

Centro Nazionale di Ricerca in HPC, Big Data and Quantum Computing

Determination of Diffractive PDFs from HERA Data using Neural Networks and Fracture Functions

Hadi Hashamipour

Centro Nazionale di Ricerca in High-Performance Computing, Big Data and Quantum Computing

- **DPDFs** are important in understanding **diffractive processes** in Deep Inelastic Scattering (DIS).
- Traditional methods involve analytical approaches; introduce the idea of using a neural network as a modern, flexible alternative.

Introduction

Triple differential Cross section

$$\begin{split} &\frac{d\sigma^{ep \to ep X}}{d\beta dQ^2 dx_{I\!\!P}} = \frac{2\pi\alpha^2}{\beta Q^4} \left[1 + (1-y)^2 \right] \sigma_r^{D3}(\beta, Q^2; x_{I\!\!P}) \,. \\ &\sigma_r^{D(3)}(\beta, Q^2; x_{I\!\!P}) = F_2^{D(3)}(\beta, Q^2; x_{I\!\!P}) - \frac{y^2}{1 + (1-y)^2} F_L^{D(3)}(\beta, Q^2; x_{I\!\!P}) \,. \end{split}$$

Using the factorization theorem on Fracture functions

$$F_k^D(\beta, Q^2; x_{I\!\!P}) = \sum_i \mathcal{F}_i^D(\beta; x_{I\!\!P}, Q^2) \otimes C_{ki}(\beta, Q^2, \alpha_s)$$

Fracture functions: An Improved description of inclusive hard processes in QCD Phys. Lett. B 323, 201 (1994)

(t)

Neural Network Approach to Parameterization

- Feed-forward neural network used to model the non-linear relationships in diffractive processes.
- Benefits of using NNs: data-driven flexibility, no need for strict theoretical assumptions.

$$\beta \mathcal{F}_q^D(\beta, Q_0^2; x_{\mathbb{I}\!P}) = \mathcal{W}(x_{\mathbb{I}\!P}) \left(NN1(\beta, Q_0^2) - NN1(1, Q_0^2) \right)^2 \beta \mathcal{F}_g^D(\beta, Q_0^2; x_{\mathbb{I}\!P}) = \mathcal{W}(x_{\mathbb{I}\!P}) \left(NN2(\beta, Q_0^2) - NN2(1, Q_0^2) \right)^2$$

Training the Neural Network

- NN trained using **HERA reduced cross-section data**.NN adjusts weights iteratively, learning the correct mapping between input momentum fraction and DPDFs.
- **Optimization**: Chi-squared minimization between predicted and observed diffractive cross-sections.
- NN adjusts weights iteratively, learning the correct mapping between input momentum fraction and DPDFs.
- We use H1 Large rapidity gap data and H1/Zeus combined FPS data.
- Kinematical cuts:
 - $\beta \leq 0.80$
 - Q² > 8.5 GeV² for all the datasets
 - Study the sensitivity of chi-squared to variations in Q_{\min} in future.

Results and Uncertainty Estimation

- NN results closely match previous DPDF determinations.
- Monte Carlo method applied for uncertainty estimation: generating pseudo-datasets (replicas) to calculate central values and uncertainties.
- Fair agreement between data and NN predictions.

Conclusions and Future Directions

- NN approach offers a robust and flexible parameterization of DPDFs.
- Confirms reliability of existing models and opens new avenues for future studies at the Electron-Ion Collider (EIC).
- NN-based parameterization is a powerful, data-driven tool for advancing diffractive scattering research.

Thank You!

Centro Nazionale di Ricerca in High-Performance Computing, Big Data and Quantum Computing