

Search beyond SM Higgs boson with the ATLAS experiment

Weitao Wang on behalf of the ATLAS collaboration

SUSY 2024, IFT (MADRID, SPAIN) 11.06.2024

The Higgs Boson

The Standard Model (SM)

- Only one neutral Higgs boson, with spin 0, CP even
- Until now, all the Higgs properties measured from experiments are consistent with the SM prediction
- No BSM particle has been found up to now

Questions related to the SM Higgs sector

- Mass of neutrino
- Dark matter
- Baryogenesis

The SM cannot be the final, complete theory The SM Higgs boson is not the only Higgs boson

Extensions of the Higgs sector

- SM + one singlet
 - 2 neutral CP-even Higgs bosons h, H
- SM + two-real-singlet model
 - 3 neutral CP-even Higgs h_1, h_2, h_3
- Two Higgs Doublet Model (2HDM, e.g. MSSM)
 - 5 Higgs bosons: 2 neutral CP-even, 1 neutral CP-odd and two charged h, H, A, H^+, H^-
 - Different Type dependent on the coupling with up/down quarks and leptons

2HDM Type	Up-type quarks couple to	Down-type quarks couple to	Charged leptons couple to
Type-I	Φ_2	Φ_2	Φ_2
Type-II	Φ_2	Φ_1	Φ_1
Lepton-specific	Φ_2	Φ_2	Φ_1
Flipped	Φ_2	Φ_1	Φ_2

- 2HDM + singlet (e.g. NMSSM)
 - 7 Higgs bosons: 5 of the 2HDM + 2 additional neutral (1 CP-even and 1-CP odd) *S*, *a*
- Higgs triplet model
 - 7 Higgs bosons: 5 of the 2HDM + 2 double charged H^{++} , H^{--}
- Georgi–Machacek (GM) model: SM Higgs + adding two triplets
 - 10 Higgs $h, H, H_3, H_3^{\pm}, H_5, H_5^{\pm}, H_5^{\pm\pm}$

Experimental signatures

• group the experimental signatures by the mass of the new scalar resonance

Overview of ATLAS Run2 results

Heavy neutral CP-even Higgs
Decays to SM particles

Heavy neutral CP-odd Higgs Decays to SM or heavy Higgs

Charged Higgs

Heavy neutral CP-even Higgs Decays to SM Higgs (or scalar)

SM Higgs exotic decays

Low mass	125 GeV	High mass
$pp \rightarrow a$ $h_{125} \rightarrow aa, h_{125} \rightarrow a_1a_2$ $h_{125} \rightarrow Za$	h_{125} rare decays h_{125} exotic decays $h_{125} \rightarrow invisible$	$pp \rightarrow H/A, pp \rightarrow H^{\pm}$ $H \rightarrow h_{125}h_{125}$ $H \rightarrow Sh_{125}, H \rightarrow SS$ $A \rightarrow ZH, A \rightarrow Zh_{125}$

	Decay channel	Production mode	Mass [GeV]	Significance local	Significance global	$L [{\rm fb}^{-1}]$	
	$H \to \tau \tau$	b-associated	400	2.7σ	n.a.	139	-
	$H \rightarrow \tau \tau$	ggF	400	2.2σ	n.a.	139	
	$H \rightarrow \mu \mu$	<i>b</i> -associated	480	2.3σ	0.6σ	36	
	$H \rightarrow t\bar{t}$	ggF	800	2.3σ	n.a.	140	
	$H \rightarrow t\bar{t}/t\bar{q}$	qq and qg	900	2.8σ	n.a.	139	
	$H \to ZZ \to 4\ell/2\ell 2\nu$	ggF	240	2.0σ	0.5σ	139	
	$H \to ZZ \to 4\ell/2\ell 2\nu$	VBF	620	2.4σ	0.9σ	139	
	$H \rightarrow \gamma \gamma$	ggF	684	3.3σ	1.3σ	139	
	$H \rightarrow \gamma \gamma$	ggF	95.4	1.7σ	n.a.	140	
	$H \rightarrow Z(\ell \ell) \gamma$	ggF	420	2.3σ	n.a.	140	
	$H \rightarrow Z(q\bar{q})\gamma$	ggF	3640	2.5σ	n.a.	139	
	$A \rightarrow Zh_{125}(bb)$	ggF	500	2.1σ	1.1σ	139	
	$A \rightarrow Zh_{125}(b\bar{b})$	<i>b</i> -associated	500	1.6σ	n.a.	139	
	$A \to ZH \to \ell\ell b\bar{b}$	ggF	610 (A), 290 (H)	3.1σ	1.3σ	139	
	$A \to ZH \to \ell \ell b \bar{b}$	<i>b</i> -associated	440 (A), 220 (H)	3.1σ	1.3σ	139	
	$A \to ZH \to \ell\ell WW$	ggF	440 (A), 310 (H)	2.9σ	0.8σ	139	
	$A \to ZH \to \ell \ell \ell t \bar{t}$	ggF	650 (A), 450 (H)	2.9σ	2.4σ	140	
	$A \rightarrow ZH \rightarrow Zh_{125}(b\bar{b})h_{125}(b\bar{b})$	VH	420 (A), 320 (H)	3.8σ	2.8σ	139	-
	$H^+ \rightarrow cb$	$t\bar{t}$ decay	130	3.0σ	2.5σ	139	
	$H^+ \rightarrow Wa(\mu\mu)$	$t\bar{t}$ decay	120–160 (H ⁺), 27 (a)	2.4σ	n.a.	139	
,	$H^+ \rightarrow WZ$	VBF	375	2.8σ	1.6σ	139	
	$H^{++} \to WW$	VBF	450	3.2σ	2.5σ	139	-
	$H \rightarrow h_{125}h_{125} \rightarrow 4b$	ggF	1100	2.3σ	0.4σ	126–139	
	$H \to h_{125}h_{125} \to 4b$	VBF	550	1.5σ	n.a.	126	
	$H \to h_{125} h_{125} \to b \bar{b} \tau \tau$	ggF	1000	3.1σ	2.0σ	139	
	$H \rightarrow h_{125}h_{125}$ combination	ggF	1100	3.3σ	2.1σ	126–139	
	$X \to Sh_{125} \to b\bar{b}\gamma\gamma$	ggF	575 (<i>X</i>), 200 (<i>S</i>)	3.5σ	2.0σ	140	_
	$h_{125} \to Z_d Z_d \to 4\ell$	ggF	28	2.5σ	n.a.	139	-
	$h_{125} \rightarrow ZZ_d \rightarrow 4\ell$	ggF	39	2.0σ	n.a.	139	
	$h_{125} \rightarrow aa \rightarrow b\bar{b}\mu\mu$	ggF, VBF, VH	52	3.3σ	1.7σ	139	
	$h_{125} \rightarrow aa \rightarrow 4\gamma$	ggF	10–25	1.5σ	n.a.	140	
	$h_{125} \rightarrow e\tau$ and $h_{125} \rightarrow \mu\tau$	ggF, VBF, VH	125	2.1σ	n.a.	138	

Very fruitful results have been provided by ATLAS using Run-2 data Only a couple of recent results will be presented today

Weitao Wang, SUSY 2024

Heavy Higgs $H \rightarrow t\bar{t}$

Heavy Higgs $H/A \rightarrow t\bar{t}$ (1)

- Massive scalar (*H*) and pseudo-scalar (*A*) decaying to $t\bar{t}$
- Gluon-gluon fusion production mode

Signal framework

- Type-II 2HDM and hMSSM
- The interference pattern depends on the coupling modifier $g_{A/Ht\bar{t}}$
 - In type-II 2HDM $g_{At\bar{t}} = 1/\tan\beta$, $g_{Ht\bar{t}} = -1/\tan\beta$
 - $\tan \beta$ the ratio of the vacuum expectation values of the two Higgs doublets

Signal-plus-interference distributions

arXiv:2404.18986

<u>arXiv:2404.18986</u>

Heavy Higgs $H/A \rightarrow t\bar{t}$ (2)

Analysis strategy

- Depending on the number of leptons (electron or muon), separate into 1-lepton and 2-lepton channels
- In the 1-lepton channel, separate to merged-topology (≥ 1 large variable radius jet) and resolved-topology (≥ 4jets)
- Use angle information to further categorise the events

Results

• The highest local significance is 2.3 σ , at $m_A = 800$ GeV, $\Gamma_A/m_A = 10\%$

Heavy Higgs $t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$

- Massive scalar (*H*) and pseudo-scalar (*A*) decaying to $t\bar{t}$
- production in association with top pairs
 - less susceptible to interference effects with the SM 4 top production

Two analyses presented:

- Two same-sign leptons or at least three leptons [JHEP 07 (2023) 203]
- One lepton or two opposite-sign leptons [ATLAS-CONF-2024-002]

Results

- 2LSS/ML: No significant excess of events over the Standard Model expectation is observed
- 1L/2LOS: Largest local significance: 2.1σ at $m_{A/H} = 500$ GeV
- Combined limit:

$A \rightarrow ZH, R \rightarrow SH$

- *A*: Heavy pseudo-scalar
- *H*: Heavy scalar

- *R*: Heavy pseudo-scalar
- S: scalar

$A \to ZH \to \ell \ell t \bar{t} / v v b \bar{b}$

- High mass pseudo-scalar (*A*) decay to massive scalar (*H*) and Z boson
- $\ell \ell t \bar{t}$: only gluon-gluon fusion production is considered
- $vvb\bar{b}$: consider both gluon-gluon fusion and *b*-pair association production for Type-II 2HDM interpretation

Results

- Provide (m_A, m_H) limit in different tan β
- Largest local significance: 2.85 σ in $\ell \ell t \bar{t}$ channel, at $(m_A, m_H) = (650, 450)$ GeV
- Model-independent limits are also provided in the $\ell \ell t \bar{t}$ and $vvb\bar{b}$ channel separately

JHEP 02 (2024) 197

$A \rightarrow ZH$ and $R \rightarrow SH$

arXiv:2401.04742

- Two signal models are considered: 2HDM and 2HDM + S
- 2HDM + *S*:

S: a scalar boson, assumed to be a dark matter portal with $S \rightarrow \chi \bar{\chi}$ decay

- R: additional heavy scalar
- Final status: 4 leptons + jet/ E_T^{miss}

Results

- No significant deviation from the SM backgrounds is observed
- Largest excess: $(m_A, m_H) = (510, 380)$ GeV, local significance 2.5σ

- *X*: heavy scalar
- S: scalar, can be light or heavy
- *H*: SM Higgs boson

$X \rightarrow SH \rightarrow bb\gamma\gamma$

arXiv:2404.12915

- Heavy scalar X decays to SM Higgs (H) and another BSM scalar (S)
- SM $H \rightarrow \gamma \gamma$, $S \rightarrow bb$
- m_X between 170 and 1000 GeV, m_s between 15 and 500 GeV
- $120 < m_{\gamma\gamma} < 130 \, \text{GeV}$
- Parameterised neural network is used as the final discriminant

Results

- Largest excess: $(m_X, m_S) = (575, 200)$ GeV, local significance 3.5σ
- Global significance 2.0σ

Compare the largest excess to CMS results

- CMS largest excess: $(m_X, m_S) = (650, 90)$ GeV, local significance 3.8σ
- Using the cross section 0.35fb (best fit reported ulletby the CMS experiment) yields a local excess 2.7 σ from ATLAS measurement

SH

1

 $\sigma(pp \rightarrow X) \times BR(X)$

$X \rightarrow SH \rightarrow WW\gamma\gamma/ZZ\gamma\gamma$

arXiv:2405.20926

- Heavy scalar X decays to SM Higgs (H) and another BSM scalar (S)
- SM $H \rightarrow \gamma \gamma$, $S \rightarrow WW/ZZ \rightarrow$ leptons + jets
- m_X between 300 and 1000 GeV, m_s between 170 and 500 GeV
- Events are classified into 4 different regions depending on the number and flavour of leptons
- Using BDT for further categorisation to improve the sensitivity

Results

• No excess above SM prediction is observed

$X \to SH \to WW\tau\tau/ZZ\tau\tau$

JHEP 10 (2023) 009

- Heavy scalar X decays to SM Higgs (H) and another BSM scalar (S)
- SM $H \rightarrow \tau \tau$, both τ hadronically decay
- $S \rightarrow WW/ZZ$, one or two leptons $(e, \mu) + \text{jets}/E_T^{miss}$
- m_X between 500 and 1500 GeV, m_s between 200 and 500 GeV
- The final discriminant: the BDT outputs, separately training in different m_s region

Results

• No excess above SM prediction is observed

Heavy BSM resonance (X) decays to SM Higgs pair

Boosted VBF $X \rightarrow HH \rightarrow b\bar{b}b\bar{b}$

arXiv:2404.17193

Combination of $X \rightarrow hh$

arXiv:2311.15956

- Heavy resonance *H* decays to two SM Higgs bosons *h*
- Include three decay channels: $b\bar{b}b\bar{b}, b\bar{b}\tau^+\tau^-$ and $b\bar{b}\gamma\gamma$
- No significant excess above the expected background is observed

Interpretation for 2HDM and MSSM

SM Higgs exotic decay

$H \to D^* \gamma$ and $Z \to D^0 \gamma / K_s^0 \gamma$

- Rare Higgs decay: Higgs boson decays into a meson and a photon: flavour-violating Higgs decay
- Analogous Z Decay: potential flavour-changing neutral current

Analysis strategy

- Higgs mass is modelled with a sum of two Gaussian functions with a common mean value
- Z boson mass is modelled with a Voigtian function
- $m_{\mathcal{M}\gamma}$ distributions are used as the discriminating variable

Results

• Compatible with the SM predication

	95% CL upper limits			
	Branching Fraction		$\sigma \times \mathcal{I}$	3 [fb]
Channel	Observed	Expected	Observed	Expected
$H \to D^* \gamma$	1.0×10^{-3}	$1.2^{+0.5}_{-0.3} \times 10^{-3}$	58	68^{+28}_{-19}
$Z \to D^0 \gamma$	4.0×10^{-6}	$3.4^{+1.4}_{-1.0} \times 10^{-6}$	235	200^{+82}_{-56}
$Z \to K_s^0 \gamma$	3.1×10^{-6}	$3.0^{+1.3}_{-0.8} \times 10^{-6}$	185	176^{+77}_{-49}

Light Higgs

Axion-like particles $H \rightarrow aa \rightarrow 4\gamma$ (1)

- SM Higgs boson decays to two *a* to 4 photons
- *a*: Axion-like particles, light (pseudo) scalars

Analysis strategy

• The coupling between *a* and γ ($C_{a\gamma\gamma}$) determines the lifetime and the distance of the vertex

- Promptly decaying $C_{a\gamma\gamma} \ge 0.1$
- Small $C_{a\gamma\gamma}$: long-lived $a \rightarrow \gamma\gamma$
- Events are classified depending on merged photon or single photon
- SR definition: Use invariant mass of all photon candidates m_{inv} for long-live and (m_{inv}, m_a) for prompt search

One merged photon

Two single photons

Axion-like particles $H \rightarrow aa \rightarrow 4\gamma$ (2)

Results

• Largest deviation 1.5σ in $10 < m_a < 25$ GeV

Limit on m_a and $C_{a\gamma\gamma}$

- assuming $\mathscr{B}(a \to \gamma \gamma) = 1$, $\Lambda = 1$ TeV
- significantly reduces the allowed parameter space for ALP-based models

$H \rightarrow Za \rightarrow \ell \ell \gamma \gamma (1)$

- SM Higgs boson decays to Z a $Z \rightarrow \ell \ell$ and $a \rightarrow \gamma \gamma$
- *a*: light pseudoscalars particle *m_a* between 0.1 GeV and 33 GeV

Analysis strategy

Phys. Lett. B 848 (2024) 138536

- Considers both the merged (one merged photon) and the resolved (two single photon) $a \rightarrow \gamma \gamma$ decay
- Exactly two electrons or two muons for $Z \rightarrow \ell \ell \ell$ decay

Result extracted by fitting $m_{\gamma\gamma}$ distribution

Merged category: $m_{Z\gamma}$ range 110-140 GeV Result extracted by fitting $\Delta R_{Z\gamma}$ distribution

Results

• No significant excesses are observed

 $H \rightarrow Za \rightarrow \ell \ell \gamma \gamma (2)$

- Boundary of the merged and resolved category: $m_a = 2 \text{ GeV}$
- Branch ratio $H \rightarrow Za, a \rightarrow \gamma \gamma$ $0.08\% \sim 2\%$

Interpretation in axion-like particles model

- Show limit on the effective coupling $|C_{\gamma\gamma}|/\Lambda$
- With different Higgs Za coupling $|C_{ZH}|/\Lambda$

Low mass $H \rightarrow \gamma \gamma$

- A local significance of 2.9 σ at 95.4 GeV was reported by CMS

Two signal models are considered at ATLAS

- Model-independent: Light, spin-0 bosons *X* decaying to two photons
- Model-dependent: low-mass SM-like Higgs boson (assuming SM Higgs production-mode cross-sections), employs a BDT for event categorisation

Largest local deviation 1.7σ at 95.4 GeV

ATLAS-CONF-2023-035

ATL-PHYS-PUB-2024-008

Summary and outlook

- ATLAS provide a huge number of BSM Higgs searchers using the Run 2 data, with a lot of different final states and benchmark models
- Some small excesses were found in Run 2 data relative to the SM predictions, but no significant excess was observed (global significances below 3σ)

Uncovered signatures

- High mass: $H^{\pm} \to WH, H/A \to WH^{\pm}, H^{\pm} \to W\gamma, H \to SS, H \to \chi\chi, \dots$
- Low mass: axion-like particles involving higher-dimension operators, Long-lived particles ...

There is still space for BSM physics

- Continued meticulous effort is needed
- Searches in currently unexplored channels or phase-space, long-lived particles, cascade decays ...

Looking forward to Run 3 and HL-LHC

$\mathrm{SM}\,H \to e\mu$

$A \rightarrow ZH$ and $R \rightarrow SH$ (1)

- Two signal models are considered: 2HDM and 2HDM + S
- 2HDM + *S*:

S: a scalar boson, assumed to be a dark matter portal with $S \rightarrow \chi \bar{\chi}$ decay

R: additional heavy scalar

Analysis strategy

- Based on the kinematics variables, the events are categorised into 7 different signal regions
- A parameterised empirical function is used to describe background $m_{4\ell}$ shape

$A \rightarrow ZH \text{ and } R \rightarrow SH$ (2)

Results

- No significant deviation from the SM backgrounds is observed
- Largest excess: $(m_A, m_H) = (510, 380)$ GeV, local significance 2.5σ

Upper limit

$X \to SH \to b\bar{b}\gamma\gamma (1)$

- Heavy scalar X decays to SM Higgs (H) and another BSM scalar (S)
- m_X between 170 and 1000 GeV
- m_s between 15 and 500 GeV
- SM Higgs decays to photon pair and S decays b quark pair

Analysis strategy

- 2 signal regions: 1 b-tagged jet and 2 b-tagged jets
- $120 < m_{\gamma\gamma} < 130 \, \text{GeV}$
- Parameterised neural network is used as the final discriminant

arXiv:2404.12915

2024-04-19

$X \to SH \to b\bar{b}\gamma\gamma \ (2)$

Results

- Largest excess: $(m_X, m_S) = (575, 200)$ GeV, local significance 3.5σ
- Global significance 2.0σ

Expect and observed limit

Compare the largest excess to CMS results

CMS largest excess: $(m_X, m_S) = (650, 90)$ GeV, local significance 3.8σ Using the cross section 0.35fb (best fit reported by the CMS experiment) yields a local excess 2.7σ from ATLAS measurement

Rare decay of the h_{125} **to D* and photon**

arXiv:2402.18731

Axion-like particles $H \rightarrow aa \rightarrow 4\gamma$

Low mass $H \rightarrow \gamma \gamma$

Compare to previous ATLAS results

 $\sim 50\%$ improvement on the upper limit