Can Contrastive Learning de-bias my Model?

EP-NU Meeting

Radi Radev CERN, Alex Wilkinson UCL / Fermilab
Self-Supervised Learning in Vision

• You have a lot of data but not many labelled examples
• Train some model that utilises the unlabelled data
• Then you can fine-tune the base model using the small labeled sample
Self-Supervised Learning in Vision

• You have a lot of data but not many labelled examples
• Train some model that utilises the unlabelled data
• Then you can fine-tune the base model using the small labeled sample
Self-Supervised Learning in Vision

- You have a lot of data but not many labelled examples
- Train some model that utilises the unlabelled data
- Then you can fine-tune the base model using the small labeled sample

Illustration of MAE - vision foundation model
Self-Supervised Learning in Vision

• You have a lot of data but not many labelled examples
• Train some model that utilises the unlabelled data
• Then you can fine-tune the base model using the small labeled sample
Self-Supervised Learning in Vision and HEP

- You have a lot of data but not many labelled examples
- Train some model that utilises the unlabelled data
- Then you can fine-tune the base model using the small labeled sample
- But HEP simulation comes with detailed information?
- It can help mitigate biases we have in our simulation
Mitigating Biases by Pretraining

We explore a method where we use a combination of detector systematics and handcrafted augmentations to learn a robust representation.

Our method is based roughly on SimCLR - Simple Framework for Contrastive learning of Visual Representations - 2002.05709
Contrastive Learning of Representations
Pass an event x_i through a neural network f to extract a vector representation z_i.

z_i is a high-dimensional vector (in our case 768d)
Representations

Pass an augmented event x_i through a neural network f to extract a different vector representation z_i.
Contrastive Learning

Pass pairs of **augmented events** through a **neural network** f to extract **vector representations**.
Contrastive Learning

Pass pairs of augmented events through a neural network f to extract vector representations.

Representations from different events - low similarity
Contrastive Learning

Pass pairs of augmented events through a neural network f to extract vector representations.

Representations from same event - high similarity
Contrastive Learning

Flexibility:
Use any augmentation - What invariance do we encode?

Use any neural network - What is the most natural data structure of the event?
Data
Liquid Argon TPC

A cryostat filled with liquid argon and a strong electric field.
Liquid Argon TPC

If a neutrino interacts with the medium this produces charged particles.
Liquid Argon TPC

Charged particles free electrons and produce scintillation light. The electrons drift towards the anode.
x, y - pixel positions z: $t_0 - t_{arr}$ the difference between time of light and time of charge arrival

Liquid Argon TPC
Dataset

Single particle interactions within a LArTPC of 5 types μ, π, γ, e, p, following PILArNet 2006.01993

Realistic detector simulation using larnd-sim, detector variations of 3 parameters taken from 2309.04639

<table>
<thead>
<tr>
<th>Detector Parameter</th>
<th>Range</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electric Field</td>
<td>[0.45, 0.55]</td>
<td>kV/cm</td>
</tr>
<tr>
<td>Electron Lifetime</td>
<td>[500, 5000]</td>
<td>μs</td>
</tr>
<tr>
<td>Transverse Diffusion</td>
<td>[4e-6, 14e-6]</td>
<td>$cm^2/\mu s$</td>
</tr>
</tbody>
</table>
Simulation Overview

particle generation

ParticleBomb
Simulation Overview

\[e : p_x, p_y, p_z, E \]

particle generation

ParticleBomb
Simulation Overview

e : \(p_x, p_y, p_z, E \)

- particle generation
- particle propagation

ParticleBomb

edep-sim
Simulation Overview

\[e : p_x, p_y, p_z, E \]

particle generation
- ParticleBomb

particle propagation
- edep-sim

detector simulation
- larnd-sim

\[X_i \]
Method
Our input is extremely **sparse**. To capture most of the event we would have to use a 500^3 pixel cube and only 0.01% one of those would be non-empty.

Sparse Convolution operates only on non empty-voxels.

Check out MinkowskiEngine - a sparse autodiff tensor library.
Architecture: a sparse submanifold CNN based on ConvNeXt v2

We use an MLP to get the similarity vector for CLR and a Linear layer if we are training a classifier.
Augmentations

Handcrafted:
- random scaling, translation, identity, dropping voxels
Augmentations

$X_i \xrightarrow{\text{Augment}} \text{Sparse CNN} \xrightarrow{} Z_i$

Handcrafted:
- random scaling, translation, identity, dropping voxels

Detector Variations:
- electric field strength, longitudinal diffusion coefficient, and electron lifetime
Training and Evaluating SimCLR

We only need to train the base model \textbf{once}!

- Can train \textbf{multiple} models cheaply
- All downstream models are \textbf{decorrelated} from the parameters we used for augmentations
Results
Training

3 models:
- contrastive learning model, that was then frozen - fine-tuned on nominal data only
- classifier using nominal data only
- classifier using nominal + throws
Accuracy - Detector Variations

The **contrastive** model outperforms the classifiers trained directly on either **nominal** or **nominal+throws**.

It is also less affected by the systematic shifts.
The score of the correct class from the contrastive model is less likely to change when we shift the detector parameters.
Future Work

• Fine-tune the model on another task e.g predicting **final state particles**
• Use **larger batch** sizes for the base model
• Explore other contrastive learning methods
• Compare with other methods of de-biasing (e.g DANN)

I think this is could be a very exciting way to combine novel ideas from vision enhancing the way ML is used in physics analyses!
Thank you

radi.radev@cern.ch
In practice the set of **augmentations** to be applied to the pairs is picked randomly for each training iteration.
Contrastive Learning

No labels needed - can pre-train on real data!
Results on PILArNet
CLR Results

Overall Accuracy

- Classifier
- Classifier + Aug
- CLR
CLR v Linear Classifier Baselines

![Graph showing accuracy and balanced accuracy for different models.](image)

- **Accuracy**
- **Balanced Accuracy**

Legend:
- Classifier
- Overfit Classifier
- Classifier + Augmentations
- CLR Randomly Initialized
- CLR

All models are **frozen** - logistic regression fit on top.

For the classifiers the **last layer** is removed and we fit on the features after maxpooling.

For CLR we remove the **MLP** and again use the features after maxpooling.
Augmentations:
- random scaling, translation, rotation, dropping voxels

Architecture:
- a sparse sub manifold CNN based on ConvNeXt v2

But wait aren’t CNNs already invariant to translations?
Aside - CNN Translation Invariance

But wait aren’t CNNs already invariant to translations?

Convolutions are **equivariant** to translation, but this does not directly translate to invariance.

Although architectures can be constructed to be invariant to translations, most modern CNNs are not by default

Turns out not quite!

Adapted From “CNNs Are Not Invariant to Translation, but They Can Learn to Be”