Exotics at ATLAS (Dark sectors, ALPs, LLPs...)

Audrey Kvam on behalf of the ATLAS Collaboration

University of Massachusetts, Amherst

Overview of SUSY searches at ATLAS already given by Joaquin on Monday

This talk will focus on recent results from the Exotics physics program at ATLAS

More results presented in Maura's, Simon's, and Alexander's talks

The Exotics program is extremely active and diverse!

- Signature-driven
- Targeting a wide range of BSM theories
- Searches for dark matter particles, hidden-sector particles, new vector resonances, leptoquarks, vector-like quarks...
- Aim to provide model-independent limits and use simplified models to maximize reinterpretability

"Only a selection of the available mass limits on new states or phenome †Small-radius (large-radius) jets are denoted by the letter j (J). BSM searches can have extremely wide variety of final states, therefore develop a wide variety of strategies and techniques

MET+X: often defines searches for dark-matter candidates; X refers to visible particles produced in interaction, used to measure p_T imbalance

Displaced objects: long-lived particles (LLPs) can have wildly different signatures depending on decay mode and where the decay happens in the detector! Often rely on dedicated triggers and reconstruction algorithms

Today I'll highlight some recent results involving dark sectors, ALPs, and LLPs! For a more thorough overview, please take a look at the <u>Exotics Report</u> and the complete list of <u>recent exotics results</u>.

Combination and summary of ATLAS dark matter searches interpreted in a 2HDM with a pseudo-scalar mediator

2306.00641

BENCHMARK MODEL

2HDM+*a*: SM scalar sector extended with an additional complex doublet, with an additional pseudo-scalar mediating the interaction between ordinary and dark matter

6 scenarios identified to systematically probe variations of 5 free parameters

		Scenario		Fixed parameter values Varied					
SM Higgs sector extended			$\sin \theta$	<i>m</i> _A [GeV]	<i>m</i> _{<i>a</i>} [GeV]	m_{χ} [GeV]	$\tan \beta$		
with 5 additional scalar states:	1	а	0.35	_	_	10	1.0	(m m.)	
	1	b	0.70	_	_	10	1.0	(m_a, m_A)	
- Scalar H	2	a	0.35	_	250	10	_	(m + top P)	
- Pseudo-scalar A	Z	b	0.70	_	250	10	_	$(m_A, \tan \beta)$	
Changed Iliege head to II /	2	а	0.35	600	_	10	-	(m + top P)	
- Charged Higgs bosons H+/-	3	b	0.70	600	_	10	_	$(m_a, \tan \beta)$	
- Pseudo-scalar mediator <i>a</i>	4	a	_	600	200	10	1.0	sin 0	
	4	b	_	1000	350	10	1.0	5111 0	
	5		0.35	1000	400	-	1.0	m_{χ}	
χ is fermionic DM particle	6		0.35	1200	_	_	1.0	(m_a, m_χ)	

Summary of 18 analyses, each targeting a subset of the 6 scenarios presented above. The 3 most sensitive results are combined: MET+ $Z(\ell \ell)$, MET+ $h(b\bar{b})$, tb H+-(tb)

No overlap between analysis signal regions

Scenario 1a Scenario 2b Scenario 3a 2HDM+a, Dirac DM, sin θ = 0.35, m_v = 10 GeV, g_v = 1, m_a = m_H = m_{HE} = 600 GeV 2HDM+a, Dirac DM, sin θ = 0.35, tan β = 1, m_v = 10 GeV, g_v = 1, m_A = m_H = $m_{H\pm}$ 2HDM+a, Dirac DM, $\sin\theta = 0.7$, $m_{p} = 10$ GeV, $g_{p} = 1$, $m_{a} = m_{H} = m_{H}$, $m_{a} = 250$ GeV ∑²⁰⁰⁰ E_{τ}^{miss} +h($\tau\tau$), 139 fb⁻¹ E_T^{miss}+h(bb), 139 fb⁻¹ tan β E_T^{miss}+h(bb), 139 fb⁻¹ đ Γ/m > 20% arXiv:2305.12938 ATLAS JHEP 11 (2021) 205 Limits at 95% CL 9 0 1800 tan ATLAS JHEP 11 (2021) 20 ATLAS E_T^{miss} +h($\gamma\gamma$), 139 fb⁻¹ Observed E_T^{miss} +h($\gamma\gamma$), 139 fb⁻¹ E_T^{miss}+h(ττ), 139 fb⁻¹ Vs = 13 TeV, 139 √s = 13 TeV, 139 fb √s = 13 TeV, 36.1 - 139 fb Limits at 95% CL JHEP 10 (2021) 13 Expected Limits at 95% CL JHEP 10 (2021) 13 10 10 arXiv:2305.12938 É[⊄] 1600 - Observed E_T^{miss}+Z(qq), 36.1 fb JHEP 10 (2018) 180 Observed E^{miss}_T+Z(II), 139 fb⁻¹ E^{miss}_T+Z(II), 139 fb⁻¹ ---Expected PLB 829 (2022) 137066 PLB 829 (2022) 1370 E_T^{miss}+tW, 139 fb⁻¹ E_T^{miss}+tW, 139 fb⁻¹ E_T^{miss}+tW, 139 fb⁻¹ 1400 arXiv:2211.13138 arXiv:2211.13138 arXiv:2211.13138 E^{miss}+j, 139 fb⁻¹ tbH±(tb), 139 fb-1 E^{miss}_T+j, 139 fb⁻¹ 1200 JHEP 06 (2021) PRD 103 (2021) 1120 PRD 103 (2021) 1120 tttt, 139 fb-1 tītī, 139 fb⁻¹ tbH[±](tb), 139 fb⁻¹ 1000 arXiv:2211.0113 arXiv:2211.01136 JHEP 06 (2021) 145 - Combination h→invisible, 139 fb⁻¹ - tttt, 139 fb⁻¹ E_T^{miss} +h(bb), E_T^{miss} +Z(II), tbH[±](tb) arxiv:2301.10731 arXiv:2211.0113 800 Combination — h→invisible, 139 fb⁻¹ E_{T}^{miss} +h(bb), E_{T}^{miss} +Z(II), tbH[±](tb) 222222222222 arxiv:2301.1073 600 — Combination $m_A \approx m_a$ E_T^{miss} +h(bb), E_T^{miss} +Z(II), tbH[±](tb) 400 /m > 20% Γ/m > 20% 200 300 400 500 600 700 800 900 1000 1100 1200 100 200 300 400 500 600 700 800 100 150 200 250 300 350 400 450 500 m₄ [GeV] m_a [GeV] m_a [GeV] Scenario 4b Scenario 5 Scenario 6 2HDM+a, Dirac DM, sin θ = 0.35, tan β = 1, g = 1, m = m_H = m_H = 1.2 TeV σ/σ_{theory} E_T^{miss}+h(bb), 139 fb⁻¹ 10 ATLAS 2HDM+a, Dirac DM E_r^{miss}+h(bb), 139 fb⁻¹ E^{miss}_T+h(bb), 139 fb⁻¹ [GeV] JHEP 11 (2021) 209 ATLAS 2HDM+a, Dirac DM √s = 13 TeV, 36.1-139 fb JHEP 11 (2021) 209 JHEP 11 (2021) 20 $m_{\chi} = 10 \text{ GeV}, g_{\chi} = 1$ E^{miss}+h(γγ), 139 fb⁻¹ vs = 13 TeV, 139 fb מ/a_{th} 10⁵ $m_A = m_H = m_{H^0} = 1 \text{ TeV}$ 10³ — h→invisible, 139 fb⁻ Limits at 95% CL ATLAS m_a = 350 GeV JHEP 10 (2021) 13 -E^{miss}+Z(II), 139 fb⁻¹ arxiv:2301.1073 $\sin \theta = 0.35$, $\tan \beta = 1$, g E^{miss}_T+Z(II), 139 fb⁻¹ Ĕ s = 8 TeV, 20.3 fb⁻¹ Observed PLB 829 (2022) 137066 $m_A = m_H = m_{H^2} = 1 \text{ TeV}$ m_a = 400 GeV — h→aa→μμττ, 20.3 fb⁻ s = 13 TeV, 36.1 - 139 fb PLB 829 (2022) 137066 Expected 10 PRD 92 (2015) 0520 $\tan \beta = 1$ -tbH[±](tb), 139 fb⁻¹ 10 E_T^{miss}+Z(qq), 36.1 fb⁻¹ JHEP 06 (2021) 145 — h→aa→µµµµ, 36.1 fb[·] JHEP 10 (2018) 18 JHEP 06 (2018) 16 10³ E_____+Wt, 139 fb⁻¹ lic Ω, h² = 0.12 -tftf, 139 fb 10^{2} — h→aa→µµµµ, 139 fb⁻¹ arXiv:2211 13138 arXiv:2211.01136 JHEP 03 (2022) 04 E_T^{miss}+j, 139 fb⁻¹ 10^{2} — h→aa→bbbb, 36.1 fb⁻¹ -Combination PRD 103 (2021) 11200 JHEP 10 (2018) 03 E_{T}^{miss} +h(bb), E_{T}^{miss} +Z(II), tbH[†](tb) Limits at 95% CL -tbH[±](tb), 139 fb⁻ — h→aa→bbuu, 139 fb⁻¹ 10 Observed JHEP 06 (2021) 14 PRD 105 (2022) 012006 Expected Relic Density Expected -Combination — Observed Relic Ω_ch² = 0.12 E_T^{miss} +h(bb), E_T^{miss} +Z(II), tbH[±](tb) $\sigma/\sigma_{\text{particular}}=1$ Limits at 95% CL 10-- Observed -- Expected pected Relic $\Omega_{c}h^{2} > 0.12$ 10 10-50 100 150 200 250 300 350 400 450 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10 10² 10³ m, [GeV] m_a [GeV] sinθ

For scenario 1a with m_a =150 GeV, values of m_A between 250 GeV and 1.55 TeV are excluded For scenario 3a with tan β =10, values of m_a are excluded up to ~400 GeV

12 June 2024

Search for dark matter particles in events with a hadronically decaying vector boson and missing transverse momentum

2406.01272

BENCHMARK MODELS Photophobic 2HDM+a ALP h $\overline{\chi}$ \overline{q} \boldsymbol{q} χ ALP a in association with V boson MET+Z decaying hadronically Higgs to Simplified invisible DN $Z'_{V/A}$ V^* χ \bar{q} $\overline{\chi}$ $\overline{\chi}$ \overline{q} h produced in association with V, χ pair-production with mediator $Z'_{V/A}$ decaying into χ

Search is split into 2 regimes based on the boost of the V boson in the final state

			Merged					Resolved	L			
					Data c	leaning						
		Primary vertex with at least two tracks with $p_{\rm T} > 500 {\rm MeV}$										
D 1				1	Νο τ-	leptons						
Preselection					$p_{T,\ell}^{\text{miss}} >$	30 GeV						
					$\min_i (\Delta \phi (E_T^n))$	$(iss_{k}, j_{i})) >$	> 20°					
					$\Delta \phi(E_{\rm miss}^{\rm miss},$	$p_{\rm miss}^{\rm miss}) < 1$	90°					
$\Delta \phi(E_{m,k}^{\text{miss}}, V)$		4	$\Delta \phi(E_{m,k}^{\text{miss}}, J_1)$	> 120°	1,4	1,¢	Δ	$\phi(E_{m,k}^{\text{miss}}, j_1 j_2)$	> 120°			
E ^{miss}			> 250 Ge	V		2		> 200 GeV	v			
− T ,¢			> 1I < 4	1 i		2		$> 2i \cdot < 4$	Li			
Jets			$n^{J_1} > 2000$	i.j TeV		$\frac{1}{n^{j_1}} > 45 \text{GeV}$						
		h-tage	$p_{\rm T} \neq 2000$	to outside J_1		8	$\Sigma \cdot n^{j_i} >$	$\frac{1}{2} > 120(150)$ GeV for $2i (> 3i)$				
			,eu uuen jet ve				$\Delta i P_{\rm T} =$	120 (100) 001				
V-tag		High pu	irity: mass an	d substructure		$\Delta \phi(j_1, j_2) < 140^\circ; \ \Delta R(j_1, j_2) < 1.4$						
		Low purity	mass and inv	erted substruc	ture	$m_{j_1 j_2} \in [63, 105]$ GeV						
	SR	CR2mu	CR2el	CR1mu0b	CR1mu1b	SR	CR2mu	CR2el	CR1mu0b	CR1mu1b		
Trigger	$E_{ m T}^{ m miss}$	$E_{ m T}^{ m miss}$	Electron	$E_{ m T}^{ m miss}$	$E_{\mathrm{T}}^{\mathrm{miss}}$	$E_{ m T}^{ m miss}$	$E_{ m T}^{ m miss}$	Electron	$E_{ m T}^{ m miss}$	$E_{ m T}^{ m miss}$		
е	Ō	Ō	2	Ō	Ō	Ō	Ō	2	0	Ō		
μ	0	2	0	1	1	0	2	0	1	1		
S	>8	-	-	-	-	>8	-	-	-	-		
$m_{\ell\ell}$ [GeV]	-	∈ [66, 116]	∈ [66, 116]	-	-	-	∈ [66, 116]	∈ [66, 116]	-	-		
$m_{\mu\nu}^1$ [GeV]	-	-	-	∈ [30, 100]	€ [30, 100]	-	-	-	∈ [30, 100]	∈ [30, 100]		
$n_{b \in J}$	-	-	-	0	≥1	-	-	-	-	-		
n _b	-	<u> </u>	-)	-	-	-	<u> </u>	-	0	≥1		

Each signal region has 2 corresponding control regions to estimate Z+jets, and 2 CRs to estimate W+jets and ttbar background processes

No excess observed Model independent limits set on visible cross-

section, in addition to model-dependent limits

600

 m_a [GeV]

2HDM+a. scenario 1

 E_{τ}^{miss} threshold [GeV]

ALPs

Simplified DM

H to invisible

Limits on $B_{h \to inv}$.	Expected limit	Observed limit
Merged topology	$0.34_{-0.09}^{+0.14}$	0.38
Resolved topology	$0.54^{+0.23}_{-0.15}$	0.71
Combined	$0.31^{+0.13}_{-0.09}$	0.34

Search for high-mass resonances in final states with a τ -lepton and missing transverse momentum 2402.16576

BENCHMARK MODELS

Targeting theories that predict the existance of **additional heavy vector gauge bosons**

In this search: $W' \rightarrow \tau \nu$

Interpreted in terms of

- Sequential SM: flavor-universal benchmark that assumes the W' and Z' couplings are identical to SM W and Z
- NUGIM: can exhibit different couplings for the three lepton generations, where non-universality of W' couplings to SM fermions is parametrized by angle parameter θ_{NU}

Hadronic τ -lepton decays are identified with an RNN based on calorimeter shower shape and tracking information. Non-jet backgrounds estimated with MC simulation

Misidentification of jets as τ -lepton candidates is not well modeled by simulation

CRs defined to estimate in a data-driven way

Transfer factor derived from CR2/CR3 and applied to CR1 to get expected background in SR

No excess observed

Model-independent limits provided on visible cross section, as well as limits on SSM and NUGIM models

Visible cross-sections larger than 17 fb for $m_T^{\text{thresh}}=0.2$ TeV and 0.014 fb for $m_T^{\text{thresh}}=2.95$ TeV excluded

5x improvement over previous visible cross section limits >1.5 TeV!

12 June 2024

Combination of searches for a Higgs boson decaying into a photon and a massless dark photon 2

2406.01656

BENCHMARK MODELS

ZH and VBF used in combination for SM Higgs assumption ggF and VBF used in combination for additional BSM Higgs hypotheses

Searches defined by final-state signatures targeting production modes

- 1. γ + MET + VBF jets (VBF channel)
- MET trigger, 2 VBF jets
- 10 SRs defined by m_{jj} and m_{T} For combination:
- ggF contribution included using RECAST
- Additional signal samples generated to align with masses probed in ggF analysis
- 2. γ + MET + $Z(\ell \ell)$ (*ZH* channel)
- Lepton trigger
- BDT classifier used to discriminate signal and background
- 3. γ + MET (ggF channel)
- Photon trigger
- RECAST from mono- γ search (2011.05259) For combination:
- VBF contribution also included

The 3 SRs were found to have negligible overlap, therefore treated as statistically independent

ZH+VBF results also interpreted in terms of a minimal DM model featuring a generic messenger sector coupling to both U(1) and U(1)_d sectors

Search for dark mesons decaying to top and bottom quarks

BENCHMARK MODELS

2405.20061

Extension of the SM by a new dark sector:

- Strongly coupled and confining
- Conserving SU(2) dark flavor symmetry
- Dark mesons are the composites of dark vector-like fermions
- Dark mesons interact with EW sector and Higgs boson

Analysis target: Pair production of dark mesons resonantly through dark rho or through Drell-Yan, **decaying into ttbb or tttb**

- 1. Hadronic channel
 - 8-10 jets, at least 4 of which are b-jets

 H_T trigger with threshold 850-1000 GeV, depending on data-taking period Main background from multijets estimated in ABCD plane

2. 1-lepton channel

Exactly 1 muon or electron in the event, in addition to jets Single-lepton triggers with threshold 20-26 GeV, depending on data-taking period Main background from $t\bar{t}$ +HF estimated with MC simulation

To fully contain dark meson decay products, jets are reclustered into large-R jets with radius R=1.2

Fully hadronic large-R jets: J^{had} Large-R jets containing 1 lepton: J^{lep}

18

Search for light, long-lived particles using displaced vertices 2403.15332 **BENCHMARK MODELS** Higgs portal ALP model #1 H mediates interactions with V^* dark sector Η through coupling to neutral scalar s photophobic *a* couples to W/Z bosons ALP model #2 u/cuuuu $\sim W$ photophobic *a* couples to up-type quarks H. Russell 19

Displaced jets are distinguished from prompt jets using a per-jet BDT

Events must have at least 2 jets with BDT score>0.5

Event-level discriminant computed by taking product of jet BDT scores

Displaced vertices are reconstructed from a combination of prompt and displaced tracks

This is the first result using the updated largeradius tracking (LRT) reconstruction algorithm

- Maintains signal efficiency while reducing fake reconstruction by a factor of 20

SRs are divided by Higgs production mode and vertex multiplicity Higgs portal: all 6 are fit simultaneously ALP Za model: only 2-lepton nDV=1 considered ALP t->qq(Za) model: only 1lepton nDV=1 considered

No excess observed

Provides 10-100x improvement over previous ATLAS results for Higgs portal with the same dataset!

First LLP results for the $V' \rightarrow Va$ and $t\bar{t}, t \rightarrow aq$ ALP models

Summary

- Highlighting a few very recent Exotics results
 - Summary/combination of 2HDM+a dark matter searches
 - Search for DM with hadronically-decaying vector boson + MET
 - Search for high-masses resonances with τ + MET
 - Combination of searches for Higgs boson to a photon+dark photon
 - Search for dark mesons decaying to t, b quarks
 - Search for LLPs decaying to hadronic jets in the inner detector
- Signature-driven analyses interpreted in terms of benchmark models, often simplified models, in addition to providing model-independent limits
- Developments in analysis techniques allow for significant improvements in sensitivity even with the same dataset
- Lots more to come, especially with Run 3!

Thank you!

BACKUP

Search for dark mesons decaying to top and bottom quarks

Event preselection:

Variable	All-hadronic channel	One-lepton channel
N _{lep} (baseline)	0	1
N _{lep} (signal)	-	1
$N_{jets}(R = 0.4)$	≥ 6	≥ 5
$N_{jets}(R = 1.2)$	≥ 2	-
N_{b-jets}	≥ 3	≥ 3
H_{T}	≥ 1150 GeV	$\geq 300 \text{ GeV}$

SR event selection:

	Tag	Variable	Tag selection	Anti-tag selection
Both large-R jets		$m_{bb}/p_{\mathrm{T},bb}$	> 0.25	> 0.25
Leading large- <i>R</i> jet	bb_1	$\Delta R(j,b_2)$	< 1.0	≥ 1.0
Sub-leading large- <i>R</i> jet	bb_2	$\Delta R(j,b_2)$	< 1.0	≥ 1.0
Leading large- <i>R</i> jet	$\pi_{D,1}$	$m_{\rm jet,R=1.2}$	[300 – 325 GeV, 325 – 400 GeV, > 400 GeV]	≤ 300 GeV
Sub-leading large- <i>R</i> jet	$\pi_{D,2}$	$m_{\rm jet,R=1.2}$	[250 – 300 GeV, 300 – 350 GeV, > 350 GeV]	≤ 250 GeV

Combination and summary of ATLAS dark matter searches interpreted in a 2HDM with a pseudo-scalar mediator

14 free parameters in 2HDM+*a* model:

Masses of $m_A, m_H, m_{H^{\pm}}, m_a, m_{\chi}$ Yukawa coupling strength between mediator and DM particle, g_{χ} EW vacuum expectation value, VEV Ratio of the VEVs of the two Higgs doublets, $\tan \beta$ Mixing angles of CP-even (α) and CP-odd (θ) weak eigenstates Quartic coupling of the pure 2HDM potential term (λ_3) Quartic couplings of the potential terms connecting the doublet (λ_{P1}) and singlet fields (λ_{P2})

Assumptions made for 2HDM+*a* scenarios:

$$m_A = m_H = m_{H^{\pm}}$$
$$\lambda_{P1} = \lambda_{P2} = \lambda_3 = 3$$
$$g_{\chi} = 1$$
$$\sin(\beta - \alpha) = 1$$

Combination and summary of ATLAS dark matter searches interpreted in a 2HDM with a pseudo-scalar mediator

Analysis/Scenario	1a	1b	2a	2b	3a	3b	4a	4b	5	6
$E_{\rm T}^{\rm miss} + Z(\ell\ell)$ [74]	х	х	X	х	X	X	X	X	x	
$E_{\rm T}^{\rm miss}$ + $h(b\bar{b})$ [75]	х	х	Х	Х	х	х	х	х	х	Х
$E_{\rm T}^{\rm miss} + h(\gamma\gamma)$ [84]	х	х			х	х	х	х		
$E_{\mathrm{T}}^{\mathrm{miss}} + h(\tau\tau)$ [78]	х			х						
$E_{\rm T}^{\rm miss} + tW$ [77]	х	х	Х	Х	х	х	х	х		
$E_{\rm T}^{\rm miss}$ + j [45]	х	х			х	х	х	х		
$h \rightarrow \text{invisible [86]}$	х	х			х					х
$E_{\rm T}^{\rm miss} + Z(q\bar{q})$ [126]	х						х	х		
$E_{\rm T}^{\rm miss}$ + $b\bar{b}$ [127]							х	х		
$E_{\rm T}^{\rm miss} + t\bar{t}$ [127, 128]							х	х		
<i>tītī</i> [85]	х	х	Х	Х	х	х	х	х	х	
$tbH^{\pm}(tb)$ [76]	х	х	Х	Х	х	х	х	х	х	
$h \rightarrow aa \rightarrow f\bar{f}f'\bar{f}'$ [79–83]										х

12 June 2024

Search for dark matter particles in events with a hadronically decaying vector boson and missing transverse momentum

Search for light, long-lived particles using displaced vertices

Search for light, long-lived particles using displaced vertices

	Excluded range of $c\tau_s$ (mm)							
$BR(H \rightarrow ss \rightarrow 4b/4c)$	$m_s = 55 \text{ GeV}$	$m_s = 40 \text{ GeV}$	$m_s = 16 \text{ GeV}$	$m_s = 5 \text{ GeV}$				
1%	5.7 - 67.9	9.1 - 33.4	-	-				
5%	1.8 - 361.2	1.6 - 254.2	2.2 - 80.3	-				
10%	1.1 - 626.8	1.2 - 447.5	1.5 - 133.3	3.1 - 19.5				
20%	0.8 - 1070.0	0.9 - 761.9	1.1 - 210.2	1.9 – 37.0				

	Excluded range of $c\tau_s$ (mm)						
$BR(H \rightarrow ss \rightarrow 4u)$	$m_s = 55 \text{ GeV}$	$m_s = 40 \text{ GeV}$	$m_s = 16 \text{ GeV}$	$m_s = 5 \text{ GeV}$			
1%	4.4 - 107.4	4.5 - 80.9	7.5 – 19.8	-			
5%	1.6 - 398.6	1.4 - 329.2	1.8 - 104.7	5.6 - 8.5			
10%	1.2 - 651.9	1.1 - 547.2	1.3 - 168.4	2.4 - 23.3			
20%	0.9 - 1076.0	0.8 - 928.5	1.0 - 263.4	1.5 - 42.2			