M.J. Ramsey-Musolf

- T.D. Lee Institute/Shanghai Jiao Tong Univ.
- UMass Amherst
- Caltech

- mjrm@sjtu.edu.cn
- <u>mjrm@umass.edu</u>
- 微信 : mjrm-china
- https://michaelramseymusolf.com/

About MJRM:

Science

Family

My pronouns: he/him/his # MeToo

Friends

SUSY 2024 Madrid June 13, 2024

I. Context & Questions

- Interesting in its own right
- Key ingredient for EW baryogenesis
- Source of gravitational radiation

4.3

Extrema can evolve differently as T evolves → rich possibilities for symmetry breaking

5.1

Extrema can evolve differently as T evolves → rich possibilities for symmetry breaking

Extrema can evolve differently as T evolves → rich possibilities for symmetry breaking

5.3

 How reliably can we compute the thermodynamics ?

n evolve differently as T evolves → ilities for symmetry breaking

Was There an EW Phase Transition?

Bubble Collisions

Extrema can evolve differently as T evolves → rich possibilities for symmetry breaking

Was There an EW Phase Transition?

Bubble Collisions

$T_{EW} \rightarrow$ Scale for Colliders & GW probes

High-T SM Effective Potential

$$V(h,T)_{\rm SM} = D(T^2 - T_0^2) \, h^2 + \lambda \, h^4 \ \ {\rm \textbf{+}} \ .. \label{eq:V}$$

MJRM: 1912.07189

First Order EWPT from BSM Physics

 $a_2 H^2 \phi^2$: T > 0loop effect

 $a_2 H^2 \phi^2$: T = 0tree-level effect

 $a_1 H^2 \phi$: T = 0tree-level effect _{8.1}

MJRM: 1912.07189

First Order EWPT from BSM Physics

First Order EWPT from BSM Physics

Gravitational Waves

Gravitational Waves

EWPT laboratory for GW micro-physics: colliders can probe particle physics responsible for non-astro GW sources \rightarrow test our framework for GW microphysics at other scales

9.2

II. Theory-Pheno Interface

Theoretical developments → phenomenological implications

Models & Phenomenology

What BSM Scenarios?

SM + Scalar Sil	Espinosa, Quiros 93, Benson 93, Choi, Volkas 93, Vergara 96, Branco, Delepine, Emmanuel- Costa, Gonzalez 98, Ham, Jeong, Oh 04, Ahriche 07, Espinosa, Quiros 07, Profumo, Ramsey-Musolf, Shaughnessy 07, Noble, Perelstein 07, Espinosa, Konstandin, No, Quiros 08, Barger, Langacker, McCaskey, Ramsey-Musolf, Shaughnessy 09, Ashoorioon, Konstandin 09, Das, Fox, Kumar, Weiner 09, Espinosa, Konstandin, Riva 11, Chung, Long 11, Barger, Chung, Long, Wang 12, Huang, Shu, Zhang 12, Fairbairn, Hogan 13, Katz, Perelstein 14, Profumo, Ramsey-Musolf, Wainwright, Winslow 14, Jiang, Bian, Huang, Shu 15, Kozaczuk 15, Cline, Kainulainen, Tucker-Smith 17, Kurup, Perelstein 17, Chen, Kozaczuk, Lewis 17, Gould, Kozaczuk, Niemi, Ramsey-Musolf, Tenkanen, Weir 19
SM + Scalar Do (2HDM)	Turok, Zadrozny 92, Davies, Froggatt, Jenkins, Moorhouse 94, Cline, Lemieux 97, Huber 06, Froome, Huber, Seniuch 06, Cline, Kainulainen, Trott 11, Dorsch, Huber, No 13, Dorsch, Huber, Mimasu, No 14, Basler, Krause, Muhlleitner, Wittbrodt, Wlotzka 16, Dorsch, Huber, Mimasu, No 17, Bernon, Bian, Jiang 17, Andersen, Gorda, Helset, Niemi, Tenkanen, Tranberg, Vuorinen, Weir 18
SM + Scalar Tr	Patel, Ramsey-Musolf 12, Niemi, Patel, Ramsey-Musolf, Tenkanen, Weir 18
MSSM	Carena, Quiros, Wagner 96, Delepine, Gerard, Gonzalez Felipe, Weyers 96, Cline, Kainulainen 96, Laine, Rummukainen 98, Carena, Nardini, Quiros, Wagner 09, Cohen, Morrissey, Pierce 12, Curtin, Jaiswal, Meade 12, Carena, Nardini, Quiros, Wagner 13, Katz, Perelstein, Ramsey-Musolf, Winslow 14
NMSSM	Pietroni 93, Davies, Froggatt, Moorhouse 95, Huber, Schmidt 01, Ham, Oh, Kim, Yoo, Son 04, Menon, Morrissey, Wagner 04, Funakubo, Tao, Yokoda 05, Huber, Konstandin, Prokopec, Schmidt 07, Chung, Long 10, Kozaczuk, Profumo, Stephenson Haskins, Wainwright 15

Thanks: J. M. No

Extensive references in MJRM: 1912.07189

11.1

Models & Phenomenology

What BSM Scenarios?

SM + Scalar Singlet

Espinosa, Quiros 93, Benson 93, Choi, Volkas 93, Vergara 96, Branco, Delepine, Emmanuel-Costa, Gonzalez 98, Ham, Jeong, Oh 04, Ahriche 07, Espinosa, Quiros 07, Profumo, Ramsey-Musolf, Shaughnessy 07, Noble, Perelstein 07, Espinosa, Konstandin, No, Quiros 08, Barger, Langacker, McCaskey, Ramsey-Musolf, Shaughnessy 09, Ashoorioon, Konstandin 09, Das, Fox, Kumar, Weiner 09, Espinosa, Konstandin, Riva 11, Chung, Long 11, Barger, Chung, Long, Wang 12, Huang, Shu, Zhang 12, Fairbairn, Hogan 13, Katz, Perelstein 14, Profumo, Ramsey-Musolf, Wainwright, Winslow 14, Jiang, Bian, Huang, Su 15, Nor Cok 15, Cline, Kainulainen, Tucker-Smith 17, Kurup, Perelstein 17, Chun Konaruu, Levis 11, Culd, Kozaczuk, Niemi, Ramsey-Musolf, Tenkanen, Weir 19.

SM + Scalar Doublet (2HIQI) S & P Scalar Triplet Turok, Zadarany 92, Davies Froggatt, Jenkins, Moorhouse 94, Cline, Lemieux 97, Huber 06, Fra mei Huber, Sciniuch 06, Cline, Kainulainen, Trott 11, Dorsch, Huber, No 13, Dorsch, Futur, Mimasu, No 14, Basler, Krause, Muhlleitner, Wittbrodt, Wlotzka 16, Dorsch, Huber, Mimasu, No 17, Bernon, Bian, Jiang 17, Andersen, Gorda, Helset, Niemi, Tenkanen, Tranberg, Vuorinen, Weir 18...

Patel, Ramsey-Musolf 12, Niemi, Patel, Ramsey-Musolf, Tenkanen, Weir 18 ...

Carena, Quiros, Wagner 96, Delepine, Gerard, Gonzalez Felipe, Weyers 96, Cline, Kainulainen 96, Laine, Rummukainen 98, Carena, Nardini, Quiros, Wagner 09, Cohen, Morrissey, Pierce 12, Curtin, Jaiswal, Meade 12, Carena, Nardini, Quiros, Wagner 13, Katz, Perelstein, Ramsey-Musolf, Winslow 14...

NMSSM

MSSM

Pietroni 93, Davies, Froggatt, Moorhouse 95, Huber, Schmidt 01, Ham, Oh, Kim, Yoo, Son 04, Menon, Morrissey, Wagner 04, Funakubo, Tao, Yokoda 05, Huber, Konstandin, Prokopec, Schmidt 07, Chung, Long 10, Kozaczuk, Profumo, Stephenson Haskins, Wainwright 15...

Thanks: J. M. No

Extensive references in MJRM: 1912.07189 ^{11.2}

Theory Meets Phenomenology

Perturbation theory

- I.R. problem: poor convergence
- Thermal resummations
- Gauge Invariance
 (radiative barriers)
- RG invariance at T>0

BSM proposals

Non-perturbative (I.R.)

 Computationally and labor intensive

Theory Meets Phenomenology

Challenges for Theory

Theory-Pheno Interface

Simple Higgs portal models:

- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)

Theory-Pheno Interface

Simple Higgs portal models:

- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)

$$V \subset a_1 H^2 \phi + a_2 H^2 \phi^2$$

Phenomenology

$$h_1 = \sin \theta \ s + \cos \theta \ h$$
$$h_2 = \cos \theta \ s - \sin \theta \ h$$

 $m_{1,2}$; θ ; $h_i h_j h_k$ couplings

Collider Probes

- Resonant di-Higgs (h₁ h₁) production *
- Heavy h₂ production *
- Associated production (Z h₁) and nonresonant di-Higgs production *
- Exotic Higgs decays **

* Heavy h₂

** Light h₂

Collider Probes

- Resonant di-Higgs (h₁ h₁) production *
- Heavy h₂ production *
- Associated production (Z h₁) and nonresonant di-Higgs production *
- Exotic Higgs decays **

* Heavy h₂

** Light h₂

Singlets: Precision & Res Di-Higgs Prod

SFOEWPT Benchmarks: Resonant di-Higgs & precision Higgs studies

Kotwal, No, R-M, Winslow 1605.06123

See also: Huang et al, 1701.04442; Li et al, 1906.05289

Singlets: Precision & Res Di-Higgs Prod

SFOEWPT Benchmarks: Resonant di-Higgs & precision Higgs studies

Kotwal, No, R-M, Winslow 1605.06123

See also: Huang et al, 1701.04442; Li et al, 1906.05289

Singlets: Precision & Res Di-Higgs Prod

SFOEWPT Benchmarks: Resonant di-Higgs & precision Higgs studies

See also: Huang et al, 1701.04442; Li et al, 1906.05289

Lauri Niemi, MJRM, Gutao Xia, 2405.01191

Singlets: Lattice vs. Pert Theory

Lattice: Crossover

Lauri Niemi, MJRM, Gutao Xia, 2405.01191

Singlets: Lattice vs. Pert Theory

Lauri Niemi, MJRM, Gutao Xia, 2405.01191

Singlets: Lattice vs. Pert Theory

- *Lattice: crossover-FOEWPT boundary*
- FOEWPT region: PT-lattice agreement
- Pheno: precision Higgs studies may be sensitive to a greater portion of FOEWPT-viable param space than earlier realized

16.3

 $\sin\theta$

Collider Probes

- Resonant di-Higgs (h₁ h₁) production *
- Heavy h₂ production *
- Associated production (Z h₁) and nonresonant di-Higgs production *

• Exotic Higgs decays **

* Heavy h₂

** Light h₂

J. Kozaczuk, MR-M, J. Shelton 1911.10210 See also: Carena et al 1911.10206, Carena et al 2203.08206, Wang et al 2203.10184,

New: Lattice + *EFT* @ *T* > 0

J. Kozaczuk, MR-M, J. Shelton 1911.10210

Two-loop PT: 3d EFT

L. Niemi, MJRM, G. Xia 2405.01191

New: Lattice + *EFT* @ *T* > 0

L. Niemi, MJRM, G. Xia 2405.01191

New: Lattice + *EFT* @ *T* > 0

Prompt decays: $h_1 \rightarrow h_2 h_2 \rightarrow AA BB$

J. Kozaczuk, MR-M, J. Shelton 1911.10210 See also: Carena et al 1911.10206, Carena et al 2203.08206, Wang et al 2203.10184,

Z₂ breaking: prompt h₂ decays

Carena et al (Snowmass) 2203.08206

 $h_1 \rightarrow h_2 h_2 \rightarrow 4b$ (prompt)

J. Wang et al (Snowmass) 2203.10184

Theory-Pheno Interface

Simple Higgs portal models:

- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)

$$V \subset a_1 H^2 \phi + a_2 H^2 \phi^2$$

Theory-Pheno Interface

Simple Higgs portal models:

- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)

$$\frac{\text{Small}}{V \subset a_1 H^2 \phi + a_2 H^2 \phi^2}$$

Theory-Pheno Interface

Simple Higgs portal models:

- Real gauge singlet (SM + 1)
- Real EW triplet (SM + 3)

Phenomenology

- Gravitational waves
- Collider: h → γγ, dis charged track, NLO e⁺e⁻ → Zh...

Real Triplet & EWPT: Novel EWSB

Niemi, R-M, Tenkanen, Weir 2005.11332

• 1 or 2 step

Non-perturbative

Real Triplet & EWPT: Novel EWSB

Niemi, R-M, Tenkanen, Weir 2005.11332

• Non-perturbative

BSM EWPT: Inter-frontier Connections

GW & EWPT Phase Diagram

- Single step transition: GW well outside LISA sensitivity
- Second step of 2-step transition can be observable
- Significant GW sensitivity to portal coupling

Friedrich, MJRM, Tenkanen, Tran 2203.05889

LISA

GW & EWPT Phase Diagram

Friedrich, MJRM, Tenkanen, Tran 2203.05889

III. Outlook

Was There an Electroweak Phase Transition ?

- Answering this question is an important and exciting challenge for Higgs Physics @ LHC/CEPC/FCC-ee/ILC...
- The relevant scale T_{EW} makes this physics a prime target for collider and gravitational wave probes
- The EWPT question entails a rich interplay of model building, thermal QFT, phenomenology & experiment → robust thermal field theory is vital
- The collider gravitational wave "inverse problem" has emerged as a particularly compelling arena for further exploration and opportunity HEP community and beyond

T. D. Lee Institute / Shanghai Jiao Tong U.

T. D. Lee Institute / Shanghai Jiao Tong U.

Was There an Electroweak Phase Transition ?

- Answering this question is an important and exciting challenge for Higgs Physics @ LHC/CEPC/FCC-ee/ILC...
- The relevant scale T_{int} makes this physics a prime target for collider and gravitational wave probes
- The EWPT question entails a rich interplay of model building, thermal QFT, phenomenology & experiment → robust thermal field theory is vital
- The collider gravitational wave "inverse problem" has emerged as a particularly compelling arena for further exploration and opportunity HEP community and beyond

GW-Collider

BSM Scalar: EWPT & GW

Gould, Kozaczuk, Niemi, R-M, Tenkanen, Weir 1903.11604

BSM Scalar: EWPT & GW

Gould, Kozaczuk, Niemi, R-M, Tenkanen, Weir 1903.11604

BSM Scalar: EWPT & GW

Gould, Kozaczuk, Niemi, R-M, Tenkanen, Weir 1903.11604

Nucleation

Tunneling @ T>0: Gravitational Waves

Amplitude & frequency: latent heat & intrinsic time scale

Normalized latent heat

$$\begin{aligned} \Delta Q &= \Delta F + T \Delta S \\ S &= -\partial F / \partial T \\ F &\approx V \end{aligned}$$

 $\alpha = \frac{30\Delta q}{\pi^2 a_* T^4}$

Time scale

$$\frac{\beta}{H_*} = T \frac{d}{dT} \frac{S_3}{T}$$

$$\Delta Q \approx \Delta V - T \partial \Delta V / \partial T$$

T=0: S. Coleman, PRD 15 (1977) 2929

Tunneling @ T>0

Scalar Quantum Field Theory

Tunneling rate / unit volume:

Tunneling @ T>0

Radiative barriers → st'd method gauge-dependent

Tunneling rate / unit volume:

Tunneling @ T>0

Theoretical issues:

- Radiatively-induced barrier (St'd Model) → gauge dependence
 - *T* = 0 Abelian Higgs: *E*. Weinberg & *D*. Metaxas: hep-ph/9507381
 - T=0 St'd Model: A. Andreassen, W. Frost, M. Schwartz 1408.0287
 - *T* > 0 Gauge theories: recently solved in 2112.07452 (→ PRL) and 2112.08912
- Multi-field problem (still gauge invar issue)
 - Cosmotransitions: C. Wainwright 1109.4189
 - Espinosa method: J. R. Espinosa 1805.03680

(Re) Organize the Perturbative Expansion

Illustrate w/ Abelian Higgs

$$\mathcal{L} = \frac{1}{4} F_{\mu\nu} F_{\mu\nu} + (D_{\mu}\Phi)^* (D_{\mu}\Phi) + \mu^2 \Phi^* \Phi + \lambda (\Phi^*\Phi)^2 + \mathcal{L}_{\rm GF} + \mathcal{L}_{\rm FP}$$

- Lofgren, MRM, Tenkanen, Schicho 2112.0752 → PRL
- Hirvonen, Lofgren, MRM, Tenkanen, Schicho 2112.08912

Full 3D effective action

$$S_3 = \int \mathrm{d}^3 x \Big[V^{\mathrm{eff}}(\phi, T) + \frac{1}{2} Z(\phi, T) \left(\partial_i \phi \right)^2 + \dots \Big]$$

Adopt appropriate power-counting in couplings

$$S_3 = a_0 g^{-\frac{3}{2}} + a_1 g^{-\frac{1}{2}} + \Delta$$

(Re) Organize the Perturbative Expansion

Illustrate w/ Abelian Higgs

$$\mathcal{L} = \frac{1}{4} F_{\mu\nu} F_{\mu\nu} + (D_{\mu}\Phi)^* (D_{\mu}\Phi) + \mu^2 \Phi^* \Phi + \lambda (\Phi^*\Phi)^2 + \mathcal{L}_{\rm GF} + \mathcal{L}_{\rm FP}$$

- Lofgren, MRM, Tenkanen, Schicho 2112.0752 → PRL
- Hirvonen, Lofgren, MRM, Tenkanen, Schicho 2112.08912

Full 3D effective action

$$S_3 = \int \mathrm{d}^3 x \Big[V^{\mathrm{eff}}(\phi, T) + \frac{1}{2} Z(\phi, T) \left(\partial_i \phi \right)^2 + \dots \Big]$$

Adopt appropriate power-counting in couplings

$$S_3 = a_0 y^{-\frac{3}{2}} + a_1 g^{-\frac{1}{2}} + \Delta$$

G.I. pertubative expansion

G.I. pertubative expansion only valid up to NLO $\rightarrow \Delta$: higher order contributions only via other methods

Tunneling @ T>0: G.I. & Nielsen Identities

Adopt appropriate power-counting in couplings

Lofgren, MRM, Tenkanen, Schicho 2112.0752 → PRL

$$S_3 = a_0 g^{-\frac{3}{2}} + a_1 g^{-\frac{1}{2}} + \Delta$$

Order-by-order consistent with Nielsen Identities

$$\xi \frac{\partial S^{\text{eff}}}{\partial \xi} = -\int \mathrm{d}^d \mathbf{x} \frac{\delta S^{\text{eff}}}{\delta \phi(x)} \, \mathcal{C}(x)$$

$$\begin{aligned} \mathcal{C}(x) &= \frac{ig}{2} \int \mathrm{d}^d \mathbf{y} \Big\langle \chi(x) c(x) \bar{c}(y) \\ &\times \left[\partial_i B_i(y) + \sqrt{2}g \xi \phi \chi(y) \right] \Big\rangle \end{aligned}$$

Tunneling @ T>0: Take Aways

- For a radiatively-induced barrier, a gauge-invariant perturbative computation of nucleation rate can be performed for S₃ to O (g^{-1/2}) by adopting an appropriate power counting for T in the vicinity of T_{nuc}
- Abelian Higgs example generalizes to non-Abelian theories as well as other early universe phase transitions
- Remaining contributions to Γ_{nuc} beyond O (g^{-1/2}) in S₃ and including long-distance (nucleation scale) contributions require other methods
- Assessing numerical reliability will require benchmarking with non-perturbative computations
 37

IR Problem
EWPT & Perturbation Theory: IR Problem

Bosonic loop at T>0

$$I(T) = g^{2} \int \frac{d^{3}p}{(2\pi)^{3}} f_{B}(E,T) \frac{1}{(p^{2}+m^{2})^{n}} \longrightarrow \boxed{\frac{g^{2}T}{m}} \int_{I.R.} \frac{d^{3}p}{(2\pi)^{3}} \frac{1}{(p^{2}+m^{2})^{n}}$$
Small p regime
Effective expansion parameter

$$f_B(E,T) \longrightarrow \frac{T}{m}$$

Field-dependent thermal mass

$$m^2(\varphi,T) \sim C_1 g^2 \varphi^2 + C_2 g^2 T^2 \equiv m_T^2(\varphi)$$

Near phase transition: $\varphi \sim 0$

•
$$m_T(\varphi) < g T$$

EWPT & Perturbation Theory

Expansion parameter

SM lattice studies: $g_{eff} \sim 0.8$ in vicinity of EWPT for $m_H \sim 70 \text{ GeV}^*$

* Kajantie et al, NPB 466 (1996) 189; hep/lat 9510020 [see sec 10.1]

Additional Pheno

Singlets: Resonant Di-Higgs & $H_2 \rightarrow VV$

SFOEWPT Max Benchmarks: HL LHC Combination bbyy & 4 lepton

SFOEWPT Min Benchmarks:

S. Arunasalam, Hao-Lin Li, Kun Liu, MJRM, 42.1 Yongchao Zeng, Wenxing Zhang 2211.0303612

Singlets: Resonant Di-Higgs & $H_2 \rightarrow VV$

SFOEWPT Max Benchmarks: HL LHC Combination bbyy & 4 lepton

100 TeV accessible

SFOEWPT Min Benchmarks:

S. Arunasalam, Hao-Lin Li, Kun Liu, MJRM, 42.2 Yongchao Zeng, Wenxing Zhang 2211.0303612

Singlets: Resonant Di-Higgs & $H_2 \rightarrow VV$

SFOEWPT Max Benchmarks: HL LHC Combination bbyy & 4 lepton

"Smoking gun" region

Parameter exclusion region

SFOEWPT Min Benchmarks:

100 TeV accessible

- Observation of 4I channel would indicate existence of heavy resonance consistent with xSM SFOEWPT
- "Smoking gun" region would provide nearly definitive evidence & narrow down model parameter space
- Exclusion would leave ample room for 100 TeV pp discovery

S. Arunasalam, Hao-Lin Li, Kun Liu, MJRM, 42.3 Yongchao Zeng, Wenxing Zhang 2211.0303612

EW Phase Transition: Singlet Scalars

Profumo, R-M, Wainwright, Winslow: 1407.5342; see also Noble & Perelstein 0711.3018

(2019) 075011

EW Phase Transition: Singlet Scalars

(2019) 075011

also Noble & Perelstein 0711.3018

Complex Singlet: DM + EWPT

Original Model:

- SM + complex scalar singlet
- Global U(1): broken spontaneously & softly
- Particle spectrum
 - Mixed doubletsinglet scalars h_{1.2}
 - Scalar dark matter A

Search for bb + MET: example sub-processes

V. Barger, P. Langacker, M. McCaskey, MJRM, G. Shaugnessy 0811.0393 Yizhou Cai, MJRM, Lei Zhang, Wenxing Zhang 2311.NNNNN

45.1

Complex Singlet: DM + EWPT

Search for bb + MET

Yizhou Cai, MJRM, Lei Zhang, Wenxing Zhang 2311.NNNNN

 $a_2 H^2 \phi^2$: T > 0loop effect

 $a_2 H^2 \phi^2$: T = 0tree-level effect

 $a_1 H^2 \phi$: T = 0tree-level effect

$$g_{122}=rac{1}{2}va_2+\mathcal{O}(heta^2)$$

Exotic decays $h_1 \rightarrow h_2 h_2$

 $\Gamma(h_2, m_2) = \sin^2 \theta \, \Gamma(h_{\rm SM}, m_2)$

 $a_2 H^2 \phi^2$: T > 0loop effect

 $a_2 H^2 \phi^2$: T = 0tree-level effect

 $a_1 H^2 \phi$: T = 0tree-level effect

$$g_{122}=rac{1}{2}va_2+\mathcal{O}(heta^2)$$

 $\Gamma(h_2, m_2) = \sin^2 \theta \, \Gamma(h_{
m SM}, m_2)$

46.3

