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1 The Brout-Englert-Higgs mechanism and the SM Higgs sector 3

gauge invariant mass term from coupling to Higgs field

SSB: L is invariant under symmetry transformation, but not the ground states
example: ferromagnet, pencil on the tip
goal: gauge-invariant mass term for gauge boson and fermion from couplings to scalar fields

1.3 Minimal version: SM Higgs sector

scalar SU(2) doublet field (complex) � =

✓
�
+

�
0

◆
with �

� = (�+)† and

�
+ = 1p

2
(�3 + i�4) and �

0 = 1p
2
(�1 + i�2),

where all �i are real ! 4 degrees of freedom (dof)
generators for weak isospin: I3

W

weak hypercharge: YW
electric charge: Q

SSB: SU(2)I⇥U(1)Y
SSB
��!U(1)em

assignment of quantum numbers Q = I
3
W

+ 1
2YW

! weak hypercharge of �: YW = 1

Figure 1.2: Illustration of the potential V (�).
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The Standard Model of particle physics uses a ``minimal’’ form of the 
Higgs potential with a single Higgs boson that is an elementary particle


The LHC results on the discovered Higgs boson (h125) within the current 
uncertainties are compatible with the predictions of the Standard Model, 
but also with a wide variety of other possibilities, corresponding to very 
different underlying physics

FROM RATES AND SIGNAL STRENGTHS TO FIDUCIAL AND DIFFERENTIAL CROSS SECTIONS 

ggF VBF VH

ttH

tH

12

3

h125: inclusive 
and differential 
rates

[CMS Collaboration ’22]

SM-like properties⇒

Introduction



BSM Higgs physics — theory, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024

Most of the open questions of particle physics are directly related to 
Higgs physics and in particular to the Higgs potential

4
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FIG. 1: The Higgs boson as the keystone of the Standard Model is connected to numerous fundamental questions that can be
investigated by studying it in detail.

References 40

I. ABSTRACT

A future Higgs Factory will provide improved precision on measurements of Higgs couplings beyond those obtained
by the LHC, and will enable a broad range of investigations across the fields of fundamental physics, including
the mechanism of electroweak symmetry breaking, the origin of the masses and mixing of fundamental particles, the
predominance of matter over antimatter, and the nature of dark matter. Future colliders will measure Higgs couplings
to a few per cent, giving a window to beyond the Standard Model (BSM) physics in the 1-10 TeV range. In addition,
they will make precise measurements of the Higgs width, and characterize the Higgs self-coupling.

II. WHY THE HIGGS IS THE MOST IMPORTANT PARTICLE

Over the past decade, the LHC has fundamentally changed the landscape of high energy particle physics through
the discovery of the Higgs boson and the first measurements of many of its properties. As a result of this, and no
discovery of new particles or new interactions at the LHC, the questions surrounding the Higgs have only become
sharper and more pressing for planning the future of particle physics.

The Standard Model (SM) is an extremely successful description of nature, with a basic structure dictated by
symmetry. However, symmetry alone is not su�cient to fully describe the microscopic world we explore: even after
specifying the gauge and space-time symmetries, and number of generations, there are 19 parameters undetermined by
the SM (not including neutrino masses). Out of these parameters 4 are intrinsic to the gauge theory description, the
gauge couplings and the QCD theta angle. The other 15 parameters are intrinsic to the coupling of SM particles to the
Higgs sector, illustrating its paramount importance in the SM. In particular, the masses of all fundamental particles,
their mixing, CP violation, and the basic vacuum structure are all undetermined and derived from experimental
data. As simply a test of the validity of the SM, all these couplings must be measured experimentally. However, the
centrality of the Higgs boson goes far beyond just dictating the parameters of the SM.

The Higgs boson is connected to some of our most fundamental questions about the Universe. Its most basic
role in the SM is to provide a source of Electroweak Symmetry Breaking (EWSB). While the Higgs can describe
EWSB, it is merely put in by hand in the Higgs potential. Explaining why EWSB occurs is outside the realm of
the Higgs boson, and yet at the same time by studying it we may finally understand its origin. There are a variety
of connected questions and observables tied to the origin of EWSB for the Higgs boson. For example, is the Higgs
mechanism actually due to dynamical symmetry breaking as observed elsewhere in nature? Is the Higgs boson itself
a fundamental particle or a composite of some other strongly coupled sector? The answers to these questions have a
number of ramifications beyond the origin of EWSB.

If the Higgs boson is a fundamental particle, it represents the first fundamental scalar particle discovered in nature.

[S. Dawson et al. ’22]

Higgs potential: the ``holy grail’’ of particle physics
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Simple example of extended Higgs sector: 2HDM

The 2HDM model [T. D. Lee (1973) Physical Review , Branco, Ferreira et al: arXiv: 1106.0034 ]

Kateryna Radchenko Serdula                                                                                                                                                 6

- CP conserving 2HDM with two complex doublets:

- Softly broken ℤ2 symmetry (Φ1 → Φ1;   Φ2 → - Φ2 ) entails 4 Yukawa types

- Potential: 

 

- Free parameters:     ,      ,      ,       ,      ,        ,               , 

Two Higgs doublet model (2HDM):

[K. Radchenko ’23]

In alignment limit, cos(β − α) = 0: h couplings are as in the SM at tree level 
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Masses of the BSM Higgs fields

In general: BSM Higgs fields receive contributions from two sources: 


where M2 = 2 m122 /sin(2β)


Sizeable splitting between mɸ and M induces large BSM 
contributions the the Higgs self-couplings (see below)

6

14

The Two-Higgs Doublet Model (2HDM): five fundamental scalars 

[Image by K. Radchenko]

Parameters of the 2HDM:

Controls the bare mass term of the heavy Higgs masses

Bare mass term Bare mass term Quartic coupling termQuartic 
coupling term

Smoking guns, interferences and the Higgs potential, Georg Weiglein, FSP-CMS Meeting, Hamburg, 10 / 2023

Simple example of extended Higgs sector: 2HDM
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FCNCs   

➢ Mass eigenstates: 

h, H: CP-even Higgs bosons (h → 125-GeV SM-like state); A: CP-odd Higgs boson; 

H
±
: charged Higgs boson; α: CP-even Higgs mixing angle

➢ BSM parameters: 3 BSM masses m
H
, m

A
, m
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, BSM mass scale M (defined by M

2
≡2m

3

2
/s
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), 

angles α and β (defined by tanβ=v
2
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1
)

➢ BSM-scalar masses take form 

➢ We take the alignment limit α=β-π/2 → all Higgs couplings are SM-like at tree level 

→ compatible with current experimental data!

In alignment limit, α = β - π/2 : h couplings are SM-like at tree level 
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The vacuum structure is caused by 
the Higgs field through the Higgs 
potential. We lack a deeper 
understanding of this!

                                                                                                               

We do not know where the Higgs 
potential that causes the structure of 
the vacuum actually comes from and 
which form of the potential is realised 
in nature. Experimental input is 
needed to clarify this!
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Higgs potential

What is the underlying dynamics of electroweak 
symmetry breaking?

Single doublet or extended Higgs sector? (new symmetry?)


Fundamental scalar or compositeness? (new interaction?)
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Why study the Higgs trilinear coupling?

➢ Probing the Higgs potential:
Since the Higgs discovery, the existence of the Higgs potential is 

confirmed, but at the moment we only know:

→ the location of the EW minimum: 

v = 246 GeV
→ the curvature of the potential around the EW minimum: 

m
h
 = 125 GeV

However we still don’t know the shape of the potential, away from EW 

minimum →  depends on λ
hhh

➢ λ
hhh

 determines the nature of the EWPT!

 � O(20%) deviation of λ
hhh

 from its SM prediction needed to have a 

strongly first-order EWPT → necessary for EWBG [Grojean, Servant, 

Wells ’04], [Kanemura, Okada, Senaha ’04]

➢ New in this talk: studying λ
hhh

 can also serve to constrain the parameter space of BSM models!

Crucial questions related to electroweak symmetry breaking: what is 
the form of the Higgs potential and how does it arise?

8
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Vacuum expectation value

Information can be obtained from the trilinear and quartic Higgs 
self-couplings, which will be a main focus of the experimental and 
theoretical activities in particle physics during the coming years

Only known so far:
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Temperature evolution of the Higgs potential in the early universe:

The Higgs potential and the electroweak phase 
transition (EWPT)
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  Introduction: the FOEWPT

What is a FOEWPT?

12

High temperature

Critical temperature 
(degenerate minima)

[D. Gorbunov, V. Rubakov]

Potential barrier depends 
on trilinear Higgs 
coupling(s)
Baryogenesis: creation of 
the asymmetry between 
matter and antimatter in 
the universe requires 
strong first-order EWPT

[see parallel session talk by 
A. Dashko]
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Phase Transitions in a nutshell

Kateryna Radchenko Serdula                                                                                                                                                 4

- The Higgs mechanism requires spontaneous symmetry breaking but its origin remains a mystery

- In the SM the evolution from a symmetric vacuum to the EW vacuum happens through a smooth crossover, 
given the Higgs mass at ~ 125 GeV [Kajantie, Laine, Rummukainen, Shaposhnikov: arXiv: 9605288 ]

- In BSM models a strong first order phase transition can be accommodated 

1st order transition provides violent conditions for bubble nucleation that we need to depart from thermal eq.
Sphaleron processes are suppressed in the bubbles so the b-asymmetry generated outside through the scattering 
of the plasma against the bubble walls is not washed out once it enters inside the expanding bubble

[Gorbunov, Rubakov,  2011]
[Morrissey, Ramsey-Musolf: 
arXiv: 1206.2942 ]

First-order vs. second order EWPT

Potential barrier needed for first-order EWPT, depends on trilinear 
Higgs coupling(s)


Deviation of trilinear Higgs coupling from SM value is a typical 
feature of a strong first-order EWPT

10

3

The electroweak phase transition and electroweak baryogenesis? 
Do they go hand-in-hand? Yes, but only if first-order! 

Veff (φ, T) = Vtree(φ) + Vloop(φ, T )

[Image by D. Gorbunov, V. Rubakov]

Effective potential = Free energy density

1st-order 2nd-order

[D. Gorbunov, V. Rubakov]

[K. Radchenko ’23]
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Canonical examples of GW backgrounds
 of primordial origin .Gravitational waves as probe into the early Universe

Energy density of GW (red-shift as radiation) 

GW propagates freely in the early universe: 

its production mechanism
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Figure 2: The matter-kination scenario leads to a peaked GW
spectrum from primordial inflation. The peak’s height and position
are determined by the inflationary scale Einf , the kination e-folding
NKD, and the kination energy scale EKD. The shown spectra corre-
spond to the benchmark points in Fig. 3. The dashed lines represent
the positions of the peak generated in different models of QCD axion
dark matter (according to Eq. 13).

as / f
3/2. The effect of a kination era on the GW spectrum

from cosmic strings are presented in a sister publication [9].
If such cosmic string source is present, a multiple-peak struc-
ture may arise. Finally, another source of stochastic GW may
come from the couplings of the inflaton. A well-known exam-
ple is axion inflation that may lead to an enhanced signal due
to parametric resonance effects induced by the inflaton cou-
pling to gauge fields [10]. The spectral shape of this signal
is also very different from what we predict from a short ki-
nation era. In this letter, we focus on the model-independent
irreducible background from inflation. Fig. 3 shows which
types of cosmological histories, characterised by the energy
scale of kination and duration of kination, can be probed by
LISA [3], BBO [6], ET [4, 5], CE [11] and SKA [12]. To
derive these regions, we have used the integrated power-law
sensitivity curves of [8]. Note that a kination era lasting more
than ⇠ 12 efolds is not viable as it would lead to a too large
energy density in GW, violating theextra relativistic-species
(Ne↵ ) constraint from Big Bang Nucleosynthesis (BBN) [1].

Having derived the GW smoking gun signature resulting
from an intermediate matter era followed by the kination era
inside the radiation era, we will next argue that such cosmo-
logical history is a characteristic feature of axion field dynam-
ics, that arises for instance in the Peccei-Quinn framework
before the axion starts oscillating and relaxes the strong CP
parameter to unobservably small values. Our discussion is
very general and applies to any axion-like particle (ALP), the
PQ axion being one particular example. We will discuss two
possible implementations. The first implementation relies on
the interplayed dynamics of the radial and angular modes of
the PQ field. A large kinetic energy can be transferred to the
axion by the dynamics of the radial mode at early times. The
second one called “trapped misalignment” only involves the
axion, the angular mode of the complex PQ field, and was in-
troduced in Ref. [13, 14]. In this framework, the axion has a
large mass Ma at early times. At some temperature Tc, the

Einf = 1.6 � 1016 GeV

Figure 3: Model-independent probes of a short kination era in the
early universe by GW experiments. Coloured regions indicate ob-
servable windows for each experiment. BBN constrains the energy
scale at which kination ends (gray) and the amount of GW (red-
hatched). Dashed lines indicate the temperature T� when kination
ends. Peaked signals exist in the white region but are not observable
in planned experiments. Like in Fig. 2, this figure does not assume
anything about axions, it just relies on a kination era as defined in
Fig. 1. Only the three parallel solid lines refer to specific models
where the kination era is triggered by a QCD axion. The black line
denotes the scenario where kination is induced by the spinning of
conventional QCD axion DM, the corresponding GW peaks would
require new observatories sensitive to ultra-high frequencies. The
lighter QCD axion DM with ZN -symmetry [13, 14] can induce a
GW signal, from the shown benchmark points, e.g. at ET, BBO, and
LISA for N ' 25, 31, 39, respectively.

axion potential vanishes abruptly. In this process, the axion
acquires a large kinetic energy that induces a kination era. In
both cases, the kination era lasts a few efolds, until the energy
density of the scalar field, which redshifts as a�6 is overcome
by radiation, and the standard evolution then takes over. Be-
fore describing these two cases in turn, we investigate the gen-
eral case where the axion makes all the dark matter (DM) of
the universe, as this represents one of the golden scenario that
has led to a large variety of experimental searches.

GRAVITATIONAL WAVES AND AXION DARK MATTER

RELATION

From the so-called kinetic misalignment mecha-
nism [15, 16] or kinetic axion fragmentation [17] the
ALP relic abundance today reads ⌦a,0/⌦DM,0 '
170.94 (ma/1eV) (Ya/40), where the comoving ax-
ion number density is conserved after kination has
started, Ya = na/s = f

2

a ✓̇KD/s(TKD). Eq. (9)
can be re-written in terms of Ya, fKD = 4.6 ⇥
10

�9
HzG

1/4
(T�)G

3/4
(TKD) (fa/Ya) e

2NKD , such that
we can relate the GW peak amplitude to the ALP abundance

radiation era-> flat
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Figure 2: The matter-kination scenario leads to a peaked GW
spectrum from primordial inflation. The peak’s height and position
are determined by the inflationary scale Einf , the kination e-folding
NKD, and the kination energy scale EKD. The shown spectra corre-
spond to the benchmark points in Fig. 3. The dashed lines represent
the positions of the peak generated in different models of QCD axion
dark matter (according to Eq. 13).

as / f
3/2. The effect of a kination era on the GW spectrum

from cosmic strings are presented in a sister publication [9].
If such cosmic string source is present, a multiple-peak struc-
ture may arise. Finally, another source of stochastic GW may
come from the couplings of the inflaton. A well-known exam-
ple is axion inflation that may lead to an enhanced signal due
to parametric resonance effects induced by the inflaton cou-
pling to gauge fields [10]. The spectral shape of this signal
is also very different from what we predict from a short ki-
nation era. In this letter, we focus on the model-independent
irreducible background from inflation. Fig. 3 shows which
types of cosmological histories, characterised by the energy
scale of kination and duration of kination, can be probed by
LISA [3], BBO [6], ET [4, 5], CE [11] and SKA [12]. To
derive these regions, we have used the integrated power-law
sensitivity curves of [8]. Note that a kination era lasting more
than ⇠ 12 efolds is not viable as it would lead to a too large
energy density in GW, violating theextra relativistic-species
(Ne↵ ) constraint from Big Bang Nucleosynthesis (BBN) [1].

Having derived the GW smoking gun signature resulting
from an intermediate matter era followed by the kination era
inside the radiation era, we will next argue that such cosmo-
logical history is a characteristic feature of axion field dynam-
ics, that arises for instance in the Peccei-Quinn framework
before the axion starts oscillating and relaxes the strong CP
parameter to unobservably small values. Our discussion is
very general and applies to any axion-like particle (ALP), the
PQ axion being one particular example. We will discuss two
possible implementations. The first implementation relies on
the interplayed dynamics of the radial and angular modes of
the PQ field. A large kinetic energy can be transferred to the
axion by the dynamics of the radial mode at early times. The
second one called “trapped misalignment” only involves the
axion, the angular mode of the complex PQ field, and was in-
troduced in Ref. [13, 14]. In this framework, the axion has a
large mass Ma at early times. At some temperature Tc, the

Einf = 1.6 � 1016 GeV

Figure 3: Model-independent probes of a short kination era in the
early universe by GW experiments. Coloured regions indicate ob-
servable windows for each experiment. BBN constrains the energy
scale at which kination ends (gray) and the amount of GW (red-
hatched). Dashed lines indicate the temperature T� when kination
ends. Peaked signals exist in the white region but are not observable
in planned experiments. Like in Fig. 2, this figure does not assume
anything about axions, it just relies on a kination era as defined in
Fig. 1. Only the three parallel solid lines refer to specific models
where the kination era is triggered by a QCD axion. The black line
denotes the scenario where kination is induced by the spinning of
conventional QCD axion DM, the corresponding GW peaks would
require new observatories sensitive to ultra-high frequencies. The
lighter QCD axion DM with ZN -symmetry [13, 14] can induce a
GW signal, from the shown benchmark points, e.g. at ET, BBO, and
LISA for N ' 25, 31, 39, respectively.

axion potential vanishes abruptly. In this process, the axion
acquires a large kinetic energy that induces a kination era. In
both cases, the kination era lasts a few efolds, until the energy
density of the scalar field, which redshifts as a�6 is overcome
by radiation, and the standard evolution then takes over. Be-
fore describing these two cases in turn, we investigate the gen-
eral case where the axion makes all the dark matter (DM) of
the universe, as this represents one of the golden scenario that
has led to a large variety of experimental searches.

GRAVITATIONAL WAVES AND AXION DARK MATTER

RELATION

From the so-called kinetic misalignment mecha-
nism [15, 16] or kinetic axion fragmentation [17] the
ALP relic abundance today reads ⌦a,0/⌦DM,0 '
170.94 (ma/1eV) (Ya/40), where the comoving ax-
ion number density is conserved after kination has
started, Ya = na/s = f

2

a ✓̇KD/s(TKD). Eq. (9)
can be re-written in terms of Ya, fKD = 4.6 ⇥
10

�9
HzG

1/4
(T�)G

3/4
(TKD) (fa/Ya) e

2NKD , such that
we can relate the GW peak amplitude to the ALP abundance

radiation era-> flat

A Golden Triangle :
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The simple picture


refers to the case of a single Higgs doublet field 


If more than one scalar field is present, the Higgs potential is a multi-
dimensional function of the components of the different scalar fields

12

Form of the Higgs potential
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Proceeds via intermediate local minimum 13⇒

[T. Biekötter, F. Campello, G. W. ’24]
The Higgs potential and vacuum stability

Tunneling from a local minimum into the global minimum: toy example, 
two singlet-type Higgs fields

[see parallel session talk by 
T. Biekötter]
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The Higgs potential and vacuum stability
Extended Higgs sectors in general yield additional minima of the Higgs 
potential; the electroweak minimum may not be the global minimum 
Need to check stability of the electroweak vacuum w.r.t. tunneling into 
deeper minima (analysis at T = 0)                                                
Improved version of the public code Evade                                     
Example: constraints from vacuum stability in the NMSSM on the 
region allowed by HiggsBounds and HiggsSignals

14

Figure 3: Vacuum stability constraints and experimental bounds in the Mh
(tri)
125 benchmark scenario

(Tab. 3) for the MSSM (top row) and the NMSSM (bottom row). Since the vev of the Singlet
field in the EWV is given by vs =

µ

�
, µ should not be 0 in the NMSSM, therefore two scans were

patched together to achieve the NMSSM plot, producing the white line at µ = 0. For the half with
negative µ, the sign of  was also flipped. The new type of minimum first introduced in Fig. 2
is now the global minimum over a large part of the scan. It also leads again to a much smaller
stable region. While in this case the EWV is still su�ciently long lived at every parameter point
where this minimum is the most dangerous, it is a potential source of instability.

13

[T. Biekötter, F. Campello, G. W. ’23]

[W.G. Hollik, G. W., J. Wittbrodt ’18]



BSM Higgs physics — theory, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024

Depth of stationary points of the Higgs potential

15Figure 7. Depth of the different types of stationary points along the line of constant Xt = 2.8TeV
from Fig. 4. The colour code indicates which fields acquire vevs at the stationary point. The dashed
line indicates which of the stationary points is the MDM. The grey line is the EW vacuum.

4.1.3 Parameter Dependence of the Vacuum Structure and Degenerate Vacua

The dashed line in Fig. 4 is the line where Xt has the same value as in the benchmark plane,
Fig. 3. The mass mh of the SM-like Higgs boson depends dominantly on the parameters
tan�, Xt and the stop masses. We therefore expect the Higgs mass to stay close to 125GeV

when moving away from the point ⇥ along this line.8 We use this as motivation to further
investigate the vacuum structure along this line.

Figure 7 shows the depth of the stationary points of the scalar potential as a function
of µ along this line. The constant depth of the EW vacuum is shown in grey while the
other colours indicate the CCB stationary points. Note that not only local minima, but
all stationary points including saddle points and local maxima are shown in Fig. 7. The
dashed line indicates the MDM for each value of µ.

It can be seen from Fig. 7 that for large negative µ simultaneous t̃ and ⌧̃ vevs (orange)
dominate the global minimum for the considered field content until the ⌧̃ vevs at these
stationary points approach zero around µ = �2.2TeV, and pure t̃ vevs take over. From
µ ⇡ �1.8TeV onwards the EW vacuum is the global minimum until a CCB vacuum with
b̃ vevs appears at µ ⇡ 1.6TeV. The MDM, on the other hand, is the second deepest b̃-
vev minimum for µ . �3.5TeV, before switching to the t̃-vev minimum, followed by the
window of absolute stability µ 2 [�1.8TeV, 1.5TeV]. For positive values of µ > 1.5TeV

the instability first develops towards the global b̃-vev minimum until the t̃-vev minimum
takes over at µ ⇡ 2TeV.

In Fig. 7 several stationary points with multiple kinds of sfermion vevs appear. Sta-
tionary points with mixed squark and slepton vevs can be deeper than the corresponding

8We have verified using FeynHiggs 2.14.3 [97–103] that 124GeV . mh . 126GeV indeed holds along
this line as long as |µ| . 3TeV.

– 19 –

[W.G. Hollik, J. Wittbrodt, G. W. ’18]Along line with Xt = 2.8 TeV:

Electroweak 
vacuum

⇒Most dangerous minimum (MDM) often differs from the global 
minimum and also from the one that is closest in field space
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„Required“ accuracy 

Higgs physics at ILC K. Desch - Higgs physics at ILC 32 

choose this value as a reference point, then, for tan � = 5 and taking c ' 1, the h0

couplings are approximately given by

ghV V

ghSMV V

' 1� 0.3%

✓
200 GeV

mA

◆4

ghtt

ghSMtt

=
ghcc

ghSMcc

' 1� 1.7%

✓
200 GeV

mA

◆2

ghbb

ghSMbb

=
gh⌧⌧

ghSM⌧⌧

' 1 + 40%

✓
200 GeV

mA

◆2

. (13)

At the lower end of the range, the LHC experiments should see the deviation in the
hbb or h⌧⌧ coupling. However, the heavy MSSM Higgs bosons can easily be as heavy
as a TeV without fine tuning of parameters. In this case, the deviations of the gauge
and up-type fermion couplings are well below the percent level, while those of the
Higgs couplings to b and ⌧ are at the percent level,

ghbb

ghSMbb

=
gh⌧⌧

ghSM⌧⌧

' 1 + 1.7%

✓
1 TeV

mA

◆2

. (14)

In this large-mA region of parameter space, vertex corrections from SUSY particles
are typically also at the percent level.

More general two-Higgs-doublet models follow a similar pattern, with the largest
deviation appearing in the Higgs coupling to fermion(s) that get their mass from the
Higgs doublet with the smaller vev. The decoupling with mA in fact follows the same
quantitative pattern so long as the dimensionless couplings in the Higgs potential are
not larger than O(g2), where g is the weak gauge coupling.

2.2.3 New states to solve the gauge hierarchy problem

Many models of new physics are proposed to solve the gauge hierarchy problem by
removing the quadratic divergences in the loop corrections to the Higgs field mass
term µ2. Supersymmetry and Little Higgs models provide examples. Such models
require new scalar or fermionic particles with masses below a few TeV that cancel the
divergent loop contributions to µ2 from the top quark. For this to work, the couplings
of the new states to the Higgs must be tightly constrained in terms of the top quark
Yukawa coupling. Usually the new states have the same electric and color charge as
the top quark, which implies that they will contribute to the loop-induced hgg and
h�� couplings. The new loop corrections contribute coherently with the Standard
Model loop diagrams.

28

For scalar new particles (e.g., the two top squarks in the MSSM), the resulting
e↵ective hgg and h�� couplings are given by

ghgg /

����F1/2(mt) +
2m2

t

m2
T

F0(mT )

���� ,

gh�� /

����F1(mW ) +
4

3
F1/2(mt) +

4

3

2m2
t

m2
T

F0(mT )

���� . (15)

Here F1, F1/2, and F0 are the loop factors defined in [17] for spin 1, spin 1/2, and spin
0 particles in the loop, and mT is the mass of the new particle(s) that cancels the
top loop divergence. For application to the MSSM, we have set the two top squark
masses equal for simplicity. For fermionic new particles (e.g., the top-partner in Little
Higgs models), the resulting e↵ective couplings are

ghgg /

����F1/2(mt) +
m2

t

m2
T

F1/2(mT )

���� ,

gh�� /

����F1(mW ) +
4

3
F1/2(mt) +

4

3

m2
t

m2
T

F1/2(mT )

���� . (16)

For simplicity, we have ignored the mixing between the top and its partner. For
mh = 120–130 GeV, the loop factors are given numerically by F1(mW ) = 8.2–8.5
and F1/2(mt) = �1.4. For mT � mh, the loop factors tend to constant values,
F1/2(mT )! �4/3 and F0(mT )! �1/3.

Very generally, then, such models predict deviations of the loop-induced Higgs
couplings from top-partners of the decoupling form. Numerically, for a scalar top-
partner,

ghgg

ghSMgg

' 1 + 1.4%

✓
1 TeV

mT

◆2

,
gh��

ghSM��

' 1� 0.4%

✓
1 TeV

mT

◆2

, (17)

and for a fermionic top-partner,

ghgg

ghSMgg

' 1 + 2.9%

✓
1 TeV

mT

◆2

,
gh��

ghSM��

' 1� 0.8%

✓
1 TeV

mT

◆2

. (18)

A “natural” solution to the hierarchy problem that avoids fine tuning of the Higgs
mass parameter thus generically predicts deviations in the hgg and h�� couplings at
the few percent level due solely to loop contributions from the top-partners. These
e↵ective couplings are typically also modified by shifts in the tree-level couplings of
h to tt and WW .

The Littlest Higgs model [18,19] gives a concrete example. In this model, the one-
loop Higgs mass quadratic divergences from top, gauge, and Higgs loops are cancelled

29

by loop diagrams involving a new vector-like fermionic top-partner, new W 0 and Z 0

gauge bosons, and a triplet scalar. For a top-partner mass of 1 TeV, the new particles
in the loop together with tree-level coupling modifications combine to give [20]

ghgg

ghSMgg

= 1� (5% ⇠ 9%)

gh��

ghSM��

= 1� (5% ⇠ 6%), (19)

where the ranges correspond to varying the gauge- and Higgs-sector model parame-
ters. Note that the Higgs coupling to �� is also a↵ected by the heavy W 0 and triplet
scalars running in the loop. The tree-level Higgs couplings to tt and WW are also
modified by the higher-dimension operators arising from the nonlinear sigma model
structure of the theory.

2.2.4 Composite Higgs

Another approach to solve the hierarchy problem makes the Higgs a composite bound
state of fundamental fermions with a compositeness scale around the TeV scale. Such
models generically predict deviations in the Higgs couplings compared to the SM due
to higher-dimension operators involving the Higgs suppressed by the compositeness
scale. This leads to Higgs couplings to gauge bosons and fermions of order

ghxx

ghSMxx

' 1±O(v2/f2), (20)

where f is the compositeness scale.

As an example, the Minimal Composite Higgs model [21] predicts [22]

a ⌘
ghV V

ghSMV V

=
p

1� ⇠

c ⌘
ghff

ghSMff

=

⇢ p
1� ⇠ (MCHM4)

(1� 2⇠)/
p

1� ⇠ (MCHM5),
(21)

with ⇠ = v2/f2. Here MCHM4 refers to the fermion content of the original model
of Ref. [21], while MCHM5 refers to an alternate fermion embedding [23]. Again,
naturalness favors f ⇠ TeV, leading to

ghV V

ghSMV V

' 1� 3%

✓
1 TeV

f

◆2

ghff

ghSMff

'

8
<

:
1� 3%

⇣
1 TeV

f

⌘2

(MCHM4)

1� 9%
⇣

1 TeV
f

⌘2

(MCHM5).
(22)

30

Peskin et al 

The detected Higgs boson (h125) and possible 
additional ones
h125 couplings to fermions and gauge bosons:

16

In many BSM models one expects only % level deviations or 
less from the SM couplings for BSM particles in the TeV range. 
Example of 2HDM-type model in decoupling limit: 

⇒ Need very high precision for the couplings
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Higgs couplings: example of ``heavy’’ SUSY scenario 

17

[H. Bahl et al. ’20]

Need to resolve deviations at the level of 1% or below to get 
sensitivity to possible effects of BSM physics

⇒
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W Z g � t b ⌧
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M
125
h scenario MA = 1 TeV, tan � = 8

HL-LHC (V  1)

ILC250

ILC500

Figure 9: Expected precisions on ’s in the M
125

h scenario, assuming (MA, tan �) = (700 GeV, 8)
(left) or (MA, tan �) = (1 TeV, 8) (right) is realized.

such low values of tan � the di-tau channel is not enhanced su�ciently. Other direct searches
including the di-top final state or electroweakino final states (both from resonant heavy Higgs
production and direct production) would need to be considered. The 2 � allowed parameter
ranges obtained by Higgs-boson signal-rate measurements are shown as in Fig. ?? in the up-
per panel. Again we find a bound in MA induced by the decoupling behavior, which, for a
potential realization at (MA, tan �) = (700 GeV, 3), limits MA to be between 600 GeV and
900 � 1000 GeV, depending on the considered future collider option. In contrast to the previ-
ous scenario, however, we can additionally constrain tan � to a narrow range between 2.5 and
4 as the chargino contributions to the h ! �� decay rate strongly depend on the chargino
mixing, which in turn, depends on tan �. As in the previous scenario the ILC measurements
only have a mild impact on top of the HL-LHC measurements in this scenario.

The lower panels display two relevant SM-normalized Higgs rates that play an important
role in the parameter determination: The inclusive rate for pp̄ ! h ! V V (V = W

±
, Z),

denoted R
h
V V , and the inclusive rate for pp̄ ! h ! ��, denoted R

h
��. The di-photon rate

is strongly influenced by loop contributions of charginos, which become large at small tan�

values. In contrast, the V V rate follows the basic trend of decoupling being mostly a function
of MA, see also the rate R

V h
bb in the discussion of the M

125

h scenario. The decoupling is, however,
slightly delayed for low tan � values. The interplay of the two rates lead to the elliptic (and
elongated) shape of the determined parameter region.

In Fig. ?? we add the contour lines of equal MSUSY to the two realizations discussed in
Fig. ??. MSUSY denotes the scale of all scalar fermion soft-SUSY breaking masses. As explained
in Sec. 2, in the M

125

h,EFT
(�̃) scenario MSUSY is adjusted at every point in the parameter plane

such that Mh ' 125 GeV. Thus the constraints in the (MA, tan �) parameter plane for a given
realization of the MSSM can be translated into a constraint on the sfermion mass scale. It is
expected to be between ⇠ 2.3 TeV and 50 TeV for the hypothetical future scenarios discussed
here. If the associated heavy Higgs bosons are found, which can help to pinpoint tan � and, in

17

18

[H. Bahl et al. ’20]

Need to resolve deviations at the level of 1% or below to get 
sensitivity to possible effects of BSM physics

⇒

Higgs couplings: example of ``heavy’’ SUSY scenario 
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Higgs couplings: towards high precision

• A coupling is not a physical observable: if one talks about 
measuring Higgs couplings at the % level or better, one needs 
to precisely define what is actually meant by those couplings!


• For the determination of an appropriate coupling parameter at 
this level of accuracy the incorporation of strong and 
electroweak loop corrections is inevitable. This is in general not 
possible in a strictly model-independent way!


• For comparisons of present and future facilities it is crucial to 
clearly spell out under which assumptions these comparisons 
are done

19
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The quest for identifying the underlying physics

• Future Higgs factories: what can we learn from the enhanced 
precision in comparison to the direct searches at the HL-LHC 
(existing limits and future prospects)?


• How significant will possible patterns of deviations be? How 
stringent are indirect hints for additional particles (typically scale 
like coupling/mass2)?


• How well can one distinguish between different realisations of 
possible BSM physics? 


Questions of this kind have hardly been touched upon at the 
previous update of the European Strategy for Particle Physics, but 
they are crucial for making the case for a (low-energy) e+e− Higgs 
factory in the wider scientific community!

20
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EWPT: are there additional sources for CP violation 
in the Higgs sector? 
Baryogenesis: creation of the asymmetry between matter and anti-
matter in the universe requires a strong first-order electroweak phase 
transition (EWPT)                                                                                        


First-order EWPT does not work in the SM                                     
The amount of CP violation in the SM (induced by the CKM phase) is 
not sufficient to explain the observed asymmetry between matter 
and anti-matter in the universe


First-order EWPT can be realised in extended Higgs sectors      
could give rise to detectable gravitational wave signal


Search for additional sources of CP violation


But: strong experimental constraints from limits on electric dipole 
moments (EDMs) 21

⇒

2

Non-Minimal Higgs sectors can yield BSM CP Violation

Phase of           is physical

BSM CPVBSM CPV

e.g.

BSM CP Violation (very) strongly constrained by EDMs 

Andreev et al (ACME Collaboration), Nature 562 (2018) 7727

Two-loop “Barr-Zee” Two-loop “Barr-Zee” 
electron EDM contributionelectron EDM contribution

Biggest challenge for Biggest challenge for 
successful EW Baryogenesis?successful EW Baryogenesis?

Altmannshofer, Gori, Hamer, Patel, PRD 102 (2020) 115042
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CP properties of h125
It has been experimentally verified that h125 is not a pure CP-odd 
state, but it is by no means clear that it is a pure CP-even state


Sensitive tests via processes involving only Higgs couplings to 
fermions


e.g.: 


with H → 𝛕𝛕, bb, …

22

Intro Model Relevant processes Global fit Conclusions

Relevant processes: gg æ H & H æ ““

t
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g
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�

I top-Yukawa influences
• gg æ H signal strength

Ÿ2
g © ‡ggæH

‡SM
ggæH

----
Mt æŒ

= c
2
t +

9

4
c̃

2
t + . . . ,

calculate Ÿg either in terms of ct and c̃t or treat it as free parameter

(æ undiscovered colored BSM particles),

• kinematic shapes not sensitive yet,

(future potential: �„jj in gg æ H + 2j)

I similarly H æ ““.
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Intro Model Relevant processes Global fit Conclusions

Relevant processes: ttH and tH production

g

g

t

t̄

H

q

q
0

b

H

t

W

W

W

q
q
0

H

b

t

I tt̄H and tH di�cult to disentangle
æ combination of both measured,

I ‡SM
tt̄H

¥ 7‡SM
tH

,
I but CP-odd Yukawa coupling can

enhance ‡tH .

Kinematic shape:
I no measurements yet.
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Test of CP violation in the tau Yukawa coupling

Constraints on the CP structure of the tau Yukawa coupling from          
h125 → 𝛕𝛕 decays using angular correlation between decay products:

23

  

24 signal regions included in the fit. Best fit: f
t
 = (9  16)° 

Pure CP-odd hypothesis is disfavoured at 3.4s

CP-violating scenarios (ie. admixtures) are not ruled out

Tau-Higgs Interaction (using H → tt)
75 / 92

[ATLAS Collaboration ’22][CMS Collaboration ’21]
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Effect on global CP analysis of Higgs-fermion couplings

Incorporation of recent CMS result on the CP structure of the tau 
Yukawa coupling from h125 → 𝛕𝛕 decays using angular correlation 
between the decay products

24

[H. Bahl et al. ’22]
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CP structure of Higgs couplings - τ
Bahl, Bechtle, EF, Heinemeyer, Katzy, Menen, Peters, Saimpert, Weiglein (in preparation) 

preliminary

CMS 2110.04836
hS ττ CPV analysis

CMS analysis excludes large           Ring-structure from upper/lower bound on BR

preliminary

SM
Best fit

can also be analyzed in EFT 

                   almost 
degenerate minima 
of  

See talk tomorrow
by Andrea Cardini

Global fit using HiggsSignals + recent analyses

4 Results
In this Section, we present the results of our numerical fits for specific realizations of the
scenarios defined in Section 2. First, we focus on the constraints set by LHC measurements
(supplementary results are provided in Appendix A). In a second step, we investigate the
interplay with the eEDM constraint and the obtainable BAU in the VIA.

4.1 LHC results

In the following, all presented results are based on the LHC data set, defined in Section 3.1,
except for Fig. 2(a), where the CMS H ! ⌧+⌧�

CP measurement is excluded. Accordingly,
the �2 value of the SM point in the plots below is always �2

SM = 89.36 (except for Fig. 2(a)).

4.1.1 1-flavor models
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Figure 2: Results of fits to the LHC measurements in the (c⌧ , c̃⌧ ) parameter plane where

in the set of input measurements the CMS H ! ⌧
+
⌧

�
CP result [15] is (a) omitted and

(b) included. The coupling modifiers c⌧ and c̃⌧ are treated as free parameters while all

other parameters are fixed to their SM values. The color corresponds to the profile ��
2

of

the global fit, and the 1�, 2� and 3� confidence regions are shown as white, light-gray and

dark-gray dashed contours, respectively. The best-fit point and the SM case are marked

by a white star and an orange cross, respectively.

⌧ Yukawa coupling We first investigate the two-dimensional plane of the CP-even and
CP-odd tau Yukawa coupling modifiers, c⌧ and c̃⌧ , respectively, treating only these two pa-
rameters as free-floating in the fit. The tau Yukawa coupling is constrained by measurements
of H ! ⌧+⌧� decays, and by measurements of H ! �� decay rates in which tau leptons
enter at the loop-level. In practice, the former dominates the current constraint due to the
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Electron’s Electric Dipole Moment
ACME [Nature ‘18]:

Using [Panico, Pomarol, Riembau ‘18], [Brod, Haisch, 
Zupan ‘13], [Brod, Stamou ‘18],...

Comparison with the existing EDM constraints


Analysis of the resulting amount of baryon asymmetry in the Universe

Terascale 23/11/2021 Elina Fuchs (CERN|Hannover|PTB) – Yukawa CP structure 15

Complementary (τ): LHC, EDM, EWBG
See also

Brod, Haisch, Zupan ‘13
De Vries, Postma, van de Vis ‘18

EF, Losada, Nir, Viernik ‘19, ‘20, ‘20
Aharony-Shapira 2106..05338

Brod et al (in preparation)
preliminary

Bahl, Bechtle, EF, Heinemeyer, Katzy, Menen, Peters, Weiglein (in preparation) 

Electron electric 
dipole moment

Electroweak 
baryogenesis
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e 

Caveat: “optimistic” scenario, 
large uncertainty
(vev-insertion approximation)
           almost upper bound

Cline, Kainulainen 2001.00568
Cline, Laurent 2108.04249

Postma 2107.05971
Kainulainen 2108.08336

CMS ττ CPV analysisAllowed by 
LHC, EDM, EWBG
      τ can be single source �1.5 �1.0 �0.5 0.0 0.5 1.0 1.5
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Figure 9: Constraints on the CP-even and CP-odd modifiers of (a) the tau-Yukawa, (b)

the bottom-Yukawa, as well as (c) the top-Yukawa interactions based on LHC measure-

ments (black), eEDM limits (red), and the ratio Y
VIA
B

/Y
obs
B

(blue contours and vertical

scale on the right). The green colored areas indicate the parameter regions satisfying the

LHC and eEDM constraints for which Y
VIA
B

/Y
obs
B

� 1.

26

Allowed by LHC, 
EDM constraints 
and baryogenesis!

Could work    
even for the 
case where CP 
violation occurs  
just in the 𝛕 
coupling (in 
optimistic 
scenario)!

CP violation in 𝛕 coupling could yield correct baryon asymmetry!⇒

CP structure of the Higgs-fermion couplings
[H. Bahl et al. ’22]
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Figure 1: S2HDM parameter points passing the applied constraints in the (mh1 , µ��) plane for the type II (blue)
and the type IV (orange). The expected and observed cross section limits obtained by CMS are indicated by the
black dashed and solid lines, respectively, and the 1� and 2� uncertainty intervals are indicated by the green and
yellow bands, respectively. Overlaid in red are the expected and observed limits from ATLAS [14]. The values of
µ
ATLAS
�� , µCMS

�� and µ
ATLAS+CMS
�� and their respective uncertainties are indicated by the red, black (left plot) and

cyan (right plot) error bars at 95.4 GeV.

bands, respectively [13]. Overlaid are the expected
and observed 95% confidence-level limits on the sig-
nal strengths observed by ATLAS [14] as dashed
and solid red lines, respectively. We obtained these
limits by normalizing the expected and observed
cross-section limits reported by ATLAS with the
cross sections predicted for a SM Higgs boson at
the same mass [29] using HiggsTools [44]. The val-
ues of µ

ATLAS
�� , µ

CMS
�� and µ

ATLAS+CMS
�� and their

respective uncertainties are indicated by the red,
black (left plot) and cyan (right plot) error bars
at 95.4 GeV. One can see that both types of the
S2HDM considered here can accommodate the com-
bined observed excess. Type II can give rise to
larger predicted values of µ�� due to a suppression
of the h95 ! ⌧

+
⌧
� decay mode, see the discussion

in Ref. [26].

3.2 Di-photon vs. bb̄ vs. ⌧+⌧�
excesses

In the previous subsection we demonstrated that
both the Yukawa types II and IV can describe the
excess in the di-photon channel observed by ATLAS
and CMS. Now we turn to the question whether ad-
ditionally also the bb̄ excess observed at LEP and/or
the ⌧

+
⌧
� excess at CMS can be accommodated.

Starting with the bb̄ excess, we show in the top
row of Fig. 2 the parameter points passing the ap-
plied constraints in the (µ�� , µbb) plane. The pa-
rameter points of type II and type IV are shown in
the left and the right plot, respectively. The colors
of the points indicate the value of ��

2
125, quantify-

ing the degree of compatibility with the LHC rate
measurements of h125. The black dashed lines indi-
cate the region in which the excesses are described
at a level of 1� or better, i.e. �2

�� + �
2
bb

 2.3 (see
Eq. (5)). The corresponding gray dot-dashed lines
indicate the previous result based solely on the CMS
Run 2 data regarding the di-photon excess.

One can observe that there are points inside the
1� preferred region in the upper left and right
plots. Thus, both type II and type IV are able to
describe the increased sensitivity in the di-photon
channel, now reaching 3.1�, and the bb̄ excess si-
multaneously. At the same time the properties of
the second-lightest scalar h125 are such that the
LHC rate measurements can be accommodated at
the same �

2 level as in the SM, i.e. ��
2
125 ⇡ 0, or

better. Such points are found inside the 1� pre-
ferred region for µbb values below the central value.
At the current level of experimental precision, the
description of both excesses is therefore possible in

5

BSM Higgs: CMS + ATLAS excess in 𝛾𝛾 channel at 
95 GeV, interpretation in 2HDM + singlet (S2HDM)

26

S2HDM, type II and IV:

Good description 
of the observed 
excesses

[T. Biekötter, S. Heinemeyer, G. W. ’23]

⇒
CMS

ATLAS

[see parallel session talk by 
S. Heinemeyer]



BSM Higgs physics — theory, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024

0 100 200 300 400 500 600
pT,Z [GeV]

0.000

0.002

0.004

0.006

0.008

ev
en

t
fr

ac
ti
on

pp ! bb̄� ! bb̄Z + ET,miss (BP1)

1vs1

2vs1 balanced

2vs1 unbalanced

2vs2

ISR

Figure 8: Mono-Z + E
miss
T

final state: transverse momentum distribution of the di-muon
system evaluated for BP1 (upper left panel), BP2 (upper right panel), BP3 (lower left
panel), and BP4 (lower right panel). All different curves of the 1vs1 topology are contained
in the turquoise band; the curves of the 2vs1 balanced topology in the dark blue band;
the curves of the 2vs1 unbalanced topology in the green band; and, the curves of the 2vs2
topology in the red band. The ISR topology curve is shown in orange.

12

Simplified models for BSM Higgs searches

High sensitivity to different simplified model topologies,                 
spins of mediators and invisible particles have relatively small impact

27

[H. Bahl, V. Martin Lozano, G. W. ’21]

⇒
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Figure 1: Decay topologies of a neutral scalar boson � decaying in its rest frame to a Z
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Figure 2: Initial state radiation topologies where the Z boson is radiated from the inital
state and then the scalar resonance decays into invisible particles.
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Figure 1: Decay topologies of a neutral scalar boson � decaying in its rest frame to a Z
boson plus pmiss

T
.

In Ref. [28], an additional topology for this specific signature has been discussed: the
initial state radiation topology. In this case, the Z boson is radiated from the initial state
while the scalar resonance decays completely into invisible particles (directly or indirectly
through different mediators). We do not consider this case in the present study because of the
extremely low cross section resulting from requiring the presence of a bb̄ pair accompanying
the heavy resonance and the Z boson as produced from an initial state radiation process.
The details of the different Feynman diagrams contributing to each topology can be found
in Ref. [28].

In this work, we will concentrate on the four topologies shown in Fig. 1 and perform
a detailed collider analysis. Concretely, we focus on the production of a neutral scalar
resonance via bottom-associated production and the subsequent decay to a Z boson and
invisible particles. No dedicated experimental search has so far been performed in this
channel.

4
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Simplified models for BSM Higgs searches

(Acceptance x efficiency) maps, can easily be utilised to obtain 
exclusion limits for a wide range of models

28

⇒

[H. Bahl, V. Martin Lozano, G. W. ’21]
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Figure 16: Acceptance ⇥ efficiency maps for the gg-initiated mono-Higgs plus E
miss
T

simplified model topologies derived by recasting the ATLAS mono-Higgs plus E
miss
T

search
of Ref. [51]. The results are shown in the (m�, mI) parameter plane for the 1vs1 topology
(upper left panel), in the (mM, mI) parameter plane for the 2vs1 balanced topology (upper
right panel), in the (m�, mM) parameter plane for the 2vs1 unbalanced topology (lower
right panel), and in the (mM, mI) parameter plane for the 2vs2 topology (lower right
panel). The kinematic constraints for each topology are depicted by gray lines.
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Application: expected limits for simplified model 
topologies from search in bbZ + ETmiss final state

29

[D. P. Adan et al. ’23]

Signal region with 
forward jets has 
sizeable impact

⇒
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Figure 5: Expected upper limits on the cross section times branching fraction (as defined
in the text) for a 1D variation of one of the mass parameters in each topology. The
horizontal axis indicates the varied mass parameter, while the vertical axis represents the
upper limit obtained at 95% CL for various scenarios: the central limit obtained using only
the Standard-SR (red dotted line), the central limit obtained using only the ForwardJets-
SR (blue dotted line), and the central limit obtained combining the two signal regions
(black solid line). The green and yellow uncertainty bands correspond to the 68% and 95%
interval coverage for the combined limit, respectively. The results are shown for the 1-vs-
1 unbalanced (upper left panel), 2-vs-1 balanced (upper right panel), 2-vs-1 unbalanced
(lower left panel), and 2-vs-2 balanced (lower right panel) topologies. The choice for the
two mass parameters that have been kept fixed is indicated in the legend for each signal
topology.
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H, A → tt search in CMS:

30

Overview

6/11
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[A. Anuar ’21]

Signal-background interference yields 
peak-dip structure


Analysed using angular correlations of 
the top and anti-top decay products 

Heavy BSM Higgs bosons, example: di-top final state 

[see parallel session talk by 
R. Kumar and G. W.]

[BSM Higgs ``smoking gun’’ 
signatures: see below]
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Sensitivity to the trilinear Higgs self-coupling from Higgs pair 
production:

Page 20/17| Higgs Pairs 2022 | Johannes Braathen (DESY) | June 2, 2022

➢ Double-Higgs production → λ
hhh

 enters at LO →  most direct probe of λ
hhh

  

Accessing λ
hhh

 via double-Higgs production

➢ Box and triangle diagrams interfere destructively 
→ small prediction in SM

→ BSM deviation in λ
hhh

 can significantly enhance 
hh-production!

➢ Upper limit on hh-production cross-section → limits on 
κ

λ
≡λ

hhh
/(λ

hhh
(0))SM

[F
re

d
e

ri
x
 e

t 
a

l.
, 

‘1
4

]

[ Note: Single-Higgs production (EW precision observables) → λ
hhh

 enters at NLO (NNLO) ]

Note: the ``non-resonant’’ experimental limit on Higgs pair production  
obtained by ATLAS and CMS depends on ϰλ = λhhh / λhhhSM, 0                        

e+e− Higgs factory:                                                                             
Indirect constraints from measurements of single Higgs production 
and electroweak precision observables at lower energies are not 
competitive                                                                                      
Direct measurement of trilinear Higgs self-coupling is possible a at 
lepton collider with at least 500 GeV c.m. energy

Higgs self-couplings, the Higgs potential and 
probes of the electroweak phase transition
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Higgs pair production: theory predictions

32S. Jones

[S. Jones, G. Salam]
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Higgs pair production, prediction and uncertainties

LO NLO HTL
NNLO HTL
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[M. Spira ’22]

Electroweak corrections: top-Yukawa contributions
[J. Davies et al. ’22][M. Mühlleitner, J. Schlenk, M. Spira ’22]

Impact of the renormalisation-scheme dependence of the top mass:
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[ATLAS Collaboration ’22]

Bound on the trilinear Higgs self-coupling: ϰλ  

34

Combination

• Combination of three channels [HH==> bbγγ(old), bb"", bbbb] to achieve 
ultimate sensitivity

14

Phys. Lett. B 843 (2023) 137745

Observed (expected) 95% CL on the signal strength is 2.4 (2.9) x SM prediction.

3.4 times better exp limit w.r.t. 36 fb-1

66 | Nature | Vol 607 | 7 July 2022

Article

uncertainties using the dataset: at the time of discovery ( July 2012)2,3; 
for the full Run 1 (end of 2012)35; for results presented in this paper; and 
expected to be accumulated by the end of the HL-LHC running69, cor-
responding to = 3, 000 fb−1L . The statistical uncertainties have been 
scaled by 1/ L, the experimental systematic ones by L1/  where pos-
sible, or fixed at values suggested in ref. 69, whereas the theoretical 
uncertainties have been halved.

A sizeable improvement is expected after HL-LHC operation. The 
H → µµ measurements were not available for the first two datasets owing 
to the lack of sensitivity. The evolution of several signal-strength meas-
urements µ are shown in Extended Data Fig. 7.

If new particles exist with masses smaller than mH, other decay chan-
nels may be open. Examples of such decays could be into new neutral 
long-lived particles or into dark-matter particles, neither leaving a 
trace in the CMS detector. We refer to these as ‘invisible’ Higgs boson 
decays, which could be inferred from the presence of large pT

miss in the 
direction of the Higgs boson momentum. The events are selected based 
on other particles accompanying the Higgs boson. Dedicated searches 
for such decays70–72 yielded < 0.16Inv.B  at 95% CL, where Inv.B  is the 
branching fraction to invisible decays.

Results from the search for Higgs boson pair 
production
The cross-section for Higgs boson pair production in the SM is 
extremely small, thus escaping detection at the LHC so far. The results of 
the search are therefore expressed as an upper limit on the production 
cross-section. Figure 5 (left) shows the expected and observed limits 
on Higgs boson pair production, expressed as ratios with respect to the 
SM expectation, in searches using the different final states and their 
combination. With the current dataset, and combining data from all 
currently studied modes and channels, the Higgs boson pair produc-
tion cross-section is found to be less than 3.4 times the SM expecta-
tion at 95% CL. Figure 5 (right) shows the evolution of the limits from 
the three most sensitive modes and the overall combination for: the 
first comprehensive set of measurements using early LHC Run 2 data 
(35.9 fb−1)73, the present measurements using the full LHC Run 2 data 
(138 fb−1) and the projections for the HL-LHC (3,000 fb−1)69. The HL-LHC 

projections are also expressed as limits, assuming that there is no Higgs 
boson pair production. The fact that the combined limit is expected to 
be below unity shows that the sensitivity is sufficient to establish the 
existence of the SM HH production.

Figure 6 presents the expected and observed experimental limits 
on the HH production cross-section as functions of the Higgs boson 
self-interaction coupling modifier κλ and the quartic VVHH coupling 
modifier κ2V. Cross-section values above the solid black lines are 
experimentally excluded at 95% CL. The red lines show the predicted 
cross-sections as functions of κλ or κ2V, which exhibit a characteristic 
dip in the vicinity of the SM values (κ = 1) owing to the destructive inter-
ference of the contributing production amplitudes, as highlighted in 
‘Higgs boson pair production’. The experimental limits on the Higgs 
boson pair production cross-section (black lines) also show a strong 
dependence on the assumed values of κ. This is because the interfer-
ence between different subprocesses, besides changing the expected 
cross-sections, also changes the differential kinematic properties of 
the two Higgs bosons, which in turn affects strongly the efficiency for 
detecting signal events. With the current dataset, we can ascertain at 
the 95% CL that the Higgs boson self-interaction coupling modifier κλ 
is in the range of −1.24 to 6.49, whereas the quartic κ2V coupling modi-
fier is in the range of 0.67 to 1.38. Figure 6 (right) shows that κ2V = 0 is 
excluded, with a significance of 6.6 s.d., establishing the existence of 
the quartic coupling VVHH depicted in Fig. 1n.

Current knowledge and future prospects
The discovery of the Higgs boson in 2012 completed the particle con-
tent of the SM of elementary particle physics, a theory that explains 
visible matter and its interactions in exquisite detail. The completion 
of the SM spanned 60 years of theoretical and experimental work. In 
the ten years following the discovery, great progress has been made 
in painting a clearer portrait of the Higgs boson.

In this paper, the CMS Collaboration reports the most up-to-date 
combination of results on the properties of the Higgs boson, based on 
data corresponding to an L of up to 138 fb−1, recorded at 13 TeV. Many 
of its properties have been determined with accuracies better than 
10%. All measurements made so far are found to be consistent with the 
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Fig. 6 | Limits on the Higgs boson self-interaction and quartic coupling. 
Combined expected and observed 95% CL upper limits on the HH production 
cross-section for different values of κλ (left) and κ2V (right), assuming the SM 
values for the modifiers of Higgs boson couplings to top quarks and vector 
bosons. The green and yellow bands represent the 1-s.d. and 2-s.d. extensions 

beyond the expected limit, respectively; the red solid line (band) shows the 
theoretical prediction for the HH production cross-section (its 1-s.d. 
uncertainty). The areas to the left and to the right of the hatched regions are 
excluded at the 95% CL.

[CMS Collaboration ’22]

Using only information from di-Higgs production and assuming that 
new physics only affects the trilinear Higgs self-coupling, this limit on 
the cross section translates to:                                                   
ATLAS: −0.6 < ϰλ < 6.6 at 95% C.L.                                                   
CMS:    −1.2 < ϰλ < 6.5 at 95% C.L. 

[ATLAS Collaboration ’22]
[CMS Collaboration ’22]
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New ATLAS combination

35Rui Zhang                    LHC Seminar: Recent HH results and the combination 47

Note:

- bbbb's deficit at SM, 
excess around κλ=6 

- bbττ excellent 
performance at SM, 
degrading quickly in 
positive κλ

- Similar situation 
seen in bbũũ+ETmiss

Complementary contributions
Reminder: when κλ moves away from SM, kinematics gets softer

[ATLAS Collaboration ’24]

ATLAS: −1.2 < ϰλ < 7.2 at 95% C.L. (−1.6 < ϰλ < 7.2 expected)
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Resonant Higgs pair production

ATLAS and CMS present their ``resonant’’ limits by ignoring the   
non-resonant contributions to the signal for Higgs pair production


In all realistic scenarios the resonant contribution is accompanied by 
the non-resonant contribution, involving h125, giving rise to 
potentially sizeable interference contributions


The experimental results for Higgs pair production have to be such 
that they can be confronted with realistic theoretical models!

36

⇒

the continuum resonant diagram

Di-Higgs production (gg → hh) [Plehn, Spira, Zerwas : arXiv: 9603205]

Kateryna Radchenko Serdula                                                                                                                                                 4

We include corrections to this process by means of effective trilinear Higgs couplings assuming that the largest 
contribution comes from this type of diagrams and others can be neglected (eg. double box diagram): 

- Is this reasonable? -> modifications of 𝜆hhh are 
the leading source of deviations of non resonant 
hh production cross section

[Bahl, Braathen, Weiglein : arXiv: 2202.03453]

- Dominant process at the LHC  gluon fusion via quark loop (mostly the top): σSM ~ 38 fb (NLO QCD)
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[S. Heinemeyer, M. Mühlleitner, K. Radchenko, G. W. ’24]
Interference effects in Higgs pair production

mHH distribution depends very sensitively on ϰλ, important interference 
effects, large deviation between resonant contribution and full result; 
limits using resonant contribution may be too optimistic

⇒

serve that the resonance is completely washed
out in the full contribution and it is not possi-
ble to clearly distinguish the bump that would
be present if there was only the resonant di-
agram and no deviation from the continuum
prediction of the SM or any interference be-
tween them. We conclude that this particular
benchmark point could not be excluded by
resonant di-Higgs searches since it is very far
from the assumptions made by experimen-
tal analysis. It is more likely to be excluded
by the improvement of non-resonant di-Higgs
searches in a more reliable way.

Figure 7: BP 1. Allowed by non-resonant
searches. Excluded by resonant searches. KR:
updated. Note: these curves are at LO QCD,
because the shape of the distribution varies a lot
in the infinte top mass limit. In order to compare
to the experimental limits, the inclusive cross
section �tot has to be multiplied by roughly a
factor of two.

Figure 8: BP 2. Allowed by non-resonant
searches. Excluded by resonant searches

Figure 9: BP 3. Allowed by non-resonant
searches. Allowed by resonant searches

We show another example where the cor-
rections to � are not so big, and yet exclu-
sion of the point shown in Fig. 8 is optimistic
based on the di↵erence of the width of the res-
onance in the full versus the purely resonant
contributions.

Finally, we show an example that is not yet
excluded by resonant or non-resonant searches
in Fig. 9. We observe that neglecting the con-
tribution of the continuum diagrams, specially

2HDM example, exp. smearing included, scenario that is claimed to be 
excluded by the resonant LHC searches, full result vs. resonant contrib.

[see parallel session talk by 
K. Radchenko]
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The assumption that new physics only affects the trilinear Higgs self-
coupling is expected to hold at most approximately in realistic 
models


BSM models can modify Higgs pair production via resonant and 
non-resonant contributions 


The current experimental limit can only probe scenarios with large 
deviations from the SM                                                                                          
Direct application of the experimental limit on ϰλ is possible if      
sub-leading effects are less relevant

38

Check of applicability of the experimental limit on ϰλ

⇒
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Check of applicability of the experimental limit on ϰλ

Alignment limit: h has SM-like tree-level couplings


Resonant contribution to Higgs pair production with H or A in the     
s channel is absent in the alignment limit


The dominant new-physics contributions enter via trilinear coupling


The leading effects in ghhɸɸ to the Higgs pair production process are 
correctly incorporated at the 1- and 2-loop order via the corrections 
to the trilinear Higgs coupling!

39Page 8/17| Higgs Pairs 2022 | Johannes Braathen (DESY) | June 2, 2022

Can we apply hh-production results for the aligned 2HDM?
➢ Current strongest limit on κλ are from ATLAS double-Higgs searches -1.0 < κλ < 6.6  [ATLAS-CONF-2021-052]

➢ What are the assumptions for the ATLAS limits?

• All other Higgs couplings (to fermions, gauge bosons) are SM-like 

→ this ensured by the alignment ✓ 

• The modification of λhhh is the only source of deviation of the non-resonant Higgs-pair production cross section 

from the SM

→ We correctly include all leading BSM effects to double-Higgs production, in powers of ghhΦΦ, up to 

NNLO! ✓

➢ We can apply the ATLAS limits to our setting!

not included included

(Note: BSM resonant Higgs-pair production cross section also suppressed at LO, thanks to alignment)

[recall κ
λ
≡λ

hhh
/(λ

hhh
(0))SM ]
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Effects of BSM particles on the trilinear Higgs coupling

Trilinear Higgs coupling in extended Higgs sectors: potentially large 
loop contributions

40Page 26/17| Higgs Pairs 2022 | Johannes Braathen (DESY) | June 2, 2022

One-loop non-decoupling effects
➢ Leading one-loop corrections to λ

hhh
 in models with extended sectors (like 2HDM):

                                           SM top quark loop                              BSM scalar loops 

: BSM mass scale, e.g. soft breaking scale M of Z
2
 symmetry in 2HDM

: # of d.o.f of field Φ

➢ Size of new effects depends on how the BSM scalars acquire their mass: 

First found in 2HDM:
[Kanemura, Kiyoura, 
Okada, Senaha, Yuan ‘02]

Huge BSM 
effects possible!Large effects possible for sizeable splitting between         and <latexit sha1_base64="FduRyJChgdVInetN+2ecNxm5IDs=">AAAB7XicdVDLSgMxFM3UV62vqks3wSK4KkkpfeyKblxWsLXQDiWTZtrYTDIkGaEM/Qc3LhRx6/+482/MtBVU9MCFwzn3cu89QSy4sQh9eLm19Y3Nrfx2YWd3b/+geHjUNSrRlHWoEkr3AmKY4JJ1LLeC9WLNSBQIdhtMLzP/9p5pw5W8sbOY+REZSx5ySqyTutFw0J7wYbGEygghjDHMCK7XkCPNZqOCGxBnlkMJrNAeFt8HI0WTiElLBTGmj1Fs/ZRoy6lg88IgMSwmdErGrO+oJBEzfrq4dg7PnDKCodKupIUL9ftESiJjZlHgOiNiJ+a3l4l/ef3Ehg0/5TJOLJN0uShMBLQKZq/DEdeMWjFzhFDN3a2QTogm1LqACi6Er0/h/6RbKeNauXpdLbUuVnHkwQk4BecAgzpogSvQBh1AwR14AE/g2VPeo/fivS5bc95q5hj8gPf2CbVejz4=</latexit>m�

<latexit sha1_base64="L2oRkuXf2OT1ryzGm4kUDhNIDxI=">AAAB8nicdVDLSgMxFM34rPVVdekmWARXJSmlj13RjRuhgn3AdCiZNG1DM8mQZIQy9DPcuFDErV/jzr8x01ZQ0QOBwzn3knNPGAtuLEIf3tr6xubWdm4nv7u3f3BYODruGJVoytpUCaV7ITFMcMnallvBerFmJAoF64bTq8zv3jNtuJJ3dhazICJjyUecEuskvx8RO6FEpDfzQaGISgghjDHMCK5VkSONRr2M6xBnlkMRrNAaFN77Q0WTiElLBTHGxyi2QUq05VSweb6fGBYTOiVj5jsqScRMkC4iz+G5U4ZwpLR70sKF+n0jJZExsyh0k1lE89vLxL88P7GjepByGSeWSbr8aJQIaBXM7odDrhm1YuYIoZq7rJBOiCbUupbyroSvS+H/pFMu4WqpclspNi9XdeTAKTgDFwCDGmiCa9ACbUCBAg/gCTx71nv0XrzX5eiat9o5AT/gvX0C0m6Rog==</latexit>

M⇒
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➢ First investigation of 1L BSM contributions to λhhh in 2HDM: 

[Kanemura, (Kiyoura), Okada, Senaha, Yuan ‘02, ‘04]

➢ Deviations of tens/hundreds of % from SM possible, for 

large ghΦΦ or ghhΦΦ couplings 

(new class of couplings not present at tree level 

→ no issue with perturbativity!)
➢ Non-decoupling effects, now found in various models 

(2HDM, inert doublet model, singlet extensions, etc.)

Non-decoupling effects in λ
hhh

 
➢ Non-decoupling effects confirmed at 2L in [JB, Kanemura 

‘19] 

→ leading 2L corrections involving BSM scalars (H,A,H±) 

and top quark, computed in effective potential approximation 
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Two-loop predictions for the trilinear Higgs coupling 
in the 2HDM vs. current experimental bounds
The largest loop corrections to λhhh in the 2HDM are induced by the 
quartic couplings between two SM-like Higgs bosons h (where one 
external Higgs is possibly replaced by its vacuum expectation value) 
and two BSM Higgs bosons ɸ of  the form
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2

limit by fixing ↵ = � � ⇡/2 [31]. This ensures that
the tree-level couplings of the h boson are exactly equal
to their SM values and in particular that the tree-level

trilinear Higgs coupling �
(0)

hhh
is equal to its SM coun-

terpart, (�SM

hhh
)(0) = 3m

2

h
/v. The remaining input pa-

rameters for our numerical analysis are mH , mA, mH± ,
M

2 = m
2

12
/(sin � cos �), and tan �. Relations between

these parameters and the parameters of Eq. (1) are listed
e.g. in Ref. [25].

In order to obtain our predictions we make use of re-
sults from Refs. [29, 30, 32] for the leading two-loop
corrections to �hhh in various BSM models, including
an aligned 2HDM. These calculations were performed
in the e↵ective-potential approximation, including only
the leading contributions involving heavy BSM scalars
and the top quark. This implies that we are neglecting
all subleading e↵ects from light scalars, light fermions
or gauge bosons. Moreover, an on-shell renormalisation
scheme is adopted for all the mass parameters that en-
ter the expressions we use, i.e. the masses of the top
quark and the Higgs bosons, as well as the Z2 symmetry
breaking scale M (for the prescription chosen to deter-
mine the counterterm for M , we refer to the discussion
in Refs. [29, 30]). We find that the largest type of quar-
tic coupling appearing in corrections to �hhh (with one
external Higgs boson potentially replaced by the corre-
sponding vacuum expectation value), both at the one-
and two-loop level, are those between two SM-like and
two heavy BSM Higgs bosons, of the form

ghh�� = �
2(M2

� m
2

�
)

v2
, (2)

where � 2 {H, A, H
±

}. We obtain results for �hhh and
� = �hhh/(�SM

hhh
)(0) at the one- and two-loop level.

The limit on � obtained in Ref. [1] relies not only on
the assumption that all other Higgs couplings are SM-
like (which is the case in the 2HDM alignment limit) but
also that non-resonant Higgs-boson pair production only
deviates from the SM via a modified trilinear Higgs cou-
pling. The additional Higgs bosons of the 2HDM can,
however, also give rise to further modifications of Higgs-
boson pair production. While the resonant contribution
with an H (A) boson in the s channel is zero in the align-
ment limit (in the CP-conserving case) of the 2HDM, at
the loop level the additional Higgs bosons can contribute
beyond their e↵ects on the trilinear Higgs coupling. How-
ever, our calculation includes the leading corrections to
Higgs-boson pair production in powers of ghh�� (at NLO
and NNLO), which we find to be the source of the large
loop corrections in our numerical scan. Therefore, we ex-
pect our calculation to capture the dominant e↵ects on
Higgs-boson pair production, justifying the application
of the experimental limit on �.

NUMERICAL RESULTS

While we expect similar results for all 2HDM types,1

for our numerical study we concentrate here on the
2HDM of type I. Regarding our predictions for �, we
apply various other constraints of both experimental and
theoretical nature on the considered parameter space:

• vacuum stability [33] and boundedness-from-
below [34] of the Higgs potential,

• NLO perturbative unitarity [35, 36],

• electroweak precision observables (EWPO) cal-
culated at the two-loop level using the code
THDM EWPOS [37, 38],

• compatibility of the SM-like scalar with the
experimentally discovered Higgs boson using
HiggsSignals [39, 40],

• direct searches for BSM scalars using
HiggsBounds [41–45],

• b physics [46].2

We use ScannerS [47] to evaluate all of these con-
straints apart from the NLO perturbative unitarity and
the EWPO constraints, which are evaluated separately.
If applicable, we demand the constraints to be passed at
the 95% C.L. Taking into account these constraints on
the parameter space, we obtain for each parameter point
the one- and two-loop predictions for �. We note that
as ScannerS does not define a renormalisation scheme
for the 2HDM mass parameters, we choose to interpret
these as on-shell renormalised inputs when used in the
two-loop calculations of the EWPOs and �hhh.

Parameter scan

In order to identify the regions with significantly en-
hanced �hhh we perform a random scan of the 2HDM
parameter space. While we fix mh = 125 GeV and
↵ = � � ⇡/2, we scan over values of the BSM scalar
masses in the range [300 GeV, 1500 GeV], of tan � be-
tween 0.8 and 50, and of m

2

12
between 0 and 4 ·106 GeV2.

We plot the results of our parameter scan in the (mH �

mH± , mA � mH±) parameter plane in Fig. 1. All shown

1
The di↵erence between the 2HDM types appears only in the

down-type and lepton Yukawa couplings, which play no role in

the corrections to �hhh at the level of the leading contributions

employed in our calculation.
2
In practice, the fit results of Ref. [46] are used to obtain 2�
constraints in the m

H±–tan� plane of the 2HDM parameter

space.

Leading two-loop corrections involving heavy BSM Higgses and the 
top quark in the effective potential approximation


Incorporation of the highest powers in ghhɸɸ 


                                                                                                   
Analysis is carried out in the alignment limit of the 2HDM (α = β - π/2) 
h has SM-like tree-level couplings
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[J. Braathen, S. Kanemura ’19, ’20]

⇒

⇒

[H. Bahl, J. Braathen, G. W. ’22]
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Higgs self-couplings in extended Higgs sectors

Effect of splitting between BSM Higgs bosons: 


Very large corrections to the Higgs self-couplings, while all couplings 
of h125 to gauge bosons and fermions are SM-like (tree-level 
couplings agree with the SM in the alignment limit)

42

[H. Bahl, J. Braathen, M. Gabelmann, G. W. ’23]
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Figure 8: In all shown models we set the mass of the lightest BSM state which is charged
under the SU(2)L gauge group to ML = 400 GeV. For the individual models we chose the
following: IDM: MH = µ2 = ML. THDM-II: M = MH = ML. TSMY =1: mD++ = ML.
GeorgiMachacek: Mh2 = M⌘ = ML. All other parameters are chosen as in Fig. 6. In
particular the other BSM masses are degenerate at MBSM.
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ML = 400 GeV
Current limit

[see parallel 
session talk by 
J. Braathen]
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Trilinear Higgs coupling: current experimental limit 
vs. prediction from extended Higgs sector (2HDM)
Prediction for ϰλ up to the two-loop level: [H. Bahl, J. Braathen, G. W. ’22, 

Phys. Rev. Lett. 129 (2022) 23, 231802]

Current experimental 
limit excludes important  
parameter region that 
would be allowed by all 
other constraints! 


Experimental limit on the 
trilinear Higgs coupling 
already has  sensitivity 
to probe extended Higgs 
sectors!

⇒
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[H. Bahl, J. Braathen, G. W. ’22]

LHC limits exclude parameter regions that would be allowed by all 
other constraints; high sensitivity of future limits / measurements!

⇒

Sensitivity to ϰλ at  
the HL-LHC

Excluded by other 
constraints:          
Higgs physics, 
boundedness from 
below,                    
NLO perturbative 
unitarity, …
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This plot caused some discussions in the context of strategies for 
future colliders (displayed points feature a FOEWPT):

45
Fig. 356 Scan of the parameter space for a real scalar singlet model [415],where all points shown have
a first-order electroweak phase transition, plotted in the plane of the triple-Higgs coupling normalised
to its SM value (horizontal axis) vs the fractional change in the Higgs coupling to a pair of Z bosons
relative to its SM value (vertical axis).

with new theoretical principles addressing the hierarchy problem — a naturalness
strategy that has proven useful in the past and whose success or failure now would
be of profound importance to establish more definitively [466, 467]. These theories
typically extend the symmetries of the SM, for example in supersymmetric, compos-
ite, or extra-dimensional frameworks [468]; more recent proposals involving light new
physics include novel types of cosmological dynamics [469]. Alternatively, something
radically new altogether may manifest itself in direct searches, indirectly by measuring
higher-dimensional operator coe�cients, or spectacularly in unforeseen types of exotic
signatures. The failure of the naturalness paradigm would be just as consequential as
uncovering its solution; it is therefore crucial to fully explore the Higgs boson as much
as possible above the TeV scale.

A deeper understanding of the scalar sector of the SM can also show whether
the early universe underwent a first-order electroweak phase transition (FOEWPT)
or not – knowledge that is crucial for understanding the matter-antimatter baryon
asymmetry in the universe (BAU). As an example, in the real scalar singlet model this
is correlated with a modification of the Higgs coupling to Z bosons in a way that can
be explored almost entirely by FCC-ee, see Fig. 356. Furthermore, a FOEWPT can
also lead to gravitational wave (GW) signatures which could be detectable by future
GW observatories such as LISA. Since it will be di�cult to disentangle these signals
from other astrophysical phenomena, measuring the Higgs precisely at colliders could
have an important role to play in settling this important question [470]. The synergy
between cosmology and particle physics has been fruitful in the past and may well
further lead to a more profound understanding of the nature of the electroweak phase
transition, exploring whether it had a role to play in the origin of matter.
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Do the deviations in ϰλ have to be small if the FCC-ee does not find a 
deviation in the h125 coupling to ZZ?
⇒

[FCC Midterm Report ’24]

Correlation of deviations in ϰλ with effects in other 
couplings? Real scalar singlet model
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Correlation of deviations in ϰλ with effects in other 
couplings? Real scalar singlet model
Loop corrections to both couplings taken into account (displayed 
points feature a FOEWPT):

46
Large deviations in ϰλ possible for effects in ghZZ below the FCC 
sensitivity
⇒

[J. Braathen, S. Heinemeyer, K. Radchenko, A. Verduras ’24]
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Large deviations in ϰλ possible for effects in ghZZ below the FCC 
sensitivity
⇒

[H. Bahl, J. Braathen, M. Gabelmann, K. Radchenko, G. W. ’24]
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Figure 1: Constraints from perturbativity and vacuum stability, and region featuring a strong FOEWPT
in the plane of the mass of the heavy CP-even scalar mH and the masses of the CP-odd scalar and the
charged scalars mA = mH± in the type II 2HDM, with the other parameters specified in Eq. (34). The
displayed points pass all the theoretical and experimental constraints discussed in section 2.1. The color
bar indicates the energy scale ⇤4⇡ at which one of the quartic couplings of the parameter point reaches the
naive perturbative bound 4⇡ (for points with ⇤4⇡ < 10TeV). Points with ⇤4⇡ < mA or mH are indicated
in gray, and points with a short-lived EW vacuum are shown in red. Yellow points feature ⇤4⇡ � 10TeV.
The black line circumscribes all the points that feature a strong FOEWPT (see text for details).

sensitivity in order to assess whether such signals could be detectable at LISA. Finally, in section
4.3 we compare the prospects of a GW detection at LISA with the collider phenomenology of the
corresponding 2HDM parameter regions in order to address the question whether those regions
could also be probed in a complementary way by (HL-)LHC searches.

4.1 The cosmological evolution of the vacuum in the 2HDM

In this section we will investigate possible realizations of non-standard cosmological histories in the
2HDM. Even though the motivation for the analyzed parameter plane was its suitability for the
occurrence of FOEWPTs, as described above, we point out that the considered parameter space
also features a rich variety of thermal histories in terms of the patterns of symmetry breaking and
symmetry restoration.

Before we start the discussion of the 2HDM cosmological history, we briefly inspect the ad-
ditional constraints from the RGE running of the parameters, that we have applied in order to
restrict the analysis to parameter benchmarks for which our perturbative analysis is applicable.
Since we are interested in FOEWPTs, we explore a parameter space region where relatively large

14

Connection between the trilinear Higgs coupling 
and the evolution of the early Universe
2HDM, N2HDM, … : the parameter region giving rise to a strong 
first-order EWPT, which may cause a detectable gravitational wave 
signal, is correlated with an enhancement of the trilinear Higgs self-
coupling and with ``smoking gun’’ signatures at the LHC


2HDM of type II:


48

[T. Biekötter, S. Heinemeyer, J. M. No, M. O. Olea, G. W. ’22]

Parameter region 
giving rise to a 
strong first-order 
EWPT

alignment limit, 
tanβ = 3
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2HDM of type II: region of strong first-order EWPT

Constraints from 
``vacuum trapping’’: 
the universe may 
remain ``trapped’’ in a 
symmetry-conserving 
vacuum at the origin, 
because the 
conditions for a 
transition into the 
deeper EW-breaking 
minimum are not 
fulfilled
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Figure 3: The parameter plane as shown in Fig. 1, where for both plots the points shown in light gray
feature a second-order EW phase transition or a FOEWPT with ⇠c < 1, whereas for the dark gray points
the global minimum is in the origin (corresponding to the area of the gray points and the zones A and
B in Fig. 2), and accordingly the points do not feature an EW phase transition within the investigated
temperature range. The colored points feature a critical temperature Tc at which the EW minimum
becomes the global one, where the color coding of the points indicates the value of ⇠c. The dashed black
line circumscribes all points that feature a FOEWPT with ⇠n > 1. In addition to what is shown in the
left plot, the black points in the right plot (which are painted above the points displaying the value of
⇠c) indicate the parameter region that is excluded as a consequence of vacuum trapping, and the vertical
black line in the color bar indicates the maximum value of ⇠c that is found after the incorporation of the
constraint from vacuum trapping.

light gray region depicts parameter points that, while featuring a zero-temperature global EW
minimum, do not meet the condition imposed on the strength of the transition based on Tc,
see Eq. (36). The dashed black line circumscribes the points that meet the more appropriate
requirement for a strongly FOEWPT based on Tn, defined in Eq. (35) (coinciding with the solid
black line in Fig. 1 and the zone E in Fig. 2). The left plot of Fig. 3 shows that the region with the
highest values of ⇠c (corresponding to the pink points) lies at the border with the dark gray region,
and features transition strength values up to ⇠c ⇠ 6, which would be particularly well suited for
EW baryogenesis. However, taking into account the constraint from vacuum trapping (zone D in
Fig. 2), indicated by the black points in the right plot of Fig. 3, which are painted above the points
displaying the value of ⇠c, one can see that the parameter region featuring the highest ⇠c values is
in fact excluded as a consequence of vacuum trapping. After taking into account this constraint,
the maximum allowed value for ⇠c is ⇠c ⇠ 1.8 (instead of ⇠c ⇠ 6), indicated by a vertical black line
inside the color bar on the right plot of Fig. 3. At the same time, Fig. 3 highlights that vacuum
trapping not only has a strong impact on the maximum values of ⇠c that can be achieved in the
physically viable parameter regions, but it is also crucial for determining the 2HDM parameter
region that features a FOEWPT: the constraint from vacuum trapping excludes the parameter
region in the left plot of Fig. 3 with the largest values for the mass splitting mA � mH for a
fixed value of mH . This has important consequences for the prospects of probing 2HDM scenarios
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[T. Biekötter, S. Heinemeyer, J. M. No, M. O. Olea, G. W. ’22]
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EWPT is correlated with significant deviation of ϰλ from SM value
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⇒

alignment limit, 
tanβ = 3

region with 
potentially 
observable 
gravitational 
wave (GW) 
signal

current bound

HL-LHC 
sensitivity

ILC sensitivity region with 
strong first-
order EWPT

[T. Biekötter, S. Heinemeyer, J. M. No, M. O. Olea, G. W. ’22]
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Figure 13: Prospects for the determination of the Higgs self-coupling � from various proposed colliders
as a function of the value of �/�SM, in terms of (a) �meas/�true (b) �meas/�SM. The error bars illustrate
the expected measurement uncertainties from HL-LHC and ILC.

sensitivity of the cross section to � is assumed to be independent of the coupling value. For � > �SM,
these assumptions are all optimistic, since in reality the other channels have a worse S/B and will
therefore be more strongly a↵ected by the decreasing cross section, and since �(�) is approaching its
minimum. Still, the expectations from HL-LHC become about 40% worse for large values of �. In
contrast, the measurement from ZHH at 500 GeV profits from a rising cross section and an enhanced
sensitivity of the cross section on �, which results on significantly better prospects for the case of
� > �SM. The combination with the 1 TeV analysis leads to very good prospects for this di�cult
measurement for any value of �.

In the case � < �SM the HL-LHC prospects improve due to an increased production cross section,
but no deviation from � = 0 larger than 2 � can be established. On the other hand, the ILC500
prospects become worse in this region. Here the ILC1000 weak boson fusion measurements will be
crucial to yield precise results. Around � ⇠ 0 both colliders show similar precisions. For even smaller
values, �/�SM

<
⇠ �0.5 the ILC determination improves again and yieds substantially better results than

the HL-LHC. Concerning the comparison of HL-LHC and ILC it should be kept in mind that the HL-
LHC analysis assumes that the other Higgs-boson couplings take their SM value without experimental
uncertainty, whereas for the ILC analysis it has been shown that the inclusion of the variation of the
other Higgs-boson couplings within their anticipated uncertainties does not lead to a degradation of the
anticipated precision [641] (assuming SM values for the Higgs-boson couplings).

3.2.9 Testing unitarity

The process of V V scattering is a corner stone in the investigation of the EWSB mechanism. The
scattering of longitudinally polarized gauge bosons corresponds to the scattering of the Goldstone boson
modes, where unitarity must be preserved. Even after the discovery of a Higgs boson at ⇠ 125 GeV
the mechanism of preserving unitarity must be tested. The study of triple and quartic gauge boson
couplings remains an important test, where deviations from the SM could be encountered.

At the ILC the relevant processes are e+e�
! ⌫⌫̄/e+e� WW/ZZ (and similar chains), which would

allow to test gauge-boson scattering at high energies. Detailed ILC studies for
p

s = 1 TeV have
been performed in Ref. [122], employing full six-fermion matrix elements and assuming an integrated

38

Prospects for measuring the trilinear Higgs coupling: 
HL-LHC vs. ILC (500 GeV, Higgs pair production)

51

[J. List et al. ’21]

For ϰλ ≈ 2: much better prospects for ILC500 than for HL-LHC 
Reason: different interference contributions

⇒

SM value

value preferred 
for GW signal, 
first-order EWPT

HL-LHC: 
70%

ILC500: 
10%

HL-LHC: 60%

ILC500: 27%
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Good prospects for probing the regions giving rise to strongest first-
order EWPTs and to a potentially observable gravitational wave signal52

⇒

[T. Biekötter, S. 
Heinemeyer, J. M. No,    
M. O. Olea, G. W. ’22]
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2.85 σ local excess at (mA, mH) = (650, 450) GeV
53
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Recent ATLAS result for the search for the ``smoking 
gun’’ signature pp → A → ZH → Ztt in the 2HDM

[ATLAS Collaboration ’23]
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[H. Bahl, J. Braathen, G. W. ’23]

LHC limits exclude parameter regions that would be allowed by all 
other constraints; high sensitivity of future limits / measurements!

⇒

Sensitivity to ϰλ at  
the HL-LHC
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constraints:          
Higgs physics, 
boundedness from 
below,                    
NLO perturbative 
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ATLAS result vs. preferred parameter region for 
strong first-order electroweak phase transition

LHC searches start probing the region giving rise to a strong FOEWPT55
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unitarity are indicated with pink and cyan colors, respectively. Regions excluded from previous LHC searches
are indicated in gray, and regions excluded by the new `

+
`
�

tt̄ and ⌫⌫bb̄ searches are indicated in red and
blue, respectively, where the dashed lines indicate the corresponding expected exclusion limits. Parameter
space regions featuring a FOEWPT with vn/Tn > 1 are indicated with the scatter points, where the color
coding indicates the values of vn/Tn. The mass values of the most significant excess (2.85� local significance)
observed by ATLAS in the `

+
`
�

tt̄ search are indicated with a magenta star in the upper right plot.
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[T. Biekötter,       
S. Heinemeyer,   
J. M. No,           
M. O. Olea,         
K. Radchenko,   
G. W. ’23]

2HDM, tanβ =1.5:

2.85 σ local 
excess at   
(mA, mH) = 
(650, 450) GeV

⇒

[see parallel session talk by 
K. Radchenko]
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New CMS result for pp → A → ZH → Ztt in the 
2HDM

ATLAS excess not confirmed by CMS 56

[CMS Collaboration ’24]

⇒
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Exploring HHH production w.r.t. Higgs self-couplings 

Triple Higgs production depends on ϰ3 and ϰ4!


Is it possible to obtain bounds from triple Higgs production on         
ϰ3 and ϰ4 that go beyond the existing theoretical bounds from 
perturbative unitarity? Potential for ϰ3 constraints beyond the ones 
from di-Higgs production?


How big could the deviations in ϰ4 from the SM value (= 1) be in 
BSM scenarios? 57
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Bounds from perturbative unitarity

58
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• Process relevant for ,  is  scattering


• Jacob-Wick expansion allows to extract partial waves

κ3 κ4 HH → HH

Perturbative unitarity and Higgs couplings
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• Tree level unitarity:


Wigner functions
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[ATLAS 2211.01216] 
[CERN Yellow Rep. 1902.00134 ]  

ATLAS current bounds: [−0.4, 6.3]
CMS & ATLAS HH projections: [0.1, 2.3]
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Prospects for the HL-LHC: 6b and 4b2τ channels comb.
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Combined Results
• Assumption: No correlations


• Simplified combination of significances (Stouffer method) 
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Combination of further 
channels and improvements 
of tagging/reconstruction 

methods could enhance 
results further
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FIG. 5: Projected contours indicating the 1� and 2� bounds in the 3–4 plane from the 5b (left) and the 3b2⌧ (right) analysis,
including e↵ects from showering, hadronisation and reconstruction.

�(gen.)(fb) �(sel.)(fb) �(NN)(fb)

tt(H ! ⌧⌧) 3.8 0.17 0.011
WWbbbb 31 4.6 8.1⇥ 10�3

tt(H ! bb) 3.5 0.89 3.8⇥ 10�3

Zbbbb 4.3 0.45 3.3⇥ 10�4

tt(Z ! bb) 0.77 0.15 3.1⇥ 10�4

tt(Z ! ⌧⌧) 4.7 0.080 2.2⇥ 10�4

tttt 0.38 0.091 2.1⇥ 10�4

TABLE I: Background contributions included in the 3b2⌧
analysis and reduction of the generated cross sections (la-
belled as “gen.”) after pre-selection cuts (“sel.”) and GNN
selection (“NN”).

B. Interpretability of NN scores

Understandably, NN techniques are often viewed as
“black boxes”, due to their inability to indicate the input
features that are most important for determining their
predicted scores. In order to address this shortcoming,
various approaches have been explored in the recent years
with the goal to yield interpretability, allow e�cient de-
bugging of the network, better understand the mapping
between input and output, and ultimately allow the iden-
tification of ways to improve it. These methods gained
traction in particle physics in the recent years to obtain a
better insight for various di↵erent tasks such as jet- and
top-tagging and detector triggers [71–77].

There are various techniques for gaining interpretabil-
ity in ML, but in general they can be separated into
two categories: intrinsically interpretable models that are
specifically designed to increase transparency providing
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-40
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FIG. 6: Projected contours indicating the 1� and 2� bounds
in the 3–4 plane obtained from a combination of the 5b
and 3b2⌧ channels under the assumption that there are no
correlations.

intuition and post-hoc explanation methods that were
developed to enhance our understanding of generic ML
models. The latter is what applies to the case of this
work. However, many post-hoc techniques lack certain
properties that are beneficial to maintain; for example
one could directly use the product of the gradients com-
puted during backpropagation and the input in order to

[P. Stylianou, G. W. ’24]

[see parallel session talk by 
P. Stylianou]
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Triple Higgs production: HL-LHC vs. lepton colliders

HL-LHC is competitive to 1 TeV lepton collider; higher-energetic 
lepton colliders have better sensitivity

12

FIG. 10: On the left, the projected 95% CL contours for lepton colliders at di↵erent energies and integrated luminosities are
shown, mainly focusing on the energies of ILC, CLIC and a possible muon collider. The SM value is shown as a black dot. The
plot on the right shows a zoomed-in version.

FIG. 11: Comparison of the projected 95% CL contours for the 5b and 3b2⌧ analyses at the HL-LHC as well as their combination
with the projected 95% CL sensitivities at lepton colliders with di↵erent energies (indicated by the di↵erent coloured regions).
The shaded gray area indicates the region that is excluded by the bound from tree-level perturbative unitarity.

HL-LHC sensitivity for 4 is competitive with the one
achievable at a 1 TeV lepton collider such as the ILC. In
particular the comparison shows that for negative 4 the
HL-LHC is expected to have a better sensitivity than a
1 TeV lepton collider, while a 1 TeV lepton collider has
a higher sensitivity in the large and positive 3 and 4

region.

As discussed above further developments in ML could
increase both the tagging and selection e�ciencies be-
yond our assumptions, and additional channels will pro-
vide additional information.

[P. Stylianou, G. W. ’24]

[see parallel 
session talk by 
P. Stylianou]
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Conclusions

Properties of h125: demonstrate physics gain from improved accuracy 
of couplings to gauge bosons and fermions; CP-odd component of 
h125 can have important implications for explaining the baryon 
asymmetry


BSM Higgs searches: interesting excesses under investigation


Trilinear Higgs self-coupling: close relation to electroweak phase 
transition and thermal evolution of early universe; current constraints 
from LHC have already sensitivity to physics of extended Higgs sectors


Quartic Higgs self-coupling: HL-LHC has potential for constraints 
beyond unitarity bounds


Extended Higgs sectors (e.g. 2HDM): region with strong first-order 
EWPT (and potentially detectable GW signal) is typically correlated with 
significant deviation of ϰλ from the SM value and can be probed with 
LHC ``smoking gun’’ signatures 61
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Backup
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Strongly first-order EWPT in the 2HDM

Barrier is related to a cubic term in the effective potential 


Arises from higher-order contributions and thermal corrections to the 
potential, in particular:


For sizeable quartic couplings an effective cubic term in the Higgs 
potential is generated


Yields mass splitting between the                                                              
BSM Higgs bosons and sizeable                                                       
corrections to the trilinear Higgs coupling

63

21

How to achieve a strongly first-order EW phase transition in the 2HDM? 
[Image by K. Radchenko]

The barrier arises from radiative and thermal corrections

The generic form of the tree-level field-dependent scalar masses:

Quartic 
coupling term

Bare mass 
term

The effective potential contains a term:

Large quartic couplings generate an effective cubic term in the scalar fields!

footnote *

*
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[M. O. Olea ’23]
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⇒



BSM Higgs physics — theory, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024

• Properties of h125:                                                                            
The comparison between experiment and theory is carried out at 
the level of signal strengths, STXS, fiducial cross sections, … , and 
to a lesser extent for ϰ parameters (signal strength modifiers; see 
example of ϰλ below) and coefficients of EFT operators 


Public tools for confronting the experimental results with model 
predictions: HiggsSignals (signal strengths, STXS), Lilith (signal 
strengths), HEPfit (signal strengths), … 


• Limits from the searches for additional Higgs bosons:                
Public tools for reinterpretation / recasting of experimental results:  
HiggsBounds (limits on σ x BR, full likelihood information 
incorporated where provided by exp. collaborations)                  
Recasting tools:                                                                 
MadAnalysis 5, Rivet, ColliderBit, RECAST (ATLAS-internal), …

64

Where should experiment and theory meet?

[H. Bahl et al. ’22]New versions: HiggsTools 



BSM Higgs physics — theory, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024

Vacuum stability of extended Higgs sectors (T = 0)

Extended Higgs sectors with additional minima of the scalar potential 
at the weak scale that may be deeper than the EW vacuum


Tunneling from EW vacuum to deeper vacua possible depending on 
the ``bounce action’’ B (stationary point of the euclidian action) for the 
tunnelling process


EW vacuum can be short-lived, metastable or stable


Decay rate per spatial volume:


``Most dangerous minimum’’: highest tunnelling rate from EW vacuum


Constraints from vacuum stability at T = 0 can be combined with the 
ones from the thermal evolution of the Universe (see below) 65

⇒

⇒

chosen to lie at the origin. The second minimum exists as soon as

(A('̂))2 >
32

9
m

2('̂)�('̂) (2.7)

and is deeper than the minimum at the origin if

(A('̂))2 > 4m2('̂)�('̂) . (2.8)

This discussion implies that large cubic terms A compared to the mass parameters and
self-couplings are potentially dangerous for the stability of the initial vacuum at the origin.
We call the directions '̂ fulfilling Eq. (2.8) deep directions.

This simple form is very useful for the calculation of vacuum decay in Section 2.1.
However, many disjoint regions of deep directions may exist which makes the numerical
search for such directions on the unit (n � 1)-sphere of directions '̂ infeasible, see e. g.
Ref. [57]. We instead use the numerical method of polynomial homotopy continuation
(PHC) (see e. g. [63] or [64]) to find all stationary points of Eq. (2.2). From these stationary
points we select the deep directions by comparing their depth to the initial vacuum.

PHC efficiently finds all solutions of systems of polynomial equations. We use it to
solve

~r�V = 0 (2.9)

and find all real solutions, i. e. the stationary points of the scalar potential. While PHC
in theory never fails to find all solutions of the system, solutions may be missed due to
numerical uncertainties in judging whether a solution is real or complex. This can be
avoided by a careful preconditioning of the system of equations [63]. Another subtlety
is that PHC only finds point-like, isolated solutions. This is especially important in the
physically interesting cases of gauge theories where any vacuum is only unique up to gauge
transformations. If any gauge freedom is left in the model, this turns all isolated solutions
into continuous curves which cannot be found by the algorithm. For this reason it is essential
to implement models with all gauge redundancies removed. For the case of at least one
Higgs doublet this can be achieved by setting the charged and imaginary components of
one Higgs doublet to zero without loss of generality.

2.1 Calculation of the Bounce Action

We briefly review the definition of the so-called bounce action, which describes the decay of
a false vacuum. Consider a single real field Lagrangian as in Eq. (2.1). The semi-classical
tunnelling and first quantum corrections were calculated in [20, 21]. It was found that
the decay rate � of a metastable vacuum state per (spatial) volume VS is given by the
exponential decay law

�

VS

= Ke
�B

, (2.10)

where K is a dimensionful parameter that will be specified below, and B denotes the bounce
action which gives the dominant contribution to �. The bounce �B(⇢) is the solution of
the euclidean equation of motion

d2�

d⇢2
+

3

�

d�

d⇢
=

@U

@�
(2.11)
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Vacuum stability constraints in the MSSM

66

Figure 4. Constraints from vacuum stability in the plane of µ and A containing the selected point
from the M

125
h

benchmark scenario. The starting point in the M
125
h

plane of Fig. 3 with tan� = 20
and mA = 1500 is indicated by the black ⇥. The colour code is the same as in Fig. 3. The dashed
line corresponds to constant Xt = 2.8TeV.

parameter regions. The missing points in the top-left corner of the plot are points with
tachyonic tree-level b̃ masses where the EW vacuum is a saddle point.

The character of the MDM, i. e. the fields that acquire non-zero vevs in this vacuum, is
shown in the middle panel of Fig. 4. It is dominated by yellow t̃ vevs in this plane, but blue
b̃ vevs are also important for large negative values of µ. The �b corrections described in
Section 3.2 are enhanced in this parameter region and have a large impact. They are also
the cause of the tachyonic region for large negative µ and positive A. Between the t̃-vev and
b̃-vev regime a region appears (shown in green) where t̃ and b̃ vevs occur simultaneously.
The small blue region for µ > 0 is visible because the more dangerous minima with t̃ vevs
only appear for slightly higher values of A and µ, and the global b̃-vev minimum is the only
other vacuum in this parameter region besides the EW vacuum.

In the right panel of Fig. 4, the fields which acquire non-zero vevs at the global minimum
are indicated. In this parameter plane, there are large regions with simultaneous t̃ and ⌧̃ vevs
at the global minimum. Through most of the plane the fields acquiring vevs differ between
the MDM and the global minimum. The green region of simultaneous t̃ and b̃ vevs which is
visible in the middle panel of Fig. 4 does not correspond to the global minimum of the theory.
This is expected as additional large quartic F and D-term contributions appear if multiple
kinds of squarks take on non-zero vevs simultaneously. These are positive contributions to
the scalar potential that lift up these regions of field space. No such contributions appear
in the case of simultaneous squark and slepton vevs which is why the orange regions of
simultaneous t̃ and ⌧̃ vevs are present in the right panel of Fig. 4. Note that the quartic F

and D-term contributions do not prevent the minima with mixed t̃ and b̃ vevs from being
the MDM as Fig. 4 (centre) shows. However, for the parameter plane considered here these
minima featuring simultaneous t̃ and ⌧̃ vevs have no impact on the stability constraints of
Fig. 4 (left).

We finally comment on the impact of the detailed field content, in particular the first

– 15 –

[W.G. Hollik, J. Wittbrodt, G. W. ’18]
Parameter plane around example point of Mh125 benchmark scenario

Particularly important: instabilities in directions with sfermion vevs 
(charge or colour-breaking minima, CCB)                                                  
Character of most-dangerous minimum differs from global minimum 
Region of absolute stability and global minimum sensitively depend 
on fields with small couplings to the Higgs

⇒
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Figure 2: Vacuum stability constraints and experimental bounds in the M
125
h

(⌧̃) benchmark sce-
nario (Tab. 2) for the MSSM (top row) and the NMSSM (bottom row). As before the stable
region is reduced in the NMSSM. The short lived region is slightly larger in the NMSSM. One of
the minima that shows up as the most dangerous one consists only of Higgs-doublet and -singlet
vevs, just like the EWV, but at larger values. Note that this minimum has no equivalent in the
MSSM.

4.1.3 Mh(tri)
125 scenario

tan � µ � MA  A MQ3 = MU3 = MD3 ML3 = ME3 M1 M2 M3 A

20 [�5000, 5000] 0.1 1500 0.1 �100 1500 2000 1000 1000 2500 [�6000, 6000]

Table 3: Parameter values for the Mh
(tri)
125 scenario as defined in [33]. This scenario is reached by

fixing tan � = 20 and MA = 1500 in Fig. 1 and varying A = At = Ab = A⌧ and µ from there. All
parameters except for the dimensionless quantities tan �, � and  are given in GeV.

14

Vacuum stability constraints in the NMSSM
Improved version of the public code Evade                                      

Example: constraints from vacuum stability in the NMSSM on the 
region allowed by HiggsBounds and HiggsSignals

67

[T. Biekötter, F. Campello, G. W. ’24]

[W.G. Hollik, G. W., J. Wittbrodt ’18]

HiggsBounds HiggsSignals
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``ϰ framework’’ and EFT approach for coupling analyses
Simplified framework for coupling analyses: deviations from SM 
parametrised by ``scale factors’’ ϰi, where ϰi ≡ gHii/gSM, (0)Hii 

Assumptions inherent in the ϰ framework: signal corresponds to only 
one state, no overlapping  resonances, etc., zero-width 
approximation, only modifications of coupling strengths (absolute 
values of the couplings) are considered                                               
⇒ Assume that the observed state is a CP-even scalar


Theoretical assumptions in determination of the ϰi:                               
ϰV ≦ 1, no invisible / undetectable decay modes, …


EFT: fits for Wilson coefficients of higher-dimensional operators in 
SMEFT Lagrangian, …

68
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Figure 6: Constraints in the plane of the parameters cos(� � ↵) and tan � in the four
Yukawa types of the 2HDM for mH = mA = mH± =

p
m

2
12/(sin � cos �) = 800 GeV.

The color coding indicates the value of ��
2 obtained with HiggsSignals. The best-fit

point with ��
2 = 0 is indicated with an orange star in each plot. The gray regions are

excluded based on the HiggsBounds result. The gray letters indicate the experimental
search responsible for the corresponding exclusion limit. The details of the searches are
specified in the text.

the properties of h in the 2HDM resemble the ones of a SM Higgs boson. For the Yukawa
type I we find the smallest values of ��

2 for slightly negative values of cos(� � ↵), which
is in agreement with the ATLAS result shown in Fig. 20 of Ref. [69]. With the new version
of HiggsSignals it is very easy to identify the experimental measurement that gives rise
to a change of �

2 in a certain parameter region of a model. In the considered example, for
instance for the type I, one can use HiggsSignals for two neighbouring parameter points
at tan � = 1, cos(↵ � �) = 0 and at tan � = 1, cos(↵ � �) = �0.1 in order to obtain the
individual �

2-values for each implemented measurement by typing (see Section 3.2.3 for
details):

26

The experimental results indicate that the observed state h125 has 
SM-like properties, but extensions of the SM may have a higher 
compatibility with the data than the SM

69
Alignment limit disfavoured, slight preference for non-zero BSM contrib.

Example: 2HDM of type I
[H. Bahl et al. ’22]

Preferred region from 
Higgs measurements

Limits from Higgs 
searches

SM limit (alignment)

⇒

Probing the SM and extended Higgs sectors
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Excesses near 95 GeV at the LHC and at LEP

70

0.2 0.4 0.6
µ��

0.05

0.10

0.15

0.20

µ
bb

hvT2 AA �
2
125,aJ = 146.15

*J
a

�
h

G
�

a
+

*
J

a

�2 0 2 4 6
��

2
125

R

0.2 0.4 0.6
µ��

0.05

0.10

0.15

0.20

µ
bb

hvT2 Ao �
2
125,aJ = 146.15

*J
a

�
h

G
�

a
+

*
J

a

0 2 4 6
��

2
125

R

0.2 0.4 0.6
µ��

0.2

0.4

0.6

µ
⌧
⌧

hvT2 AA
�
2
125,aJ = 146.15

*Ja�
h

G�
a
+

*
J

a

�2 0 2 4 6
��

2
125

R

0.2 0.4 0.6
µ��

0.2

0.4

0.6

µ
⌧
⌧

hvT2 Ao

�
2
125,aJ = 146.15

*Ja�
h

G�
a
+

*
J

a

0 2 4 6
��

2
125

R
Figure 2: S2HDM parameter points passing the applied constraints in the (µ�� , µbb) plane (top row) and the
(µ�� , µ⌧⌧ ) plane (bottom row) for type II (left) and type IV (right). The colors of the points indicate the value
of ��

2
125. The black dashed lines indicate the regions in which the two excesses considered in each plot are

accommodated at a level of 1� or better, i.e. �2
�� + �

2
bb  2.3 (top row) and �

2
�� + �

2
⌧⌧  2.3 (bottom row). The

corresponding gray dot-dashed lines indicate the previous result based solely on the CMS Run 2 data.

tension with cross section limits from Higgs-boson
searches at LEP for the decay of the Higgs boson
into a pair of ⌧ -leptons [4, 35]. Consequently, a
simultaneous description of the �� and the ⌧⌧ ex-
cesses is possible at best at the level of 1�. We note
here that a better description of both the di-photon
and the di-tau excess can be achieved if h95 is iden-
tified with a CP-odd state [27], because such a sce-
nario is less constrained by the limits arising from
top-quark associated production (see also Ref. [37]).

In Tab. 1 we provide details of a selection of three
benchmark points that we obtained in our param-
eter scan in the type II S2HDM. These benchmark
points feature a very good description of the di-

photon excess observed at the LHC in combination
with the bb̄ excess observed at LEP, while the ex-
cess of di-tau events observed by CMS cannot be
described in type II as discussed above. Moreover,
the benchmark points BP1 and BP3 saturate the
measured DM relic abundance, while the DM den-
sity predicted for BP2 is under-abundant, leaving
room for additional components contributing to the
observed DM relic abundance. For BP1 the DM
state � has a mass of m� = 63.3 GeV, thus an-
nihilating e�ciently via s-channel exchange of h125,
while the invisible decay h125 ! �� is still kinemat-

8

S2HDM, type II and IV: [T. Biekötter, S. Heinemeyer, G. W. ’23]

The LHC excess in the 𝛾𝛾 channel and the LEP excess in the bb 
channel can be described very well simultaneously!

⇒
1 σ ellipse for 𝝌2𝛾𝛾+bb
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Experimental constraints on ϰλ

71

[ATLAS Collaboration ’22]

(a) (b)

Figure 6: Observed (a) and expected (b) constraints in the ^_–^C plane from single-Higgs (blue), double-Higgs
(red) and their combination (black). The solid (dashed) lines show the 68% (95%) CL contours. The double-Higgs
contours are shown in the region ^C < 1.2.

exclusion constraints worsen by less than 5%. In this approach, the ++�� vertex is parameterised in terms
of the ^2+ coupling modifier for the VBF �� process but not in single-Higgs NLO EW corrections.

Table 2: Summary of ^_ observed and expected constraints and corresponding observed best fit values with their
uncertainties. In the first column, the coupling modifiers that are free floating in addition to ^_ in the correspondent
fit are reported.

Combination assumption Obs. 95% CL Exp. 95% CL Obs. value+1f
�1f

�� combination �0.6 < ^_ < 6.6 �2.1 < ^_ < 7.8 ^_ = 3.1+1.9
�2.0

Single-� combination �4.0 < ^_ < 10.3 �5.2 < ^_ < 11.5 ^_ = 2.5+4.6
�3.9

��+� combination �0.4 < ^_ < 6.3 �1.9 < ^_ < 7.5 ^_ = 3.0+1.8
�1.9

��+� combination, ^C floating �0.4 < ^_ < 6.3 �1.9 < ^_ < 7.6 ^_ = 3.0+1.8
�1.9

��+� combination, ^C , ^+ , ^1, ^g floating �1.3 < ^_ < 6.1 �2.1 < ^_ < 7.6 ^_ = 2.3+2.1
�2.0

7 Conclusion

The single- and double-Higgs boson analyses based on the complete Run 2 LHC dataset collected with the
ATLAS detector have been combined to investigate the Higgs boson self-interaction and shed more light
on the Higgs boson potential that is at the origin of the EW symmetry breaking in the SM.

Using the three most sensitive double-Higgs channels, 11̄11̄, 11̄g+g� and 11̄WW, an observed (expected)
upper limit of 2.4 (2.9) at 95% CL has been set on the double-Higgs signal strength, defined as the sum
of the ggF �� and VBF �� production cross-sections normalised to its SM prediction. This process is

11
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➢ Double-Higgs production → λ
hhh

 enters at LO →  most direct probe of λ
hhh

  

Probing λ
hhh

 via double-Higgs production

➢ Box and triangle diagrams interfere destructively 
→ small prediction in SM

→ BSM deviation in λ
hhh

 can significantly enhance 

double-Higgs production!

➢ Search limits on double-Higgs production 
→ limits on effective coupling κ

λ
≡λ

hhh
/(λ

hhh
(0))SM

➢ Current best limits: -0.4 < κ
λ
 < 6.3 (95% CL) [ATLAS PLB ‘23]

(including information from single-Higgs production)
  -1.4 < κ

λ
 < 6.1 (95% CL) [ATLAS PLB ‘23]

(including information from single-Higgs production + κ
t
 floating) 

  -1.2 < κ
λ
 < 6.5 (95% CL) [CMS ‘22]
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Single-Higgs processes: λ enters at loop level

72
02/23/12     
 Path towards measuring the Higgs potential                    Elisabeth Petit, CPPM, AMU/CNRS/IN2P3 8

How to measure deviations of λ
3

di-Higgs single-H

exclusive

global

1. di-H, excl.
• Use of σ+HH,             

 • only deformation of κλ

3. single-H, excl.
• single Higgs processes at higher order
• only deformation of κλ                          

2. di-H, glob.
• Use of σ+HH,                                                  
• deformation of κλ + of the single-H couplings
+a, do not consider the effects at higher order 

of κλ to single H production and decays
+b,  these higher order effects are included    

4. single-H, glob.
• single Higgs processes at higher order
• deformation of κλ + of the single Higgs 

couplings

 The Higgs self-coupling can be assessed using di-Higgs production and 
single-Higgs production

 The sensitivity of the various future colliders can be obtained using four 
different methods:

[E. Petit ’19]

Note: this is 
based on the 
assumption 
that there is a 
large shift in λ, 
but no change 
anywhere else!
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Sensitivity to λ: via single-H and di-H production
Di-Higgs: 
◦ HL-LHC: ~50% or better?
◦ Improved by HE-LHC (~15%), 

ILC500 (~27%), CLIC1500 (~36%)
◦ Precisely by CLIC3000 (~9%), 

FCC-hh (~5%),
◦ Robust w.r.t other operators

Single-Higgs:
◦ Global analysis: FCC-ee365 and 

ILC500 sensitive to ~35% when 
combined with HL-LHC
◦ ~21% if FCC-ee has 4 detectors

◦ Exclusive analysis: too sensitive 
to other new physics to draw 
conclusion

37
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 [%]3k68% CL bounds on 
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-7%+11%

36%

27%

5%

10-20%

50%

36%

27%

6%

52%

35%

40%

45%

17%

26%

28%

28%

19%

19%

18%

41%

46%

49%

49%

50%

49%

37%

47%

49%

34%

48%

25%

50%

50%

-

-

-

-

-

-

n.a.

-

-

-

-

-

-

n.a.

💥

Single-Higgs processes: λ enters at loop level
[B. Heinemann ’19]
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N2HDM (two doublets + real singlet) example

74

[T. Biekötter, S. Heinemeyer, J. M. No, M. O. Olea, G. W. ’21]

``Smoking gun’’ collider signatures: A → Z h2, A → Z h3             
Nucleation temperature for the first-order EWPT, N2HDM scan:

Lower nucleation temperatures, i.e. stronger first-order EWPTs, 
are correlated with larger signal rates at the LHC!

⇒
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Figure 8: Correlation of the cross sections for the processes A æ Zh2 and A æ Zh3 for the N2HDM
benchmark scenarios defined in Table 4. The color coding is the same as in Figure 7 (right).

are generally open in scenarios with a FOEWPT, except when h3 is very singlet-like (and can
thus e�ectively decouple from the FOEWPT dynamics, mh3 ∫ v).

In Figure 8 we show as result of our parameter scan defined in Table 4 the predictions for
the signal rates pp (gg) æ A æ Zh2 and pp (gg) æ A æ Zh3 at the LHC with

Ô
s = 13 TeV,

where the production cross section has been calculated with SusHi v.1.6.1 [105, 106], and the
branching ratios have been obtained with N2HDECAY [27, 78]. Since the production cross section
‡(gg æ A) is constant in our scan (it only depends on mA and tan —), Figure 8 e�ectively
shows the interplay between BR(A æ Zh3) and BR(A æ Zh2). As a result, we find that
(stronger) FOEWPTs with smaller nucleation temperatures are correlated with larger values
for these branching fractions. However, the largest values of the signal rates for each of the
two processes in our scan correspond to unphysical trapped-vacua scenarios. The detection
of the processes pp æ A æ Zh2 and pp æ A æ Zh3 at the LHC would open the possibility
to infer details about the thermal history of the Universe that would have occurred in the
N2HDM. Regarding the current status of LHC searches of this kind, ATLAS and CMS have
searched for the pp æ A æ Zhi (with hi ”= h125) signature within their 8 TeV [107] and
13 TeV [108, 109] data sets, assuming that the Higgs boson hi decays into a pair of bottom
quarks or a pair of · -leptons. It should be noted that our scan shows that for scenarios
featuring a FOEWPT in the N2HDM the masses of both h2 and h3 could easily be above
the decay threshold into top-quark pairs. In fact, for the rather small value of tan — = 2 in
our scan the discovery potential for the “smoking-gun” signatures in the N2HDM scenarios
could be higher for the decay of h2,3 æ t̄t. Thus, our results motivate to explore the signature
pp æ A æ Z(hi) æ Z(t̄t) within the programme of experimental searches at the LHC (see

32

No first-order EWPT: 
universe is trapped 
in a ``false’’ vacuum
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Correlation of ϰλ with the signal-to-noise ratio 
(SNR) of a gravitational wave signal at LISA

Region with potentially detectable gravitational wave signal: 
significant enhancement of ϰλ and non-vanishing mass splitting 75

⇒

[T. Biekötter, S. Heinemeyer, J. M. No, M. O. Olea, G. W. ’22]
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Figure 12: Parameter points of the detailed finer scan discussed in section 4.2.2 (as shown in Fig. 6 and
Fig. 9), in the (�m = mA �mH , SNR) plane. The color-coding here indicates the prediction for �.

500 would furthermore probe most of the region featuring a strong FOEWPT, in particular the
entire region with a GW signal that could be detectable at LISA (see below).

In order to estimate the values of � for parameter points with detectable GW signals at LISA,
we show in the right panel of Fig. 11 the same parameter plane as in the left panel, but with the
strong FOEWPT parameter points predicting SNR � 1 at LISA highlighted in light-pink. These
points have values of � ⇠ 2, and thus lie near the expected HL-LHC upper limit on � and within
the reach of the ILC running at 500GeV.

To further scrutinize this parameter region, focusing on the interplay between measurements of
the Higgs boson self-coupling at colliders and potential observations of GWs at LISA, we show in
Fig. 12 the same plane as depicted in Fig. 6 and Fig. 9, with the color-coding now indicating the
values of � (points above the dashed red line in Fig. 12 therefore correspond to the pink area in
the right plot of Fig. 11). The predicted values of � in this plot range from � ⇠ 2 up to � ⇠ 2.2,
possibly within reach of the HL-LHC. The plot furthermore illustrates that a strong FOEWPT
that gives rise to a potentially detectable GW signal is associated with a significant deviation from
� = 1 (see also Ref. [32]). Conversely, if no deviations of � from the SM prediction are observed
at the HL-LHC and / or a future e

+
e
� Linear Collider running at 500GeV, no GW signal at LISA

would be expected in the considered scenarios.
We also stress that future measurements of � at the HL-LHC and the ILC will be a very

important probe of the EW phase transition, independently of the associated GW production
(as shown in Fig. 11, a large fraction of the parameter space featuring a strong FOEWPT does
not yield an observable GW signal at LISA). We note in this context that the leading two-loop
corrections to the self-coupling of the SM-like Higgs boson can yield a sizable enhancement of

32
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GW spectra of scenarios fitting the excess

Prospects for GW detection depend very sensitively on the precise 
details of the mass spectrum of the additional Higgs bosons 76
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Figure 6: Gravitational wave spectra for parameter points specified in Tab. 2 that are compatible with
the excess observed in the ATLAS search. The solid (dashed) lines show the prediction without (including)
the turbulence contribution, using vw = 0.6. The colored regions show the prospective sensitivities of future
experiments.

the largest SNR found in Fig. 5 and allow for up to 10% deviations in the values of the masses
mH , mA, which translates into deviations of the SNR of several orders of magnitude. In addition,
we show in Tab. 2 the parameters for the point (mH , mA) = (450, 650) GeV although we omit
its GW spectrum in Fig. 6 because of the smallness of the SNR. The spectral shapes of the GW
backgrounds are computed as discussed in Sect. 2.5, where the solid curves depict the sound-wave
contribution h

2⌦sw only, whereas the dashed curves depict the sum of sound-wave and turbulence
contributions, i.e. h

2⌦sw+h
2⌦turb. We also show the sensitivity curves of LISA [18], AEDGE [106],

DECIGO [107, 108] and BBO [109], where the latter three are planned, but not yet approved space-
based GW detectors. One can see that only for the smallest value of mH = 417.2 GeV, i.e. the
largest mass splitting between H and A, the GW signal might be detectable with LISA, according
to the predicted SNR. For values of mH only a few percent larger, the peak amplitudes of the GW
signals drastically decrease and quickly drop to values far below the experimental sensitivity of the
proposed GW detectors. We emphasize again at this point that the detectability of the GW signal
for a single parameter point cannot be determined definitively with the methods applied here due
to the substantial theoretical uncertainties in the prediction of the GW signals. However, the fact
that in the case of a possible detection of BSM scalars at the LHC a mass resolution at the percent
level would be required in order to draw conclusions about the detectability of a GW signal poses
a challenge independently of the status of the remaining theoretical uncertainties at that time.

Of course, one can also turn this argument around. An LHC discovery, e.g. a signal in the
smoking-gun signature, in combination with a GW detection at LISA that is consistent with a
FOEWPT as interpreted in a UV-complete model, could be used for a more precise (but model-
dependent) determination of the parameters of the considered BSM Higgs sector. In this way
space-based GW astronomy could become a complementary tool to sharpen the precision of particle
physics.13

13This would be similar in spirit to the present situation regarding the sum of neutrino masses, constrained most
stringently using astrophysical observations, e.g. the measurement of the spectrum of the cosmic microwave back-
ground [110].
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RFigure 3: As in Fig. 1 for tan� = 1.5 (left) and tan� = 3 (right), shown here for type II, but
the red dashed lines indicate projected expected exclusion regions assuming integrated luminosities of
300, 600, 1000, 3000 fb�1 from future runs of the LHC.

13.6 TeV and 14 TeV, respectively, compared to the Run 2 dataset collected at 13 TeV. Taking
this into account, we consider our projections as fairly conservative estimates.

The projected expected cross section limits can be cast into projected exclusion regions in the
2HDM. In Fig. 3 we show our projections in the 2HDM benchmark plane introduced in Sect. 3.2
for the Yukawa type II with tan� = 1.5 in the left plot and tan� = 3 in the right plot. In both
plots, the color coding of the scatter points and the definition of the pink and cyan regions is as
in Fig. 1, and the red dashed lines indicate the expected exclusion regions for di↵erent values of
the integrated luminosity, ranging from L = 300 fb�1 (end of LHC Run 3) to L = 3000 fb�1 (end
of the LHC high-luminosity phase). Moreover, in the left plot the red shaded area indicates the
currently excluded region based on the observed cross section limits obtained for L = 140 fb�1, and
the magenta star indicates the masses for which ATLAS has observed the most pronounced local
excess (see Sect. 3.4). As already discussed in Sect. 3.2.1, currently the smoking-gun searches are
not able to probe the benchmark plane for tan� = 3 (see the lower left plot of Fig. 1). Accordingly,
no red shaded region is visible in the right plot of Fig. 3.

One can observe in the left plot of Fig. 3 that with the prospective improvements of the inte-
grated luminosity it will be possible to increase very significantly the regions that can be probed
in the considered benchmark plane for tan� = 1.5. While currently in the upper right part of the
red shaded region the smoking-gun searches are able to exclude masses up to values slightly below
500 GeV for the lighter and up to 850 GeV for the heavier BSM scalar, in the future the LHC
will be able to probe via this search masses up to about 700 GeV and 1 TeV for the lighter and
the heavier BSM scalar, respectively. This improvement in sensitivity has a very important impact
on the parameter region that is suitable for the realization of a strong FOEWPT according to the
thermal e↵ective potential approach (as described in Sect. 2.2). In the case of the absence of a
signal the exclusion within the region that is indicative for a strong FOEWPT would extend up to
mH . 550 GeV and mA . 700 GeV. It should be noted in this context that the strength of the
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2HDM, tanβ =1.5:
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Projection for future sensitivity based on ATLAS result
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Further ``smoking gun’’ signature

The parameter region that potentially gives rise to a strong first-order 
EWPT can also be probed via the search   


For the production of the charged Higgs together with t b this yields 
a 4-top like or 3-top like final state


Results for the 4-top final state exist from ATLAS and CMS (and for 
3-top vs. 4-top from ATLAS), but so far no dedicated experimental 
analysis for the charged Higgs channel has been performed!                     
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to the tan� = 1 case, for tan� = 1.5 the new search is able to exclude a significant parameter
region featuring a strong FOEWPT that was previously allowed. The new search substantially
pushes the lower limit on the Higgs boson masses to larger values of about mH & 400 GeV and
mA = mH± & 550 GeV. We also stress that, based on the expected cross section limits, an even
larger mass region would be excluded, as indicated with the dashed red line. However, ATLAS
observed a local 2.85� excess for mA ⇡ 650 GeV and mH ⇡ 450 GeV, giving rise to a weaker
observed cross section limit. The masses corresponding to the excess, indicated with a magenta
star in the upper right plot of Fig. 1, and the corresponding cross section are such that they fall into
the strong FOEWPT region. In Sect. 3.4 we will discuss in greater detail the tantalizing possibility
of such an excess to be the first experimental hint of a strong FOEWPT within the 2HDM. We
will give a broad characterization of the FOEWPT predicted by this benchmark scenario, focusing
on whether the scenario might be suitable for a realization of EW baryogenesis, and whether the
associated GW signal might be detectable with LISA.

As an important outcome of the above discussion, a promising complementary LHC search to
target the strong FOEWPT region consists of charged scalar production followed by the decay
H

± ! W
±
H ! `

±
⌫tt̄, which so far has not been performed.8 In particular, producing the charged

scalar via pp ! tbH
± would in this case lead to a 4-top-like (or 3-top-like, depending on the signal

selection) signature, which has very recently been performed by CMS [91] and ATLAS [92] (but not
interpreted in terms of the scenario discussed here), yielding a mild excess over the SM expectation.

Finally, it can be seen that for tan� = 1.5 the new smoking gun search using the ⌫⌫bb̄ final
state starts to probe the considered parameter plane. An exclusion region is visible below the di-top
threshold regarding mH and for a minimum amount of mass splitting of mA � mH & 200 GeV.
However, in contrast to the searches using the `

+
`
�
tt̄ final state indicated by the red shaded region,

the blue shaded region indicating the new exclusion region resulting from the search using the ⌫⌫bb̄

final state is already excluded by previous LHC searches, namely searches for H decaying into
tau-lepton pairs [88, 89] and searches for the smoking gun signature A ! ZH with Z ! `

+
`
� and

the decay of H into bottom-quark pairs [34]. One should note, however, that the new A ! ZH

search in the ⌫⌫bb̄ final state covers larger masses up to mH = 600 GeV and mA = 1000 GeV [37],
extending the reach of previous ATLAS searches in `

+
`
�
bb̄ and `

+
`
�
W

+
W

� final states [34] in
the region with mH > 350 GeV and mA > 800 GeV. In the 2HDM constraints from perturbative
unitarity (cyan area in Fig. 1) exclude large mass splittings between states from the same SU(2)
doublet. As a consequence, the extended mass reach of the new searches in the ⌫⌫bb̄ final state
(not visible in the plot) does not give rise to new constraints on the 2HDM for mA > 800 GeV.
However, in other models allowing for larger mass splittings between the BSM states, the searches
in the ⌫⌫bb̄ final state can potentially provide new constraints.

• tan� = 2, type IV

We show the results for tan� = 2 in the lower right plot of Fig. 1. From here on, we focus our
discussion on the Yukawa type IV, in which the new ATLAS searches have the highest potential
for probing parameter regions that were unconstrained so far. In particular, compared to type I
and III the decay width for H ! bb̄ is enhanced in type IV for tan� > 1, such that the searches in
the ⌫⌫bb̄ final state become more important with increasing values of tan�. Moreover, in type IV
the decay width for H ! ⌧

+
⌧
� is suppressed approximately by 1/tan2 �, whereas it is enhanced by

about a factor of tan2 � in type II. Hence, while in type II the parameter region below the di-top
threshold, i.e. mH < 2mt, is entirely excluded by the searches for di-tau resonances, in type IV the
⌫⌫bb̄ search can potentially yield stronger constraints.

8Searches targeting the H
± ! W

±
H decay have been performed by CMS assuming the decay H ! ⌧

+
⌧
� and

assuming a fixed mass of mH = 200 GeV [90].
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ATLAS: 3-top vs. 4-top final states
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