

BSM Higgs physics — theory

Georg Weiglein, DESY & UHH

Madrid, 06 / 2024

- Introduction
- The detected Higgs boson (h125) and possible additional ones
- Higgs self-couplings, the Higgs potential and probes of the electroweak phase transition
- Conclusions

2

Introduction

The Standard Model of particle physics uses a "minimal" form of the Higgs potential with a single Higgs boson that is an elementary particle

The LHC results on the discovered Higgs boson (h125) within the current uncertainties are compatible with the predictions of the Standard Model, but also with a wide variety of other possibilities, corresponding to very different underlying physics

3

Most of the open questions of particle physics are directly related to Higgs physics and in particular to the Higgs potential

Simple example of extended Higgs sector: 2HDM

Two Higgs doublet model (2HDM):

CP conserving 2HDM with two complex doublets: $\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{v_1 + \rho_1 + i\eta_1}{\sqrt{2}} \end{pmatrix}, \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{v_2 + \rho_2 + i\eta_2}{\sqrt{2}} \end{pmatrix}$

5

- **Softly broken** \mathbb{Z}_2 symmetry $(\Phi_1 \rightarrow \Phi_1; \Phi_2 \rightarrow \Phi_2)$ entails 4 Yukawa types

- Potential: $V_{2\text{HDM}} = m_{11}^2 (\Phi_1^{\dagger} \Phi_1) + m_{22}^2 (\Phi_2^{\dagger} \Phi_2) - m_{12}^2 (\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \frac{\lambda_5}{2} ((\Phi_1^{\dagger} \Phi_2)^2 + (\Phi_2^{\dagger} \Phi_1)^2),$

- Free parameters: $m_h, m_H, m_A, m_{H^{\pm}}, m_{12}^2, \tan\beta, \cos(\beta - \alpha), v$ $\tan \beta = v_2/v_1$ $v^2 = v_1^2 + v_2^2 \sim (246 \text{ GeV})^2$

In alignment limit, $\cos(\beta - \alpha) = 0$: h couplings are as in the SM at tree level BSM Higgs physics – theory, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024

i even inggses, /. Or odd inggs, it ondriged ing

s eigenvalues $m_h, m_H, m_A, m_{H^{\pm}}$ and angle α reaking mass scale

$$M^2 = \frac{2m_3^2}{s_{2\beta}}$$

ne 2, 2022

 $m_{\Phi}^2 = M^2 + \tilde{\lambda}_{\Phi} v^2$, $\Phi \in \{H, A, H^{\pm}\}$

where $M^2 = 2 m_{12}^2 / \sin(2\beta)$

Sizeable splitting between m_{ϕ} and M induces large BSM contributions the the Higgs self-couplings (see below)

6

What is the underlying dynamics of electroweak symmetry breaking?

The vacuum structure is caused by the Higgs field through the Higgs potential. We lack a deeper understanding of this!

We do not know where the Higgs potential that causes the structure of the vacuum actually comes from and which form of the potential is realised in nature. Experimental input is needed to clarify this!

Single doublet or extended Higgs sector? (new symmetry?)

Fundamental scalar or compositeness? (new interaction?)

7

Higgs potential: the "holy grail" of particle physics

Crucial questions related to electroweak symmetry breaking: what is the form of the Higgs potential and how does it arise?

Information can be obtained from the trilinear and quartic Higgs self-couplings, which will be a main focus of the experimental and theoretical activities in particle physics during the coming years

BSM Higgs physics — theory, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024

First-order vs. second order EWPT

Potential barrier needed for first-order EWPT, depends on trilinear Higgs coupling(s)

Deviation of trilinear Higgs coupling from SM value is a typical feature of a strong first-order EWPT

10

Gravitational waves as a probe of the early universe

12

The simple picture

refers to the case of a single Higgs doublet field

If more than one scalar field is present, the Higgs potential is a multidimensional function of the components of the different scalar fields

The Higgs potential and vacuum stability

[T. Biekötter, F. Campello, G. W. '24]

Tunneling from a local minimum into the global minimum: toy example, two singlet-type Higgs fields

 \Rightarrow Proceeds via intermediate local minimum

BSM Higgs physics - theory, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024

Depth of stationary points of the Higgs potential

⇒ Most dangerous minimum (MDM) often differs from the global minimum and also from the one that is closest in field space

15

The tree-level Higgs couplings (to 25) and WWs are also using some the nonlinear sigma model

h125 couplings to fermions and gauge bosons:

 $g_{h\gamma\gamma}$

In many BSM models one expects only % level deviations or less from the SM couplings for BSM particles in the TeV ranged F_0 Example of 2HDM-type model in decoupling limit: 0 particles in the loop e hierarchy prob<u>lem makes the Higgs a compos</u> s with a compositeness scale around the seven and for stand viations ighthe Higgs couplings compare to the res s involving the Higgs suppressed by the compositiones $\frac{g_{hxx}}{g_{hxx}} \frac{g_{hbb}}{g_{high}} = \frac{g_{h\tau\tau}}{g_{hgh}} \simeq 1 + 40\% \left(\frac{200 \text{ GeV}}{m_A}\right)^2.$ g_{hgg} $g_{h_{\rm SM}xx}$ \Rightarrow Need very high precision for the couplings 16 BSM Higgs physics - theory, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024 scale

Higgs couplings: example of "heavy" SUSY scenario

BSM Higgs physics — theory, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024

Higgs couplings: example of "heavy" SUSY scenario

BSM Higgs physics - theory, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024

Higgs couplings: towards high precision

- A coupling is not a physical observable: if one talks about measuring Higgs couplings at the % level or better, one needs to precisely define what is actually meant by those couplings!
- For the determination of an appropriate coupling parameter at this level of accuracy the incorporation of strong and electroweak loop corrections is inevitable. This is in general not possible in a strictly model-independent way!
- For comparisons of present and future facilities it is crucial to clearly spell out under which assumptions these comparisons are done

The quest for identifying the underlying physics

- Future Higgs factories: what can we learn from the enhanced precision in comparison to the direct searches at the HL-LHC (existing limits and future prospects)?
- How significant will possible patterns of deviations be? How stringent are indirect hints for additional particles (typically scale like coupling/mass²)?
- How well can one distinguish between different realisations of possible BSM physics?

Questions of this kind have hardly been touched upon at the previous update of the European Strategy for Particle Physics, but they are crucial for making the case for a (low-energy) e⁺e⁻ Higgs factory in the wider scientific community!

EWPT: are there additional sources for CP violation in the Higgs sector?

Baryogenesis: creation of the asymmetry between matter and antimatter in the universe requires a strong first-order electroweak phase transition (EWPT)

First-order EWPT does not work in the SM The amount of CP violation in the SM (induced by the CKM phase) is not sufficient to explain the observed asymmetry between matter and anti-matter in the universe

First-order EWPT can be realised in extended Higgs sectors could give rise to detectable gravitational wave signal

 \Rightarrow Search for additional sources of CP violation

Two-loop "Barr-Zee" electron EDM contribution

21

But: strong experimental constraints from limits on electric dipole moments (EDMs)

CP properties of h125

It has been experimentally verified that h125 is not a pure CP-odd state, but it is by no means clear that it is a pure CP-even state

Sensitive tests via processes involving only Higgs couplings to fermions

with $H \rightarrow \tau \tau$, bb, ...

Test of CP violation in the tau Yukawa coupling

Constraints on the CP structure of the tau Yukawa coupling from $h125 \rightarrow \tau \tau$ decays using angular correlation between decay products:

BSM Higgs physics — theory, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024

Effect on global CP analysis of Higgs-fermion couplings [H. Bahl et al. '22]

Incorporation of recent CMS result on the CP structure of the tau Yukawa coupling from h125 $\rightarrow \tau \tau$ decays using angular correlation between the decay products

CP structure of the Higgs-fermion couplings

Comparison with the existing EDM constraints

ACME [Nature '18]: $d_e \leq 1.1 \times 10^{-29} e \text{ cm at } 90\% \text{ CL}$

Using [Panico, Pomarol, Riembau '18], [Brod, Haisch, Zupan '13], [Brod, Stamou '18],...

Analysis of the resulting amount of baryon asymmetry in the Universe

 $\Rightarrow CP \text{ violation in } \tau \text{ coupling could yield correct baryon asymmetry!}_{BSM Higgs physics - theory, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024}$

BSM Higgs: CMS + ATLAS excess in $\gamma\gamma$ channel at 95 GeV, interpretation in 2HDM + singlet (S2HDM)

BSM Higgs physics — theory, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024

Simplified models for BSM Higgs searches

 \Rightarrow High sensitivity to different simplified model topologies, spins of mediators and invisible particles have relatively small impact

BSM Higgs physics — theory, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024

Simplified models for BSM Higgs searches

[H. Bahl, V. Martin Lozano, G. W. '21]

 \Rightarrow (Acceptance x efficiency) maps, can easily be utilised to obtain exclusion limits for a wide range of models

Application: expected limits for simplified model topologies from search in bbZ + E_{Tmiss} final state

[D. P. Adan et al. '23]

⇒ Signal region with forward jets has sizeable impact

BSM Higgs physics — theory, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024

Heavy BSM Higgs bosons, example: di-top final state

[BSM Higgs ``smoking gun" signatures: see below]

BSM Higgs physics - theory, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024

Higgs self-couplings, the Higgs potential and probes of the electroweak phase transition

Sensitivity to the trilinear Higgs self-coupling from Higgs pair production:

> Double-Higgs production $\rightarrow \lambda_{hhh}$ enters at LO \rightarrow most direct probe of λ_{hhh}

[Note: Single-Higgs production (EW precision observables) $\rightarrow \lambda_{hhh}$ enters at NLO (NNLO)]

Note: the ``non-resonant" experimental limit on Higgs pair production obtained by ATLAS and CMS depends on $\chi_{\lambda} = \lambda_{hhh} / \lambda_{hhh} M_{H} = \frac{125 \text{ GeV}}{M_{H}} M_{H} = \frac{125 \text{ GeV}$

e+e- Higgs factory:

Indirect constraints from measurements of single Higgs production and electroweak precision observables at lower energies are not competitive

Direct measurement of trilinear Higgs self-coupling is possible a at lepton collider with at least 500 GeV c.m. energy BSM Higgs physics – theory, (λ_3/λ_3^{SM}

Higgs pair production: theory predictions

[1] Glover, van der Bij 88; [2] Dawson, Dittmaier, Spira 98; [3] Shao, Li, Li, Wang 13; [4] Grigo, Hoff, Melnikov, Steinhauser 13; [5] de Florian, Mazzitelli 13; [6] Grigo, Melnikov, Steinhauser 14; [7] Grigo, Hoff 14; [8] Maltoni, Vryonidou, Zaro 14; [9] Grigo, Hoff, Steinhauser 15; [10] de Florian, Grazzini, Hanga, Kallweit, Lindert, Maierhöfer, Mazzitelli, Rathlev 16; [11] Borowka, Greiner, Heinrich, SPJ, Kerner, Schlenk, Schubert, Zirke 16; [12] Borowka, Greiner, Heinrich, SPJ, Kerner, Schlenk, Zirke 16; [13] Ferrera, Pires 16; [14] Heinrich, SPJ, Kerner, Luisoni, Vryonidou 17; [15] SPJ, Kuttimalai 17; [16] Gröber, Maier, Rauh 17; [17] Baglio, Campanario, Glaus, Mühlleitner, Spira, Streicher 18; [18] Grazzini, Heinrich, SPJ, Kallweit, Kerner, Lindert, Mazzitelli 18; [19] de Florian, Mazzitelli 18; [20] Bonciani, Degrassi, Giardino, Gröber 18; [21] Davies, Mishima, Steinhauser 19; [26] Chen, Li, Shao, Wang 19, 19; [27] Davies, Herren, Mishima, Steinhauser 19, 21; [28] Baglio, Campanario, Glaus, Mühlleitner, Ronca, Spira 21; [29] Bellafronte, Degrassi, Giardino, Gröber, Vitti 22;

Higgs pair production, prediction and uncertainties

BSM Higgs physics — theory, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024

Bound on the trilinear Higgs self-coupling: \varkappa_λ

Using only information from di-Higgs production and assuming that new physics only affects the trilinear Higgs self-coupling, this limit on theteross section translates to: ATLAS: $-0.6 < \varkappa_{\lambda} < 6.6$ at 95% C.L. [ATLAS Collaboration '22] CMS: $-1.2 < \varkappa_{\lambda} < 6.5$ at 95% C.L. [CMS Collaboration '22] $\mathcal{L} = 3,000 \text{ fb}^{-1}$ BSM Higgs physics r theory, Georg Weiglein, SUSY 2024, Madrid 106 F2024

New ATLAS combination

BSM Higgs physics — theory, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024

Resonant Higgs pair production

ATLAS and CMS present their "resonant" limits by ignoring the non-resonant contributions to the signal for Higgs pair production

In all realistic scenarios the resonant contribution is accompanied by the non-resonant contribution, involving h125, giving rise to potentially sizeable interference contributions

⇒ The experimental results for Higgs pair production have to be such that they can be confronted with r $g = \frac{1}{\sqrt{q}} - \frac{1}{\sqrt{q}} - \frac{1}{\sqrt{q}} + \frac{1}{\sqrt{q}}$

eff

36

06 / 2024

h
Interference effects in Higgs pair production [S. Heinemeyer, M. Mühlleitner, K. Radchenko, G. W. '24]

2HDM example, exp. smearing included, scenario that is claimed to be excluded by the resonant LHC searches, full result vs. resonant contrib.

 \Rightarrow m_{HH} distribution depends very sensitively on x_{λ} , important interference effects, large deviation between resonant contribution and full result; limits using resonant contribution may be too optimistic

The assumption that new physics only affects the trilinear Higgs selfcoupling is expected to hold at most approximately in realistic models

BSM models can modify Higgs pair production via resonant and non-resonant contributions

The current experimental limit can only probe scenarios with large deviations from the SM

 \Rightarrow Direct application of the experimental limit on \varkappa_{λ} is possible if sub-leading effects are less relevant

Check of applicability of the experimental limit on \varkappa_λ

Alignment limit: h has SM-like tree-level couplings

Resonant contribution to Higgs pair production with H or A in the s channel is absent in the alignment limit

The dominant new-physics contributions enter via trilinear coupling

⇒The leading effects in $g_{hh\phi\phi}$ to the Higgs pair production process are correctly incorporated at the 1- and 2-loop order via the corrections to the trilinear Higgs coupling!

Effects of BSM particles on the trilinear Higgs coupling

Trilinear Higgs coupling in extended Higgs sectors: potentially large loop contributions

> Leading one-loop corrections to λ_{hhh} in models with extended sectors (like 2HDM):

First found in 2HDM: [Kanemura, Kiyoura, Okada, Senaha, Yuan '02]

 \mathcal{M} : **BSM mass scale**, e.g. soft breaking scale M of Z_{_2} symmetry in 2HDM n_{Φ} : # of d.o.f of field Φ

 $\,>\,$ Size of new effects depends on how the BSM scalars acquire their mass: $\,m_{\Phi}^2\sim {\cal M}^2+ ilde\lambda v^2$

 \Rightarrow Large effects possible for sizeable splitting between m_{Φ} and \mathcal{M}

Two-loop predictions for the trilinear Higgs coupling in the 2HDM vs. current experimental bounds

[H. Bahl, J. Braathen, G. W. '22] The largest loop corrections to λ_{hhh} in the 2HDM are induced by the quartic couplings between two SM-like Higgs bosons h (where one external Higgs is possibly replaced by its vacuum expectation value) and two BSM Higgs bosons ϕ of the form

$$g_{hh\Phi\Phi} = -\frac{2(M^2 - m_{\Phi}^2)}{v^2} \qquad \Phi \in \{H, A, H^{\pm}\}$$

Leading two-loop corrections involving heavy BSM Higgses and the top quark in the effective potential approximation

[J. Braathen, S. Kanemura '19, '20]

 \Rightarrow Incorporation of the highest powers in $g_{hh\phi\phi}$

Analysis is carried out in the alignment limit of the 2HDM ($\alpha = \beta - \pi/2$) \Rightarrow h has SM-like tree-level couplings

Higgs self-couplings in extended Higgs sectors

Effect of splitting between BSM Higgs bosons:

Very large corrections to the Higgs self-couplings, while all couplings of h₁₂₅ to gauge bosons and fermions are SM-like (tree-level couplings agree with the SM in the alignment limit)

[H. Bahl, J. Braathen, M. Gabelmann, G. W. '23]

Trilinear Higgs coupling: current experimental limit vs. prediction from extended Higgs sector (2HDM)

Prediction for x_{λ} up to the two-loop level:

[H. Bahl, J. Braathen, G. W. '22, Phys. Rev. Lett. 129 (2022) 23, 231802]

⇒ Current experimental limit excludes important parameter region that would be allowed by all other constraints!

Experimental limit on the trilinear Higgs coupling already has sensitivity to probe extended Higgs sectors!

Constraints in the mass plane of H and A

⇒ LHC limits exclude parameter regions that would be allowed by all other constraints; high sensitivity of future limits / measurements!

BSM Higgs physics — theory, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024

Correlation of deviations in \mathbf{x}_{λ} with effects in other couplings? Real scalar singlet model

This plot caused some discussions in the context of strategies for future colliders (displayed points feature a FOEWPT):

Correlation of deviations in \mathbf{x}_{λ} with effects in other couplings? Real scalar singlet model

[J. Braathen, S. Heinemeyer, K. Radchenko, A. Verduras '24] Loop corrections to both couplings taken into account (displayed points feature a FOEWPT):

Large deviations in x_λ possible for effects in g_{hZZ} below the FCC sensitivity
BSM Higgs physics – theory, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024

Correlation of deviations in \mathbf{x}_{λ} with effects in other couplings? Two Higgs Doublet model

[H. Bahl, J. Braathen, M. Gabelmann, K. Radchenko, G. W. '24]

 $\Rightarrow \text{Large deviations in } \varkappa_{\lambda} \text{ possible for effects in } g_{hZZ} \text{ below the FCC} \\ \text{sensitivity} \\ \text{BSM Higgs physics - theory, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024} \end{cases}$

Connection between the trilinear Higgs coupling and the evolution of the early Universe

2HDM, N2HDM, ... : the parameter region giving rise to a strong first-order EWPT, which may cause a detectable gravitational wave signal, is correlated with an enhancement of the trilinear Higgs selfcoupling and with "smoking gun" signatures at the LHC

[T. Biekötter, S. Heinemeyer, J. M. No, M. O. Olea, G. W. '22]

2HDM of type II: region of strong first-order EWPT

[T. Biekötter, S. Heinemeyer, J. M. No, M. O. Olea, G. W. '22]

BSM Higgs physics - theory, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024

Relation between trilinear Higgs coupling and strong first-order EWPT with potentially observable GW signal

 \Rightarrow Region with potentially detectable GW signal and strong first-order EWPT is correlated with significant deviation of x_{λ} from SM value

BSM Higgs physics - theory, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024

Prospects for measuring the trilinear Higgs coupling: HL-LHC vs. ILC (500 GeV, Higgs pair production)

Probing the electroweak phase transition with the "smoking gun" signature

⇒ Good prospects for probing the regions giving rise to strongest firstorder EWPTs and to a potentially observable gravitational wave signal BSM Higgs physics – theory, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024

Recent ATLAS result for the search for the "smoking gun" signature $pp \rightarrow A \rightarrow ZH \rightarrow Ztt$ in the 2HDM

[ATLAS Collaboration '23]

Constraints in the mass plane of H and A

[H. Bahl, J. Braathen, G. W. '23]

 \Rightarrow LHC limits exclude parameter regions that would be allowed by all other constraints; high sensitivity of future limits / measurements!

ATLAS result vs. preferred parameter region for strong first-order electroweak phase transition

New CMS result for pp $\rightarrow A \rightarrow ZH \rightarrow Ztt$ in the 2HDM

Exploring HHH production w.r.t. Higgs self-couplings

Is it possible to obtain bounds from triple Higgs production on x_3 and x_4 that go beyond the existing theoretical bounds from perturbative unitarity? Potential for x_3 constraints beyond the ones from di-Higgs production?

How big could the deviations in x_4 from the SM value (= 1) be in BSM scenarios?

Bounds from perturbative unitarity

- Process relevant for κ_3 , κ_4 is $HH \rightarrow HH$ scattering (see also [Liu et al `18])
- Jacob-Wick expansion allows to extract partial waves

BOINT TILYS PLASSES - LIEURY, GEURY VERYIEITI, SUSY ZUZ4, INIAUTIU, UD / ZUZ4

Prospects for the HL-LHC: 6b and 4b2τ channels comb. [P. Stylianou, G. W. '24]

59 BSM Higgs physics — theory, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024

Triple Higgs production: HL-LHC vs. lepton colliders

HL-LHC is competitive to 1 TeV lepton collider; higher-energetic lepton colliders have better sensitivity

Conclusions

Properties of h125: demonstrate physics gain from improved accuracy of couplings to gauge bosons and fermions; CP-odd component of h125 can have important implications for explaining the baryon asymmetry

BSM Higgs searches: interesting excesses under investigation

Trilinear Higgs self-coupling: close relation to electroweak phase transition and thermal evolution of early universe; current constraints from LHC have already sensitivity to physics of extended Higgs sectors

Quartic Higgs self-coupling: HL-LHC has potential for constraints beyond unitarity bounds

Extended Higgs sectors (e.g. 2HDM): region with strong first-order EWPT (and potentially detectable GW signal) is typically correlated with significant deviation of \varkappa_{λ} from the SM value and can be probed with LHC "smoking gun" signatures BSM Higgs physics – theory, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024

Strongly first-order EWPT in the 2HDM Barrier is remain $m_i^2 = \mu_S^2 + \lambda_{HS} h^2$, effective potential

Arises from higher-order contributions and thermal corrections to the potential, in particular:

$$-\frac{T}{12\pi}\left[\mu_S^2 + \lambda_{HS}h^2 + \Pi_S\right]^{3/2}$$

BSM Higgs physics

 $\Rightarrow For sizeable quartic couplings an effective cubic term in the Higgs potential is generated [M. O. Ole Vertexponential is generated]$

⇒ Yields mass splitting between the BSM Higgs bosons and sizeable corrections to the trilinear Higgs coupling

Where should experiment and theory meet?

• Properties of h125:

The comparison between experiment and theory is carried out at the level of signal strengths, STXS, fiducial cross sections, ..., and to a lesser extent for x parameters (signal strength modifiers; see example of x_{λ} below) and coefficients of EFT operators

Public tools for confronting the experimental results with model predictions: *HiggsSignals* (signal strengths, STXS), *Lilith* (signal strengths), *HEPfit* (signal strengths), ...

- New versions: *HiggsTools* [H. Bahl et al. '22]

 Limits from the searches for additional Higgs bosons: Public tools for reinterpretation / recasting of experimental results: *HiggsBounds* (limits on σ x BR, full likelihood information incorporated where provided by exp. collaborations) Recasting tools: *MadAnalysis 5, Rivet, ColliderBit, RECAST* (ATLAS-internal), ...

Extended Higgs sectors with additional minima of the scalar potential at the weak scale that may be deeper than the EW vacuum

⇒ Tunneling from EW vacuum to deeper vacua possible depending on the ``bounce action" B (stationary point of the euclidian action) for the tunnelling process

 \Rightarrow EW vacuum can be short-lived, metastable or stable

Decay rate per spatial volume:
$$\frac{\Gamma}{V_S} = K e^{-B}$$

"Most dangerous minimum": highest tunnelling rate from EW vacuum

Constraints from vacuum stability at T = 0 can be combined with the ones from the thermal evolution of the Universe (see below) $_{65}$

Vacuum stability constraints in the MSSM [W.G. Hollik, J. Wittbrodt, G. W. '18]

Parameter plane around example point of *M*_h¹²⁵ benchmark scenario

⇒ Particularly important: instabilities in directions with sfermion vevs (charge or colour-breaking minima, CCB) Character of most-dangerous minimum differs from global minimum Region of absolute stability and global minimum sensitively depend on fields with small couplings to the Higgs

"x framework" and EFT approach for coupling analyses

Simplified framework for coupling analyses: deviations from SM parametrised by "scale factors" \varkappa_i , where $\varkappa_i \equiv g_{Hii}/g^{SM, (0)}_{Hii}$

Assumptions inherent in the x framework: signal corresponds to only one state, no overlapping resonances, etc., zero-width approximation, only modifications of coupling strengths (absolute values of the couplings) are considered ⇒ Assume that the observed state is a CP-even scalar

Theoretical assumptions in determination of the x_i : $x_V \leq 1$, no invisible / undetectable decay modes, ...

EFT: fits for Wilson coefficients of higher-dimensional operators in SMEFT Lagrangian, ...

Probing the SM and extended Higgs sectors

The experimental results indicate that the observed state h125 has SM-like properties, but extensions of the SM may have a higher compatibility with the data than the SM $\Delta\chi^2$

Excesses near 95 GeV at the LHC and at LEP

Experimental constraints on \varkappa_{λ}

[ATLAS Collaboration '22]

Combination assumption	Obs. 95% CL	Exp. 95% CL	Obs. value $^{+1\sigma}_{-1\sigma}$
HH combination	$-0.6 < \kappa_\lambda < 6.6$	$-2.1 < \kappa_\lambda < 7.8$	$\kappa_{\lambda} = 3.1^{+1.9}_{-2.0}$
Single- <i>H</i> combination	$-4.0 < \kappa_\lambda < 10.3$	$-5.2 < \kappa_\lambda < 11.5$	$\kappa_{\lambda} = 2.5^{+4.6}_{-3.9}$
HH+H combination	$-0.4 < \kappa_\lambda < 6.3$	$-1.9 < \kappa_\lambda < 7.5$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
<i>HH</i> + <i>H</i> combination, κ_t floating	$-0.4 < \kappa_\lambda < 6.3$	$-1.9 < \kappa_\lambda < 7.6$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
<i>HH</i> + <i>H</i> combination, κ_t , κ_V , κ_b , κ_{τ} floating	$-1.3 < \kappa_{\lambda} < 6.1$	$-2.1 < \kappa_\lambda < 7.6$	$\kappa_{\lambda} = 2.3^{+2.1}_{-2.0}$

Single-Higgs processes: λ enters at loop level

[E. Petit '19]

How to measure deviations of λ_3

- The Higgs self-coupling can be assessed using di-Higgs production and single-Higgs production
- The sensitivity of the various future colliders can be obtained using four different methods:

	di-Higgs	single-H
exclusive	1. di-H, excl. • Use of σ(HH) • only deformation of κλ	3. single-H, excl. • single Higgs processes at higher order • only deformation of κλ
global	 2. di-H, glob. Use of σ(HH) deformation of κλ + of the single-H couplings (a) do not consider the effects at higher order of κλ to single H production and decays (b) these higher order effects are included 	4. single-H, glob. • single Higgs processes at higher order • deformation of κλ + of the single Higgs couplings

Note: this is based on the assumption that there is a large shift in λ , but no change anywhere else!
Single-Higgs processes: λ enters at loop level

[B. Heinemann '19]

73

Sensitivity to λ : via single-H and di-H production

N2HDM (two doublets + real singlet) example

"Smoking gun" collider signatures: A → Z h₂, A → Z h₃ Nucleation temperature for the first-order EWPT, N2HDM scan:

> [T. Biekötter, S. Heinemeyer, J. M. No, M. O. Olea, G. W. '21] T_n [GeV] 160180 100120140 2002200.35no T_c defined no T_n defined 0.30No first-order EWPT: $\rightarrow Zh_3) \; [pb]$ universe is trapped 0.25in a "false" vacuum 0.20 \downarrow A 0.15*bb* 0.10 0.050.200.350.000.050.100.150.250.30 $\sigma(qq \to A \to Zh_2)$ [pb]

⇒ Lower nucleation temperatures, i.e. stronger first-order EWPTs, are correlated with larger signal rates at the LHC!

BSM Higgs physics - theory, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024

74

Correlation of \mathbf{x}_{λ} with the signal-to-noise ratio (SNR) of a gravitational wave signal at LISA

[T. Biekötter, S. Heinemeyer, J. M. No, M. O. Olea, G. W. '22]

 \Rightarrow Region with potentially detectable gravitational wave signal: significant enhancement of \varkappa_{λ} and non-vanishing mass splitting

BSM Higgs physics - theory, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024

75

GW spectra of scenarios fitting the excess

[T. Biekötter, S. Heinemeyer, J. M. No, M. O. Olea, K. Radchenko, G. W. '23]

76

⇒ Prospects for GW detection depend very sensitively on the precise details of the mass spectrum of the additional Higgs bosons

BSM Higgs physics — theory, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024

Projection for future sensitivity based on ATLAS result

The parameter region that potentially gives rise to a strong first-order EWPT can also be probed via the search

$$H^{\pm} \to W^{\pm}H \to \ell^{\pm}\nu t\bar{t}$$

For the production of the charged Higgs together with *t b* this yields a 4-top like or 3-top like final state

Results for the 4-top final state exist from ATLAS and CMS (and for 3-top vs. 4-top from ATLAS), but so far no dedicated experimental analysis for the charged Higgs channel has been performed!

ATLAS: 3-top vs. 4-top final states

BSM Higgs physics - theory, Georg Weiglein, SUSY 2024, Madrid, 06 / 2024