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I. Context & Questions
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Was There an Electroweak Phase Transition ?

• Interesting in its own right

• Key ingredient for EW baryogenesis

• Source of gravitational radiation 
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How does this picture change 
in presence of new TeV scale 
physics ? What is the phase 
diagram ? SFOEWPT ?



What Was the EWSB Thermal History ?
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Further, in order to facilitate the discussion of two-step
phase transitions, it will be useful to identify regions of
parameter space where the potential exhibits a secondary
local minimum at point!with positive masses. A straight-
forward calculation yields the condition for the existence
of a secondary minimum,
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which requires !2
! > 0 in Eq. (6).

In Fig. 2, we display the regions (shaded yellow and
blue) in the a2-b4 plane for which the vacuum stability
condition in Eq. (7) is satisfied, with the masses m! ¼
150 GeV and mH ¼ 125 GeV held fixed. The blue shaded
region indicates points where the requirement of Eq. (8)
is also satisfied and the potential has a secondary local
minimum at point !. To assist the reader in visualizing the
potential for various regions of parameter space, we pro-
vide illustrative plots in Fig. 3 of the potential for two
cases: (a) Equation (7) alone being satisfied, corresponding
to a representative point in the yellow region in Fig. 2, and
(b) both Eqs. (7) and (8) holding, corresponding to the
blue region in Fig. 2.

FIG. 3 (color online). Qualitative picture of the potential Vðh;"Þ of Eq. (4) in the two different regions of parameter space as
indicated in Fig. 2. Potential A (corresponding to regions A of Fig. 2) displays no critical point along the " direction, whereas Potential
B (corresponding to regions B of Fig. 2) exhibits a metastable minimum along the " direction.
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FIG. 2 (color online). Regions A (yellow striped) plus B (solid blue) indicate where the tree-level electroweak vacuum stability
condition of Eq. (7) is satisfied. Left panel: The m!-b4 plane for fixed mH ¼ 125 GeV, a2 ¼ 1:07. Right panel: the a2-b4 plane for
fixed mH ¼ 150 GeV, m! ¼ 150 GeV. The regions labeled B indicate where Eq. (8) is also satisfied and the tree-level potential
exhibits a metastable minimum along the neutral ! direction. Illustrative representations of the scalar potential for regions A and B are
indicated in the left and right panels of Fig. 3, respectively.
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FIG. 2 (color online). Regions A (yellow striped) plus B (solid blue) indicate where the tree-level electroweak vacuum stability
condition of Eq. (7) is satisfied. Left panel: The m!-b4 plane for fixed mH ¼ 125 GeV, a2 ¼ 1:07. Right panel: the a2-b4 plane for
fixed mH ¼ 150 GeV, m! ¼ 150 GeV. The regions labeled B indicate where Eq. (8) is also satisfied and the tree-level potential
exhibits a metastable minimum along the neutral ! direction. Illustrative representations of the scalar potential for regions A and B are
indicated in the left and right panels of Fig. 3, respectively.
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FIG. 2 (color online). Regions A (yellow striped) plus B (solid blue) indicate where the tree-level electroweak vacuum stability
condition of Eq. (7) is satisfied. Left panel: The m!-b4 plane for fixed mH ¼ 125 GeV, a2 ¼ 1:07. Right panel: the a2-b4 plane for
fixed mH ¼ 150 GeV, m! ¼ 150 GeV. The regions labeled B indicate where Eq. (8) is also satisfied and the tree-level potential
exhibits a metastable minimum along the neutral ! direction. Illustrative representations of the scalar potential for regions A and B are
indicated in the left and right panels of Fig. 3, respectively.
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FIG. 2 (color online). Regions A (yellow striped) plus B (solid blue) indicate where the tree-level electroweak vacuum stability
condition of Eq. (7) is satisfied. Left panel: The m!-b4 plane for fixed mH ¼ 125 GeV, a2 ¼ 1:07. Right panel: the a2-b4 plane for
fixed mH ¼ 150 GeV, m! ¼ 150 GeV. The regions labeled B indicate where Eq. (8) is also satisfied and the tree-level potential
exhibits a metastable minimum along the neutral ! direction. Illustrative representations of the scalar potential for regions A and B are
indicated in the left and right panels of Fig. 3, respectively.
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• What is the landscape 
of potentials and their 
thermal histories?

• How can we probe this 
T > 0 landscape 
experimentally ?

• How reliably can we 
compute the 
thermodynamics ?
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FIG. 2 (color online). Regions A (yellow striped) plus B (solid blue) indicate where the tree-level electroweak vacuum stability
condition of Eq. (7) is satisfied. Left panel: The m!-b4 plane for fixed mH ¼ 125 GeV, a2 ¼ 1:07. Right panel: the a2-b4 plane for
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indicated in the left and right panels of Fig. 3, respectively.
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• How heavy or light can F
be ?

• How coupled to H ?

• Can it be discovered with 
colliders & GW probes ? 
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The Electroweak Phase Transition: A Collider Target
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We revisit the theory and phenomenology of scalar electroweak multiplet thermal dark matter.
We derive the most general, renormalizable scalar potential, assuming the presence of the Standard
Model Higgs doublet, H, and an electroweak multiplet � of arbitrary SU(2)L rank and hypercharge,
Y . We show that, in general, the �-H Higgs portal interactions depend on three, rather than two
independent couplings as has been previously considered in the literature. For the phenomenologi-
cally viable case of Y = 0 multiplets, we focus on the septuplet and quintuplet cases, and consider
the interplay of relic density and spin-independent direct detection cross section. We show that
both the relic density and direct detection cross sections depend on a single linear combination of
Higgs portal couplings, �e↵ . For �e↵ ⇠ O(1), present direct detection exclusion limits imply that
the neutral component of a scalar electroweak multiplet would comprise a subdominant fraction of
the observed DM relic density.
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Figure 3. Schematic temperature dependence of the effective potential.

at very high temperatures. The breakdown of the perturbative expansion can be postponed by
resumming the most dangerous thermal corrections by incorporating thermal mass corrections
in the propagators. The net result of such a daisy resummation is to generate an additional term
in the effective potential [32]:

V (daisy)
1 = �

T
12⇡

X

{b}0

nb
⇥
m2

b(�, T ) � m2
b(�)

⇤3/2
, (12)

where the sum runs only over scalars and longitudinal vectors, and m2 is the field-dependent
thermal squared mass:

m2(�) = m2(�) + 5(T ), (13)

with 5(T ) / T 2 the thermal contribution to the mass.
The daisy correction is particularly important for a first-order transition because it affects

primarily the crucial cubic term. For example, suppose the contribution to the cubic term
comes from a scalar with a zero-temperature mass of m2(�) = g�2 with a thermal correction of
5(T ) =  T 2. The would-be cubic term becomes

1E�3
=

1
12⇡

g3/2�3
!

1
12⇡

⇥
g�2 + T 2⇤3/2

. (14)

When 5(T ) is large relative to m2(�), this corrected expression ceases to behave as a cubic in
� and the phase transition might no longer be first-order.

When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional

New Journal of Physics 14 (2012) 125003 (http://www.njp.org/)
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When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional

New Journal of Physics 14 (2012) 125003 (http://www.njp.org/)
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Figure 3. Schematic temperature dependence of the effective potential.

at very high temperatures. The breakdown of the perturbative expansion can be postponed by
resumming the most dangerous thermal corrections by incorporating thermal mass corrections
in the propagators. The net result of such a daisy resummation is to generate an additional term
in the effective potential [32]:

V (daisy)
1 = �

T
12⇡

X

{b}0

nb
⇥
m2

b(�, T ) � m2
b(�)

⇤3/2
, (12)

where the sum runs only over scalars and longitudinal vectors, and m2 is the field-dependent
thermal squared mass:

m2(�) = m2(�) + 5(T ), (13)

with 5(T ) / T 2 the thermal contribution to the mass.
The daisy correction is particularly important for a first-order transition because it affects

primarily the crucial cubic term. For example, suppose the contribution to the cubic term
comes from a scalar with a zero-temperature mass of m2(�) = g�2 with a thermal correction of
5(T ) =  T 2. The would-be cubic term becomes

1E�3
=

1
12⇡

g3/2�3
!

1
12⇡

⇥
g�2 + T 2⇤3/2

. (14)

When 5(T ) is large relative to m2(�), this corrected expression ceases to behave as a cubic in
� and the phase transition might no longer be first-order.

When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional
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A. Addazi, SPCS 2023

Taiji, Tianqin
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Gravitational Waves

9.2

EWPT laboratory for GW micro-physics: colliders can probe 
particle physics responsible for non-astro GW sources à test 
our framework for GW microphysics at other scales 

Taiji, Tianqin
similar

A. Addazi, SPCS 2023
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II. Theory-Pheno Interface

Theoretical developments à
phenomenological implications



11.1

Models & Phenomenology

Thanks: J. M. No Extensive references in MJRM: 1912.07189



11.2

Models & Phenomenology

Thanks: J. M. No

Models & pheno: how reliable ?

Extensive references in MJRM: 1912.07189
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Challenges for Theory

• I.R. problem: poor 
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Perturbation theory Non-perturbative (I.R.) 
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intensive
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Theory-Pheno Interface

13.1

Simple Higgs portal models:

• Real gauge singlet (SM + 1)

• Real EW triplet (SM + 3)

V          a1 H2f + a2 H2f2U
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Figure 3. Schematic temperature dependence of the effective potential.

at very high temperatures. The breakdown of the perturbative expansion can be postponed by
resumming the most dangerous thermal corrections by incorporating thermal mass corrections
in the propagators. The net result of such a daisy resummation is to generate an additional term
in the effective potential [32]:

V (daisy)
1 = �

T
12⇡

X

{b}0

nb
⇥
m2

b(�, T ) � m2
b(�)

⇤3/2
, (12)

where the sum runs only over scalars and longitudinal vectors, and m2 is the field-dependent
thermal squared mass:

m2(�) = m2(�) + 5(T ), (13)

with 5(T ) / T 2 the thermal contribution to the mass.
The daisy correction is particularly important for a first-order transition because it affects

primarily the crucial cubic term. For example, suppose the contribution to the cubic term
comes from a scalar with a zero-temperature mass of m2(�) = g�2 with a thermal correction of
5(T ) =  T 2. The would-be cubic term becomes

1E�3
=

1
12⇡

g3/2�3
!

1
12⇡

⇥
g�2 + T 2⇤3/2

. (14)

When 5(T ) is large relative to m2(�), this corrected expression ceases to behave as a cubic in
� and the phase transition might no longer be first-order.

When the EWPT is first-order, it proceeds by the nucleation of bubbles of the broken
phase within the surrounding plasma of the symmetric phase. Bubble nucleation is governed
by thermal tunneling [33] from the local minimum at � = 0 to a deeper minimum at � 6= 0. In
nucleating a bubble there is a competition between the decrease in free energy, proportional to
bubble volume, with the increase due to the tension of the wall, proportional to bubble area. As
such, there is a minimum radius for which a bubble can grow after it is formed, and this limits
the tunnelling rate. Bubble formation and growth only begins in earnest when this rate exceeds
the Hubble rate, which occurs at some temperature Tn < Tc, called the nucleation temperature.
Once a sufficiently large bubble is formed, it expands until it collides with other bubbles and
the Universe is filled with the broken phase. The typical profile and expansion rate of a bubble
wall can be computed from the effective potential [30, 34, 35], taking into account frictional
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Theory-Pheno Interface

13.2

Simple Higgs portal models:

• Real gauge singlet (SM + 1)

• Real EW triplet (SM + 3)

V          a1 H2f + a2 H2f2U

h

f

h

f

h

f

JHEP08(2007)010

sufficient condition for having a stable neutral scalar that can be the DM, as first noticed

ref. [25]. We emphasize, however, that imposing a tree-level Z2 symmetry on the potential

(a1 = 0 = b3) does not imply a vanishing singlet vev. Only when x0 = 0 is it possible to

have a stable neutral scalar. While this assumption is implicit in many previous analyses,

we find that models with x0 != 0 arise copiously in the present framework.

The fields (h, s) describing fluctuations about the vevs are defined by H0 = (v0+h)/
√

2

and S = x0 + s, at T = 0. The corresponding entries in the mass matrix are given by4

µ2
h ≡

∂2V

∂h2
= 2λ̄0v

2
0 (2.8)

µ2
s ≡

∂2V

∂s2
= b3x0 + 2b4x

2
0 −

a1v2
0

4x0
(2.9)

µ2
hs ≡

∂2V

∂h∂s
= (a1 + 2a2x0) v0 . (2.10)

The mass eigenstates h1 and h2 are defined as

h1 = sin θ s + cos θ h

h2 = cos θ s − sin θ h (2.11)

where the mixing angle θ is given by

tan θ =
y

1 +
√

1 + y2
, where y ≡

µ2
hs

µ2
h − µ2

s
. (2.12)

With this convention, | cos θ| > 1/
√

2, therefore h1 is the mass eigenstate with the largest

SU(2)-like component and h2 that with the largest singlet component. The corresponding

mass eigenvalues are given by

m2
1,2 =

µ2
h + µ2

s

2
±

µ2
h − µ2

s

2

√

1 + y2 (2.13)

where the upper (lower) sign corresponds to m1 (m2).

For future reference it is useful to relate the parameters in V to those appearing in

the notation of ref. [20], where the potential is written in terms of the zero-temperature,

shifted field s only. One has

V (H, s) = −
µ2

h

2

(

H†H
)

+ λ̄0

(

H†H
)2

+
δ1

2

(

H†H
)

s (2.14)

+
δ2

2
(H†H)s2 −

(

δ1µ2
h

8λ̄0

)

s +
κ2

2
s2 +

κ3

3
s3 +

κ4

4
s4 ,

4We discuss corrections resulting from the full Coleman-Weinberg effective potential below. These

corrections lead to numerically small shifts to these conditions.

– 7 –

Phenomenology

m1,2 ; q ; hi hj hk couplings
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Singlets: Precision & Res Di-Higgs Prod

Kotwal, No, R-M, Winslow  1605.06123

15.1

SFOEWPT Benchmarks: Resonant di-Higgs & precision Higgs studies  
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Singlets: Precision & Res Di-Higgs Prod

Kotwal, No, R-M, Winslow  1605.06123

15.3

SFOEWPT Benchmarks: Resonant di-Higgs & precision Higgs studies  

SFOEWPT •

h-S Mixing 

m2 ⇡ MN (37)

�(N ! `H) 6= �(N ! ¯̀H⇤) (38)

Lmass = yL̄H̃NR + h.c. + mNN̄RN
C

R
(39)

Lmass =
y

⇤
L̄

c
HH

T
L + h.c. (40)

�(NR ! `H) 6= �(NR !
¯̀H⇤) (41)

m⌫ =
m

2
D

MR

(42)

hp
0
| J

EM
µ

|pi = Ū(p0)


F1�µ +

iF2

2M
�µ⌫q

⌫ +
iF3

2M
�µ⌫�5q

⌫ +
FA

M2
(q2

�µ � 6qqµ)�5

�
U(p) (43)

hp
0
| J

EM
µ

|pi
PV

=
FA

M2
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Singlets: Lattice vs. Pert Theory
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2 loop PT

1 loop PT
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Singlets: Lattice vs. Pert Theory
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2 loop PT

1 loop PT
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• 16.3

2 loop PT

1 loop PT

Lattice: 
FOEWPT

Lattice: 
Crossover

Future e+e-

• Lattice: crossover-FOEWPT boundary
• FOEWPT region: PT-lattice agreement
• Pheno: precision Higgs studies may be sensitive to a greater 

portion of FOEWPT-viable param space than earlier realized
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Collider Probes

• Resonant di-Higgs (h1 h1 ) production *

• Heavy h2 production *

• Associated production (Z h1 ) and non-
resonant di-Higgs production *

• Exotic Higgs decays **

* Heavy h2

** Light h2 € 
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€ 
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t+
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h1 h2
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Light Singlets: Exotic Higgs Decays

18

J. Kozaczuk, MR-M, J. Shelton 1911.10210
See also: Carena et al 1911.10206, Carena
et al 2203.08206, Wang et al 2203.10184, 

EWPT viable: 
numerical

EWPT viable: 
Semi analytic 
à nucleation 
decisive

One loop perturbation theory

|sin q|

m2



New: Lattice + EFT @ T > 0

19.1

J. Kozaczuk, MR-M, J. Shelton 1911.10210

One loop PT

Two-loop PT: 
3d EFT

Nucleation

L. Niemi, MJRM, G. Xia 2405.01191

m2 m2 / GeV

|sin q|



New: Lattice + EFT @ T > 0

19.2

J. Kozaczuk, MR-M, J. Shelton 1911.10210

Crossover

First OrderOne loop PT

Lattice study
Two-loop PT: 
3d EFT

Nucleation

L. Niemi, MJRM, G. Xia 2405.01191

m2 m2 / GeV

|sin q|



New: Lattice + EFT @ T > 0

19.3

J. Kozaczuk, MR-M, J. Shelton 1911.10210

Crossover

First OrderOne loop PT

Lattice study
Two-loop PT: 
3d EFT

Nucleation

L. Niemi, MJRM, G. Xia 2405.01191Small portal couplings 

à FO EWPT unlikely 
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Light Singlets: Exotic Higgs Decays

20.1

J. Kozaczuk, MR-M, J. Shelton 1911.10210
See also: Carena et al 1911.10206, Carena
et al 2203.08206, Wang et al 2203.10184, 

Prompt decays:    h1 à h2 h2 à AA BB

EWPT viable: 
numerical LHC: 2019 & 

HL

Future e+e-

m2

|sin q|

Other 
probes?



Light Singlets: Exotic Higgs Decays

20.2

Z2 breaking: prompt h2 decays

Carena et al (Snowmass) 2203.08206

Current Future



Light Singlets: Exotic Higgs Decays

20.3

J. Wang et al (Snowmass) 2203.10184

h1 à h2 h2 à 4b (prompt)

EWPT viable: 
numerical

CEPC 4b



Theory-Pheno Interface

21.1

Simple Higgs portal models:

• Real gauge singlet (SM + 1)

• Real EW triplet (SM + 3)

V          a1 H2f + a2 H2f2U
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Theory-Pheno Interface

21.2

Simple Higgs portal models:

• Real gauge singlet (SM + 1)

• Real EW triplet (SM + 3)

V          a1 H2f + a2 H2f2U
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Small



Theory-Pheno Interface

21.3

Simple Higgs portal models:

• Real gauge singlet (SM + 1)

• Real EW triplet (SM + 3)

V          a1 H2f + a2 H2f2U

h

f

h

f

h

f

Phenomenology

• Gravitational waves
• Collider: hà gg , dis 

charged track, NLO e+e-

à Zh…

Small
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Real Triplet & EWPT: Novel EWSB

Niemi, R-M, Tenkanen, Weir 2005.11332
• 1 or 2 step
• Non-perturbative

Crossover
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Further, in order to facilitate the discussion of two-step
phase transitions, it will be useful to identify regions of
parameter space where the potential exhibits a secondary
local minimum at point!with positive masses. A straight-
forward calculation yields the condition for the existence
of a secondary minimum,

1

2
m2

H >
1

2

a2
b4

!
1

2
a2v

2
0 !m2

!

"
; (8)

which requires !2
! > 0 in Eq. (6).

In Fig. 2, we display the regions (shaded yellow and
blue) in the a2-b4 plane for which the vacuum stability
condition in Eq. (7) is satisfied, with the masses m! ¼
150 GeV and mH ¼ 125 GeV held fixed. The blue shaded
region indicates points where the requirement of Eq. (8)
is also satisfied and the potential has a secondary local
minimum at point !. To assist the reader in visualizing the
potential for various regions of parameter space, we pro-
vide illustrative plots in Fig. 3 of the potential for two
cases: (a) Equation (7) alone being satisfied, corresponding
to a representative point in the yellow region in Fig. 2, and
(b) both Eqs. (7) and (8) holding, corresponding to the
blue region in Fig. 2.

FIG. 3 (color online). Qualitative picture of the potential Vðh;"Þ of Eq. (4) in the two different regions of parameter space as
indicated in Fig. 2. Potential A (corresponding to regions A of Fig. 2) displays no critical point along the " direction, whereas Potential
B (corresponding to regions B of Fig. 2) exhibits a metastable minimum along the " direction.
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FIG. 2 (color online). Regions A (yellow striped) plus B (solid blue) indicate where the tree-level electroweak vacuum stability
condition of Eq. (7) is satisfied. Left panel: The m!-b4 plane for fixed mH ¼ 125 GeV, a2 ¼ 1:07. Right panel: the a2-b4 plane for
fixed mH ¼ 150 GeV, m! ¼ 150 GeV. The regions labeled B indicate where Eq. (8) is also satisfied and the tree-level potential
exhibits a metastable minimum along the neutral ! direction. Illustrative representations of the scalar potential for regions A and B are
indicated in the left and right panels of Fig. 3, respectively.

HIREN H. PATEL AND MICHAEL J. RAMSEY-MUSOLF PHYSICAL REVIEW D 88, 035013 (2013)
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Real Triplet & EWPT: Novel EWSB

Niemi, R-M, Tenkanen, Weir 2005.11332
• 1 or 2 step
• Non-perturbative

Crossover
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0: (7)

Further, in order to facilitate the discussion of two-step
phase transitions, it will be useful to identify regions of
parameter space where the potential exhibits a secondary
local minimum at point!with positive masses. A straight-
forward calculation yields the condition for the existence
of a secondary minimum,

1

2
m2

H >
1

2

a2
b4

!
1

2
a2v

2
0 !m2

!

"
; (8)

which requires !2
! > 0 in Eq. (6).

In Fig. 2, we display the regions (shaded yellow and
blue) in the a2-b4 plane for which the vacuum stability
condition in Eq. (7) is satisfied, with the masses m! ¼
150 GeV and mH ¼ 125 GeV held fixed. The blue shaded
region indicates points where the requirement of Eq. (8)
is also satisfied and the potential has a secondary local
minimum at point !. To assist the reader in visualizing the
potential for various regions of parameter space, we pro-
vide illustrative plots in Fig. 3 of the potential for two
cases: (a) Equation (7) alone being satisfied, corresponding
to a representative point in the yellow region in Fig. 2, and
(b) both Eqs. (7) and (8) holding, corresponding to the
blue region in Fig. 2.

FIG. 3 (color online). Qualitative picture of the potential Vðh;"Þ of Eq. (4) in the two different regions of parameter space as
indicated in Fig. 2. Potential A (corresponding to regions A of Fig. 2) displays no critical point along the " direction, whereas Potential
B (corresponding to regions B of Fig. 2) exhibits a metastable minimum along the " direction.
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FIG. 2 (color online). Regions A (yellow striped) plus B (solid blue) indicate where the tree-level electroweak vacuum stability
condition of Eq. (7) is satisfied. Left panel: The m!-b4 plane for fixed mH ¼ 125 GeV, a2 ¼ 1:07. Right panel: the a2-b4 plane for
fixed mH ¼ 150 GeV, m! ¼ 150 GeV. The regions labeled B indicate where Eq. (8) is also satisfied and the tree-level potential
exhibits a metastable minimum along the neutral ! direction. Illustrative representations of the scalar potential for regions A and B are
indicated in the left and right panels of Fig. 3, respectively.

HIREN H. PATEL AND MICHAEL J. RAMSEY-MUSOLF PHYSICAL REVIEW D 88, 035013 (2013)

035013-4

Two Step

Lattice

One Step

MRM, Yu, Zhou 
2104.10708
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BSM EWPT: Inter-frontier Connections
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Observables: 
model specific

Mapping
Combined 
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23.2

BSM EWPT: Inter-frontier Connections

Phase 
Diagram

Collider 
Signatures

GW 
Signals

Robust theory: 
EFT + lattice

Hydro: 
a , b / H*

Observables: 
model specific

Mapping
Combined 
reach

** How can we exploit experiment to 
identify EWPT-viable models & 
parameters ?

GW – Collider “inverse problem” **
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GW & EWPT Phase Diagram 

Friedrich, MJRM, Tenkanen, Tran 2203.05889

• Single step transition: GW well outside LISA sensitivity
• Second step of 2-step transition can be observable
• Significant GW sensitivity to portal coupling

2nd Step

1 Step FO

LISA

Latent heat

(D
ur
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n)
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Crossover



24.2

GW & EWPT Phase Diagram

• Two-step
• EFT+ Non-perturbative

BMA: mS + hà gg

BMA’ : BMA + S0à ZZ

2nd Step

Lisa

Crossover
1 Step FO

BMA

BMA’

Friedrich, MJRM, Tenkanen, Tran 2203.05889
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III. Outlook



25.2

Was There an Electroweak Phase Transition ?

• Answering this question is an important and exciting 
challenge for Higgs Physics @ LHC/CEPC/FCC-ee/ILC…

• The relevant scale TEW makes this physics a prime target 
for collider and gravitational wave probes

• The EWPT question entails a rich interplay of model 
building, thermal QFT, phenomenology & experiment à
robust thermal field theory is vital

• The collider – gravitational wave “inverse problem” has 
emerged as a particularly compelling arena for further 
exploration and opportunity HEP community and beyond 
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T. D. Lee Institute / Shanghai Jiao Tong U.

A point of 
convergence 

of the 
world’s top 
scientists

A world 
famous

source of 
original 

innovation

A launch 
pad for the 

early-
career 

scientists

Founded 2016

Particle & Nuclear 

Physics

Astronomy & 

Astrophysics

Quantum

Science

Dark Matter & 

Neutrino

Laboratory 

Astrophysics

Topological 

Quantum 

Computation

Theory & Experiment faculty members from
17 countries and
regions, with over
40% of them foreign
(non-Chinese) citizens

100+

https://tdli.sjtu.edu.cn/EN/

Director

Prof Jie
Zhang

https://www.youtube.com/
watch?v=z0awD6q8FTI
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T. D. Lee Institute / Shanghai Jiao Tong U.

A point of 
convergence 

of the 
world’s top 
scientists

A world 
famous

source of 
original 

innovation

A launch 
pad for the 

early-
career 

scientists

Founded 2016

Particle & Nuclear 

Physics

Astronomy & 

Astrophysics

Quantum

Science

Dark Matter & 

Neutrino

Laboratory 

Astrophysics

Topological 

Quantum 

Computation

Theory & Experiment faculty members from
17 countries and
regions, with over
40% of them foreign
(non-Chinese) citizens

100+

https://tdli.sjtu.edu.cn/EN/

Director

Prof Jie
Zhang

https://www.youtube.com/
watch?v=z0awD6q8FTI

Welcome to Shanghai !
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Was There an Electroweak Phase Transition ?

• Answering this question is an important and exciting 
challenge for Higgs Physics @ LHC/CEPC/FCC-ee/ILC…

• The relevant scale TEW makes this physics a prime target 
for collider and gravitational wave probes

• The EWPT question entails a rich interplay of model 
building, thermal QFT, phenomenology & experiment à
robust thermal field theory is vital

• The collider – gravitational wave “inverse problem” has 
emerged as a particularly compelling arena for further 
exploration and opportunity HEP community and beyond 

谢谢！
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Back Up Slides
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GW-Collider
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BSM Scalar:  EWPT & GW

Gould, Kozaczuk, Niemi, R-M, Tenkanen, Weir 1903.11604

3d SM-like 

EFT

Latent heat

LISA SNR
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BSM Scalar:  EWPT & GW

3d SM-like 

EFT

Latent heat

LISA SNRDynamical BSM 
scalars( D
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TEW
h
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Tf TEW

Gould, Kozaczuk, Niemi, R-M, Tenkanen, Weir 1903.11604
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BSM Scalar:  EWPT & GW

3d SM-like 

EFT

Latent heat

LISA SNRDynamical BSM 
scalars( D

ur
at

io
n)

-1

Collider probes of 
BSM parameters 
in  L full 

h

f

TEW
h

f

Tf TEW

Gould, Kozaczuk, Niemi, R-M, Tenkanen, Weir 1903.11604
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Nucleation



Tunneling @ T>0: Gravitational Waves

31

Amplitude & frequency: latent heat & intrinsic time scale 

Normalized latent heat
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Tunneling @ T>0

Scalar Quantum Field Theory

Friction term

Tunneling rate / unit volume:
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Exponent in G
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Path: minimize SE

T=0: S. Coleman, PRD 15 (1977) 2929 

“Bounce solution”
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Tunneling @ T>0

Friction term

Tunneling rate / unit volume:
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Exponent in G
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Path: minimize SE
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Tunneling @ T>0

Theoretical issues:

• Radiatively-induced barrier (St’d Model) à gauge 
dependence

• T = 0 Abelian Higgs: E. Weinberg & D. Metaxas: hep-ph/9507381  
• T=0  St’d Model: A. Andreassen, W. Frost, M. Schwartz 1408.0287 
• T > 0 Gauge theories: recently solved in 2112.07452 (à PRL) and 

2112.08912

• Multi-field problem (still gauge invar issue)

• Cosmotransitions: C. Wainwright 1109.4189
• Espinosa method: J. R. Espinosa 1805.03680 



35.1

(Re) Organize the Perturbative Expansion
Illustrate w/ Abelian Higgs

Full 3D effective action 

Adopt appropriate power-counting in couplings 

• Lofgren, MRM, Tenkanen, 
Schicho 2112.0752 à PRL

• Hirvonen, Lofgren, MRM, 
Tenkanen, Schicho 2112.08912



35.2

(Re) Organize the Perturbative Expansion
Illustrate w/ Abelian Higgs

Full 3D effective action 

Adopt appropriate power-counting in couplings 

G.I. pertubative expansion only valid 
up to NLO à D: higher order 
contributions only via other methods

• Lofgren, MRM, Tenkanen, 
Schicho 2112.0752 à PRL

• Hirvonen, Lofgren, MRM, 
Tenkanen, Schicho 2112.08912

G.I. pertubative expansion
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Tunneling @ T>0: G.I. & Nielsen Identities

Adopt appropriate power-counting in couplings 

Order-by-order consistent with Nielsen Identities

Numerical comparison with 
conventional approach

Conventional: 
0 < x < 4

S3 to O (g-1/2 ) : 
0 < x < 4

Lofgren, MRM, Tenkanen, 
Schicho 2112.0752 à PRL



37

Tunneling @ T>0: Take Aways

• For a radiatively-induced barrier, a gauge-invariant 
perturbative computation of nucleation rate can be 
performed for S3 to O (g-1/2 ) by adopting an appropriate 
power counting for T in the vicinity of Tnuc

• Abelian Higgs example generalizes to non-Abelian 
theories as well as other early universe phase transitions

• Remaining contributions to Gnuc beyond O (g -1/2 ) in S3
and including long-distance (nucleation scale) 
contributions require other methods

• Assessing numerical reliability will require benchmarking 
with non-perturbative computations



38

IR Problem
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EWPT & Perturbation Theory: IR Problem

Bosonic loop at T>0
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Bose dist fn

Effective expansion parameter

• Near phase transition: j ~ 0

• mT (j ) < g T
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EWPT & Perturbation Theory

Expansion parameter

SM lattice studies: geff ~ 0.8 in vicinity of EWPT for 
mH ~ 70 GeV *

* Kajantie et al, NPB 466 (1996) 189; hep/lat 9510020 [see sec 10.1]

Infrared sensitive 
near phase trans
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Additional Pheno



Singlets: Resonant Di-Higgs & H2à VV

42.1

SFOEWPT Max Benchmarks: HL LHC Combination bbgg & 4 lepton

S. Arunasalam, Hao-Lin Li, Kun Liu, MJRM, 
Yongchao Zeng, Wenxing Zhang 2211.0303612

SFOEWPT Min Benchmarks:



Singlets: Resonant Di-Higgs & H2à VV

42.2

SFOEWPT Max Benchmarks: HL LHC Combination bbgg & 4 lepton

S. Arunasalam, Hao-Lin Li, Kun Liu, MJRM, 
Yongchao Zeng, Wenxing Zhang 2211.0303612

SFOEWPT Min Benchmarks:
100 TeV accessible



Singlets: Resonant Di-Higgs & H2à VV

42.3

SFOEWPT Max Benchmarks: HL LHC Combination bbgg & 4 lepton

S. Arunasalam, Hao-Lin Li, Kun Liu, MJRM, 
Yongchao Zeng, Wenxing Zhang 2211.0303612

SFOEWPT Min Benchmarks:
• Observation of 4l channel would indicate 

existence of heavy resonance consistent 
with xSM SFOEWPT

• “Smoking gun” region would provide nearly 
definitive evidence & narrow down model 
parameter space 

• Exclusion would leave ample room for 100 
TeV pp discovery 

100 TeV accessible

“Smoking gun” region Parameter exclusion region



EW Phase Transition: Singlet Scalars

? 

φ

? 

φ

? 

F

? 

F1st order 2nd order

Profumo, R-M, Wainwright, Winslow: 1407.5342; see 
also Noble & Perelstein 0711.3018

<S>

Modified Higgs Self-Coupling

44.1

Scan 
includes 
m2 > 2m1

K. Hasino et al, PRD 99 
(2019) 075011

= 
 c

os
 q

Scan for m2 < 2m1



EW Phase Transition: Singlet Scalars

? 

φ

? 

φ

? 

F

? 

F1st order 2nd order

Profumo, R-M, Wainwright, Winslow: 1407.5342; see 
also Noble & Perelstein 0711.3018

<S>

Modified Higgs Self-Coupling

44.2

Scan 
includes 
m2 > 2m1

K. Hasino et al, PRD 99 
(2019) 075011

= 
 c

os
 q

Scan for m2 < 2m1

EFT + lattice updates needed !



Complex Singlet: DM + EWPT

45.1

Search for bb + MET: example sub-processes

Yizhou Cai, MJRM, Lei Zhang, 
Wenxing Zhang   2311.NNNNN

Simplest Extension: two states h1 & h2

€ 

b

€ 

b 
A

hi

A

hj

hk

€ 

b

€ 

b 

A
A

hi
hj

Original Model:

• SM + complex scalar 
singlet

• Global U(1): broken 
spontaneously & softly

• Particle spectrum

• Mixed doublet-
singlet scalars h1,2

• Scalar dark matter A

V. Barger, P. Langacker, M. McCaskey, 
MJRM, G. Shaugnessy 0811.0393 

EWPT sensitive



Complex Singlet: DM + EWPT

45.2

Search for bb + MET

Yizhou Cai, MJRM, Lei Zhang, 
Wenxing Zhang   2311.NNNNN

Heavy Higgs à VV 
exclusion: BR (h2àVV) 
larger when mh2 < 2 mA



Exotic Higgs Decays & EWPT

46.1

Exotic decays

h1 à h2 h2

h

f

Tf TEW

h

f

TEW
h

f

TEW

a2 H2f2 : T > 0  
loop effect

a2 H2f2 : T = 0  
tree-level effect

a1 H2f : T = 0  
tree-level effect

TEW ~ 140 GeV



Exotic Higgs Decays & EWPT

46.2

Exotic decays

h1 à h2 h2

h

f

Tf TEW

h

f

TEW
h

f

TEW

a2 H2f2 : T > 0  
loop effect

a2 H2f2 : T = 0  
tree-level effect

a1 H2f : T = 0  
tree-level effect

TEW ~ 140 GeV



Exotic Higgs Decays & EWPT

46.3

Exotic decays

h1 à h2 h2

h

f

Tf TEW

h

f

TEW
h

f

TEW

a2 H2f2 : T > 0  
loop effect

a2 H2f2 : T = 0  
tree-level effect

a1 H2f : T = 0  
tree-level effect

TEW ~ 140 GeV



Exotic Higgs Decays & EWPT

46.4

Exotic decays

h1 à h2 h2

h

f

Tf TEW

h

f

TEW
h

f

TEW

a2 H2f2 : T > 0  
loop effect

a2 H2f2 : T = 0  
tree-level effect

a1 H2f : T = 0  
tree-level effect

TEW ~ 140 GeV



Exotic Higgs Decays & EWPT

46.5

Exotic decays

h1 à h2 h2

h

f

Tf TEW

h

f

TEW
h

f

TEW

a2 H2f2 : T > 0  
loop effect

a2 H2f2 : T = 0  
tree-level effect

a1 H2f : T = 0  
tree-level effect

TEW ~ 140 GeV

ExplicitSpont

Z2 breaking


