (2024)

the standard rapidity subtraction of the small-x logarithms, which leads to
BK/JIMWLK equations, is not compatible with TMD evolution
Sudakov and small-x logs aren’t completely separated in phase space!

OfSCF
27

To obtain doff "= drkQp = (-

and then write
Q(ZU,]?J_;Qz) _/% e—ik:J_-(x—Y)e—Ssud(Q,X—Y)/d2ki eikj_-(x—}’)q(x7ki)
the rapidity subtraction must be altered

This leads to a kinematically-constrained small-x evolution

)@ - yP)

- in the small-x evolved LO contribution, the kernel of the JIMWLK
equation now contains an extra theta term ¢ {(k;/k?)@2 — kg}

study of single logs and the associated scheme dependence in progress
27



Conclusions

to match collinear physics and small-x physics in the linear BFKL

regime, the necessity of a kinematical constraint in the small-x

evolution was recognized a long time ago (led to CCFM equation)
Ciafaloni (’88); Andersson, Gustafson, Samuelsson ('96);
Kwiecinski, Martin, Sutton ('96); Salam ('98)

more recently, that necessity also emerged in CGC calculations,
often in connection with the issue of negative NLO cross sections

Beuf (2014); Hatta, lancu (2016);
lancu, Madrigal, Mueller, Soyez, Triantafyllopoulos (2019)

now it also appears in the context of two-scale processes and
TMD physics

semi-inclusive DIS provides a good testing ground for these
theoretical developments - key process at the EIC
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