Phenomenology with Massive Neutrinos in 2024

Concha Gonzalez-Garcia (YITP-Stony Brook & ICREA-University of Barcelona) SUSY24: The 31st International Conference on Supersymmetry and Unification of Fundamental Interactions

Phenomenology with Massive Neutrinos in 2024

Concha Gonzalez-Garcia (YITP-Stony Brook & ICREA-University of Barcelona) SUSY24: The 31st International Conference on Supersymmetry and Unification of Fundamental Interactions

OUTLINE

Status of the 3ν global description Explorations beyond 3ν 's: steriles, NSI's, Z's...

Concha Gonzalez-Garcia

Introduction: The Evidence of BSM

• In the SM $\nexists \nu_R \Rightarrow \underline{L}_{\alpha} \text{ conserved} \Leftrightarrow m_{\nu} = 0$

- In the SM $\nexists \nu_R \Rightarrow \underline{L_\alpha} \text{ conserved} \Leftrightarrow m_\nu = 0$
- We have observed with high (or good) precision:
 - * Atmospheric ν_{μ} & $\bar{\nu}_{\mu}$ disappear most likely to ν_{τ} (SK,MINOS, ICECUBE)
 - * Accel. ν_{μ} & $\bar{\nu}_{\mu}$ disappear at $L \sim 300/800$ Km (K2K, **T2K**, MINOS, **NO** ν **A**)
 - * Some accel ν_{μ} & $\bar{\nu}_{\mu}$ appear as ν_{e} & $\bar{\nu}_{e}$ at $L \sim 300/800$ Km (**T2K**, MINOS, **NO** ν **A**)
 - * Solar ν_e convert to ν_{μ}/ν_{τ} (Cl, Ga, SK, SNO, Borexino)
 - * Reactor $\overline{\nu}_e$ disappear at $L \sim 200$ Km (KamLAND)
 - * Reactor $\overline{\nu}_e$ disappear at $L \sim 1$ Km (D-Chooz, **Daya Bay**, Reno)

- In the SM $\nexists \nu_R \Rightarrow \underline{L_\alpha \text{ conserved}} \Leftrightarrow m_\nu = 0$
- We have observed with high (or good) precision:
 - * Atmospheric ν_{μ} & $\bar{\nu}_{\mu}$ disappear most likely to ν_{τ} (SK,MINOS, ICECUBE)
 - * Accel. ν_{μ} & $\bar{\nu}_{\mu}$ disappear at $L \sim 300/800$ Km (K2K, **T2K**, MINOS, **NO** ν **A**)
 - * Some accel ν_{μ} & $\bar{\nu}_{\mu}$ appear as ν_{e} & $\bar{\nu}_{e}$ at $L \sim 300/800$ Km (**T2K**, MINOS, **NO** ν **A**)
 - * Solar ν_e convert to ν_{μ}/ν_{τ} (Cl, Ga, SK, SNO, Borexino)
 - * Reactor $\overline{\nu}_e$ disappear at $L \sim 200$ Km (KamLAND)
 - * Reactor $\overline{\nu}_e$ disappear at $L \sim 1$ Km (D-Chooz, **Daya Bay**, Reno)

 $\Rightarrow L_{\alpha}$ are violated \Rightarrow There is Physics Beyond SM

- In the SM $\nexists \nu_R \Rightarrow \underline{L_\alpha \text{ conserved}} \Leftrightarrow m_\nu = 0$
- We have observed with high (or good) precision:
 - * Atmospheric ν_{μ} & $\bar{\nu}_{\mu}$ disappear most likely to ν_{τ} (SK,MINOS, ICECUBE)
 - * Accel. ν_{μ} & $\bar{\nu}_{\mu}$ disappear at $L \sim 300/800$ Km (K2K, **T2K**, MINOS, **NO** ν **A**)
 - * Some accel ν_{μ} & $\bar{\nu}_{\mu}$ appear as ν_{e} & $\bar{\nu}_{e}$ at $L \sim 300/800$ Km (**T2K**, MINOS, **NO** ν **A**)
 - * Solar ν_e convert to ν_{μ}/ν_{τ} (Cl, Ga, **SK**, **SNO**, **Borexino**)
 - * Reactor $\overline{\nu}_e$ disappear at $L \sim 200$ Km (KamLAND)
 - * Reactor $\overline{\nu}_e$ disappear at $L \sim 1 \text{ Km}$ (D-Chooz, Daya Bay, Reno)

 $\Rightarrow L_{\alpha}$ are violated \Rightarrow There is Physics Beyond SM

• Minimal Extension to allow for LFV \Rightarrow give Mass to the Neutrino $\equiv \nu SM$

* Introduce ν_R AND impose L conservation \Rightarrow Dirac $\nu \neq \nu^c$: $\mathcal{L} = \mathcal{L}_{SM} - M_{\nu}\overline{\nu_L}\nu_R + h.c.$

* NOT impose L conservation \Rightarrow Majorana $\nu = \nu^c$ $\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{2}M_{\nu}\overline{\nu_L}\nu_L^C + h.c.$

- In the SM $\nexists \nu_R \Rightarrow \underline{L_\alpha \text{ conserved}} \Leftrightarrow m_\nu = 0$
- We have observed with high (or good) precision:
 - * Atmospheric ν_{μ} & $\bar{\nu}_{\mu}$ disappear most likely to ν_{τ} (SK,MINOS, ICECUBE)
 - * Accel. ν_{μ} & $\bar{\nu}_{\mu}$ disappear at $L \sim 300/800$ Km (K2K, **T2K**, MINOS, **NO** ν **A**)
 - * Some accel ν_{μ} & $\bar{\nu}_{\mu}$ appear as ν_{e} & $\bar{\nu}_{e}$ at $L \sim 300/800$ Km (**T2K**, MINOS, **NO** ν **A**)
 - * Solar ν_e convert to ν_{μ}/ν_{τ} (Cl, Ga, **SK**, **SNO**, **Borexino**)
 - * Reactor $\overline{\nu}_e$ disappear at $L \sim 200$ Km (KamLAND)
 - * Reactor $\overline{\nu}_e$ disappear at $L \sim 1$ Km (D-Chooz, **Daya Bay**, Reno)

 $\Rightarrow L_{\alpha}$ are violated \Rightarrow There is Physics Beyond SM

• Minimal Extension to allow for LFV \Rightarrow give Mass to the Neutrino $\equiv \nu SM$ \Rightarrow CC interactions of leptons are not diagonal (same as quarks)

$$\frac{g}{\sqrt{2}}W^+_{\mu}\sum_{ij}\left(U^{ij}_{\text{LEP}}\,\overline{\ell^i}\,\gamma^{\mu}\,L\,\nu^j + U^{ij}_{\text{CKM}}\,\overline{U^i}\,\gamma^{\mu}\,L\,D^j\right) + h.c.$$

 $\Rightarrow \text{For } N = 3 + s \ \nu's: \ U_{\text{LEP}} = 3 \times N \quad U_{\text{LEP}} U_{\text{LEP}}^{\dagger} = I_{3\times 3} \quad U_{\text{LEP}}^{\dagger} U_{\text{LEP}} \neq I_{N\times N}$

- In the SM $\nexists \nu_R \Rightarrow \underline{L_\alpha} \text{ conserved} \Leftrightarrow m_\nu = 0$
- We have observed with high (or good) precision:
 - * Atmospheric ν_{μ} & $\bar{\nu}_{\mu}$ disappear most likely to ν_{τ} (SK,MINOS, ICECUBE)
 - * Accel. ν_{μ} & $\bar{\nu}_{\mu}$ disappear at $L \sim 300/800$ Km (K2K, **T2K**, MINOS, **NO** ν **A**)
 - * Some accel ν_{μ} & $\bar{\nu}_{\mu}$ appear as ν_{e} & $\bar{\nu}_{e}$ at $L \sim 300/800$ Km (**T2K**, MINOS, **NO** ν **A**)
 - * Solar ν_e convert to ν_{μ}/ν_{τ} (Cl, Ga, SK, SNO, Borexino)
 - * Reactor $\overline{\nu}_e$ disappear at $L \sim 200$ Km (KamLAND)
 - * Reactor $\overline{\nu}_e$ disappear at $L \sim 1$ Km (D-Chooz, **Daya Bay**, Reno)

 $\Rightarrow L_{\alpha}$ are violated \Rightarrow There is Physics Beyond SM

• Minimal Extension to allow for LFV \Rightarrow give Mass to the Neutrino $\equiv \nu SM$ \Rightarrow Flavour Oscillations:

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4\sum_{j\neq i}^{n} \operatorname{Re}[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}]\sin^{2}\left(\frac{\Delta_{ij}}{2}\right) + 2\sum_{j\neq i}\operatorname{Im}[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}]\sin\left(\Delta_{ij}\right)$$
$$\frac{\Delta_{ij}}{2} = \frac{(E_{i} - E_{j})L}{2} = 1.27\frac{(m_{i}^{2} - m_{j}^{2})}{eV^{2}}\frac{L/E}{\mathrm{Km/GeV}}$$

No information on ν mass scale nor Majorana versus Dirac

- In the SM $\nexists \nu_R \Rightarrow \underline{L_\alpha} \text{ conserved} \Leftrightarrow m_\nu = 0$
- We have observed with high (or good) precision:
 - * Atmospheric ν_{μ} & $\bar{\nu}_{\mu}$ disappear most likely to ν_{τ} (SK,MINOS, ICECUBE)
 - * Accel. ν_{μ} & $\bar{\nu}_{\mu}$ disappear at $L \sim 300/800$ Km (K2K, **T2K**, MINOS, **NO** ν **A**)
 - * Some accel ν_{μ} & $\bar{\nu}_{\mu}$ appear as ν_{e} & $\bar{\nu}_{e}$ at $L \sim 300/800$ Km (**T2K**, MINOS, **NO** ν **A**)
 - * Solar ν_e convert to ν_{μ}/ν_{τ} (Cl, Ga, **SK**, **SNO**, **Borexino**)
 - * Reactor $\overline{\nu}_e$ disappear at $L \sim 200$ Km (KamLAND)
 - * Reactor $\overline{\nu}_e$ disappear at $L \sim 1$ Km (D-Chooz, **Daya Bay**, Reno)

 $\Rightarrow L_{\alpha}$ are violated \Rightarrow There is Physics Beyond SM

- Minimal Extension to allow for LFV \Rightarrow give Mass to the Neutrino $\equiv \nu SM$
 - $\Rightarrow \text{If } \nu \text{ cross matter regions (Sun, Earth...)} \\ \text{it interacts coherently} \\ \text{Different flavours have different interactio} \\ \end{cases}$

 \Rightarrow Effective potential in ν evolution : $V_e \neq V_{\mu,\tau} \Rightarrow \Delta V^{\nu_e} = -\Delta V^{\bar{\nu}_s} = \sqrt{2}G_F N_e$

 \Rightarrow Modification of mixing angle and oscillation wavelength (MSW)

Solar experiments

- Chlorine total rate, 1 data point.
- Gallex & GNO total rates, 2 points.
- SAGE total rate, 1 data point.
- SK1 E and zenith spect, 44 poins.
- SK2 E and D/N spect, 33 points.
- SK3 E and D/N spect, 42 points.
- SK4 2970-day E spectrum and D/N asym, 46 points.
- SNO combined analysis, 7 points.
- Borexino Ph-I 740.7-day low-E spect 33 points.
- Borexino Ph-I 246-day high-E spect ,6 points.
- Borexino Ph-II 1292-day low-E spect, 192 points.
- Borexino Ph-III 1433-day low-E spect, 120 points.

Reactor experiments

- KamLAND DS1,DS2&DS3 spectra with Daya-Bay fluxes 69 points
- DChooz FD/ND ratios with 1276-day (FD) and 587-day (ND) exposures , 26 points.
- Daya-Bay 3158-day EH1,EH2, EH3 spectra ,78 points.
- Reno 2908-day FD/ND ratios 45 points.

Atmospheric experiments

- IceCube/DeepCore 3-year data, 64 points.
- SK I-IV 328 and 372 kton-years & SK I-V 484 kton-years $(\chi^2 \text{ table provided by SK}).$

Accelerator experiments

- MINOS 10.71×10^{20} pot ν_{μ} -disapp data, 39 poins.
- MINOS 3.36 \times 10^{20} pot $\bar{\nu}_{\mu}\text{-disapp}$ data , 14 points.
- MINOS 10.6×10^{20} pot $\nu_e\text{-app}$ data , 5 points.
- MINOS $3.3\times 10^{20}~{\rm pot}~\bar{\nu}_e\text{-app}$ data , 5 points.
- T2K 19.7×10^{20} pot ν_{μ} -disapp data, 35 points.
- T2K 19.7 \times 10²⁰ pot ν_e -app data, 23 points CCQE and 16 points CC1 π .
- T2K 16.3×10^{20} pot $\bar{\nu}_{\mu}$ -disapp, 35 points.
- T2K 16.3×10^{20} pot $\bar{\nu}_e$ -app, 23 points.
- + NO ν A 13.6 \times 10²⁰ pot ν_{μ} -disapp data , 76 points.
- + NOvA 13.6 \times 10^{20} pot $\nu_e\text{-app}$ data , 13 points.
- NO ν A 12.5 × 10²⁰ pot $\bar{\nu}_{\mu}$ -disapp, 76 points.
- NO ν A 12.5 × 10²⁰ pot $\bar{\nu}_e$ -app, 13 points.

Concha Gonzalez-Garcia

Introduction: The Evidence of BSM

- We have observed with high (or good) precision:
 - * Atmospheric ν_{μ} & $\bar{\nu}_{\mu}$ disappear most likely to ν_{τ} (SK,MINOS, ICECUBI $\Delta m^{2} \sim 2 \, 10^{-3}$

* Accel. ν_{μ} & $\bar{\nu}_{\mu}$ disappear at $L \sim 300/800$ Km (K2K, **T2K**, MINOS, **NO** ν **A**) $\theta \sim 45^{\circ}$

- * Some accel ν_{μ} & $\bar{\nu}_{\mu}$ appear as ν_{e} & $\bar{\nu}_{e}$ at $L \sim 300/800$ Km (**T2K**, MINOS, **NO** $\nu_{\mu}^{\theta} \sim 8^{\circ}$
- * Solar ν_e convert to ν_{μ}/ν_{τ} (Cl, Ga, SK, SNO, Borexino)
- * Reactor $\overline{\nu}_e$ disappear at $L \sim 200$ Km (KamLAND)
- * Reactor $\overline{\nu}_e$ disappear at $L \sim 1$ Km (D-Chooz, **Daya Bay**, Reno)

$$\frac{\Delta m^2}{\text{eV}^2} \sim 10^{-5}, \theta \sim 30^{\circ}$$
end)
$$\frac{\Delta m^2}{\text{eV}^2} \sim 210^{-3}, \theta \sim 8^{\circ}$$

• Confirmed: – Vacuum oscillation L/E pattern with 2 frequencies

• For for 3 ν 's : 3 Mixing angles + 1 Dirac Phase + 2 Majorana Phases

$$U_{\text{LEP}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta_{\text{cp}}} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta_{\text{cp}}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{b} & 0 & 0 \\ 0 & 0^{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• Convention: $0 \le \theta_{ij} \le 90^\circ$ $0 \le \delta \le 360^\circ \Rightarrow 2$ Orderings

• For for 3 ν 's : 3 Mixing angles + 1 Dirac Phase + 2 Majorana Phases

$$U_{\rm LEP} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta_{\rm CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta_{\rm CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i} & 0 & 0 \\ 0 & q^{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• Convention: $0 \le \theta_{ij} \le 90^\circ$ $0 \le \delta \le 360^\circ \Rightarrow 2$ Orderings

Experiment	Dominant	Important	Additional
Solar Experiments	$ heta_{12}$	Δm^2_{21}	$ heta_{13}$
Reactor LBL (KamLAND)	Δm^2_{21}	$ heta_{12}$	$ heta_{13}$
Reactor MBL (Daya Bay, Reno, D-Chooz)	$ heta_{13}, \Delta m^2_{3\ell}$		
Atmospheric Experiments (SK,IC)	$ heta_{23}$	$\Delta m_{3\ell}^2$	$ heta_{13}$, $\delta_{ m cp}$
Acc LBL ν_{μ} Disapp (Minos,T2K,NOvA)	$\Delta m_{3\ell}^2$. θ_{23}		-
Acc LBL ν_e App (Minos, T2K, NOvA)	$\delta_{ m cp}$		θ_{13}

Global 6-parameter fit http://www.nu-fit.org

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou, JHEP'20 [2007.14792]

(Good agreement with other groups': Capozzi, et al, 2107.00532; Salas et al 2006.11237)

Global 6-parameter fit http://www.nu-fit.org

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou, JHEP'20 [2007.14792]

• 4 well-known parameters: $\theta_{12}, \theta_{13}, \Delta m_{21}^2, |\Delta m_{3\ell}^2|$

Global 6-parameter fit http://www.nu-fit.org

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou, JHEP'20 [2007.14792]

Global 6-parameter fit http://www.nu-fit.org

Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou, JHEP'20 [2007.14792]

Massive Neut

Ordering and CPV in LBL: ν_e appearace

nzalez-Garcia

• Dominant information from ν_e appearance in LBL

$$P_{\mu e} \simeq s_{23}^2 \sin^2 2\theta_{13} \left(\frac{\Delta_{31}}{B_{\mp}}\right)^2 \sin^2 \left(\frac{B_{\mp}L}{2}\right) + \tilde{J} \frac{\Delta_{21}}{V_E} \frac{\Delta_{31}}{B_{\mp}} \sin \left(\frac{V_E L}{2}\right) \sin \left(\frac{B_{\mp}L}{2}\right) \cos \left(\frac{\Delta_{31}L}{2} \pm \delta_{CP}\right)$$
$$\Delta_{ij} = \frac{\Delta m_{ij}^2}{4E} \quad B_{\pm} = \Delta_{31} \pm V_E \quad \tilde{J} = c_{13} \sin^2 2\theta_{13} \sin^2 2\theta_{23} \sin^2 2\theta_{12}$$

 \Rightarrow Each T2K and NO ν A favour NO

Massive Neut

Ordering and CPV in LBL: ν_e appearace

• Dominant information from ν_e appearance in LBL

$$P_{\mu e} \simeq s_{23}^2 \sin^2 2\theta_{13} \left(\frac{\Delta_{31}}{B_{\mp}}\right)^2 \sin^2 \left(\frac{B_{\mp}L}{2}\right) + \tilde{J} \frac{\Delta_{21}}{V_E} \frac{\Delta_{31}}{B_{\mp}} \sin\left(\frac{V_EL}{2}\right) \sin\left(\frac{B_{\mp}L}{2}\right) \cos\left(\frac{\Delta_{31}L}{2} \pm \delta_{CP}\right)$$
$$\Delta_{ij} = \frac{\Delta m_{ij}^2}{4E} \quad B_{\pm} = \Delta_{31} \pm V_E \quad \tilde{J} = c_{13} \sin^2 2\theta_{13} \sin^2 2\theta_{23} \sin^2 2\theta_{12}$$

But tension in favoured values of δ_{CP} in NO

nzalez-Garcia

 \Rightarrow <u>IO best fit in LBL combination</u>

 \Rightarrow Each T2K and NO ν A favour NO

Concha Gonzalez-Garcia

Δm^2_{3l} in LBL & Reactors

• At LBL determined in ν_{μ} and $\bar{\nu}_{\mu}$ disappearance spectrum

$$\Delta m_{\mu\mu}^2 \simeq \Delta m_{3l}^2 + \frac{c_{12}^2 \Delta m_{21}^2 \text{ NO}}{s_{12}^2 \Delta m_{21}^2 \text{ IO}} + \dots$$

• At MBL Reactors (Daya-Bay, Reno, D-Chooz) determined in $\bar{\nu}_e$ disapp spectrum

$$\Delta m_{ee}^2 \simeq \Delta m_{3l}^2 + \frac{s_{12}^2 \Delta m_{21}^2 \text{ NO}}{c_{12}^2 \Delta m_{21}^2 \text{ IO}} \qquad \text{Nunokawa,Parke,Zukanovich (2005)}$$

 \Rightarrow Contribution to NO/IO from combination of LBL with reactor data

Δm_{3l}^2 in LBL & Reactors

• At LBL determined in ν_{μ} and $\bar{\nu}_{\mu}$ disappearance spectrum

$$\Delta m_{\mu\mu}^2 \simeq \Delta m_{3l}^2 + \frac{c_{12}^2 \Delta m_{21}^2 \text{ NO}}{s_{12}^2 \Delta m_{21}^2 \text{ IO}} + \dots$$

• At MBL Reactors (Daya-Bay, Reno, D-Chooz) determined in $\bar{\nu}_e$ disapp spectrum

$$\Delta m_{ee}^2 \simeq \Delta m_{3l}^2 + \frac{s_{12}^2 \Delta m_{21}^2}{c_{12}^2 \Delta m_{21}^2} \frac{\text{NO}}{\text{IO}} \qquad \text{Nunokawa,Parke,Zukanovich} (2005)$$

 \Rightarrow Contribution to NO/IO from combination of LBL with reactor data

- T2K and NO ν A more compatible in IO \Rightarrow IO best fit in LBL combination
- LBL/Reactor complementarity in $\Delta m_{3\ell}^2 \Rightarrow$ NO best fit in LBL+Reactors

Concha Gonzalez-Garcia

Δm_{3l}^2 in LBL & Reactors

• At LBL determined in ν_{μ} and $\bar{\nu}_{\mu}$ disappearance spectrum

$$\Delta m_{\mu\mu}^2 \simeq \Delta m_{3l}^2 + \frac{c_{12}^2 \Delta m_{21}^2 \text{ NO}}{s_{12}^2 \Delta m_{21}^2 \text{ IO}} + \dots$$

• At MBL Reactors (Daya-Bay, Reno, D-Chooz) determined in $\bar{\nu}_e$ disapp spectrum

$$\Delta m_{ee}^2 \simeq \Delta m_{3l}^2 + \frac{s_{12}^2 \Delta m_{21}^2}{c_{12}^2 \Delta m_{21}^2} \frac{\text{NO}}{\text{IO}} \qquad \text{Nunokawa,Parke,Zukanovich} (2005)$$

 \Rightarrow Contribution to NO/IO from combination of LBL with reactor data

- T2K and NO ν A more compatible in IO \Rightarrow IO best fit in LBL combination
- LBL/Reactor complementarity in $\Delta m_{3\ell}^2 \Rightarrow$ NO best fit in LBL+Reactors
- in NO: b.f $\delta_{\rm CP} \sim 195^\circ \Rightarrow \underline{\text{CPC}}$ allowed at 0.6 σ
- in IO: b.f $\delta_{\rm CP} \sim 270^\circ \Rightarrow \underline{\text{CPC}}$ disfavoured at 3 σ

Concha Gonzalez-Garcia

Ordering and CPV including SK-ATM

ATM results added to global fit using SK χ^2 tables

- NUFIT 5.0: included SK I-IV 328 kton-years table
- NUFIT 5.1 and 5.2: include SK I-IV 372.8 kton-years table
- NUFIT 5.3: include SK I-V 484 kton-years table

Concha Gonzalez-Garcia

Ordering and CPV including SK-ATM

ATM results added to global fit using SK χ^2 tables

- NUFIT 5.0: included SK I-IV 328 kton-years table
- NUFIT 5.1 and 5.2: include SK I-IV 372.8 kton-years table
- NUFIT 5.3: include SK I-V 484 kton-years table

Concha Gonzalez-Garcia

Ordering and CPV including SK-ATM

ATM results added to global fit using SK χ^2 tables

- NUFIT 5.0: included SK I-IV 328 kton-years table
- NUFIT 5.1 and 5.2: include SK I-IV 372.8 kton-years table
- NUFIT 5.3: include SK I-V 484 kton-years table

Confirmed Low Energy Picture and MY List of Q&A

- 3ν scenario:
 - Robust determination of θ_{12} , θ_{13} , Δm_{21}^2 , $|\Delta m_{3\ell}^2|$
 - Mass ordering, θ_{23} Octant, CPV depend on subdominant 3ν -effects
 - \Rightarrow interplay of LBL/reactor/ATM results
 - \Rightarrow not statistically significant yet
 - \Rightarrow definitive answer will likely require new experiments:
 - T2K and NO νA will run till ~ 2027
 - **JUNO** started taking data in $2024 \Rightarrow$ Ordering
 - Hyper-K and DUNE expected within a decade \Rightarrow Ordering, δ_{CP} & θ_{23}

Confirmed Low Energy Picture and MY List of Q&A

- 3ν scenario:
 - Robust determination of θ_{12} , θ_{13} , Δm_{21}^2 , $|\Delta m_{3\ell}^2|$
 - Mass ordering, θ_{23} Octant, CPV depend on subdominant 3ν -effects
 - \Rightarrow interplay of LBL/reactor/ATM results
 - \Rightarrow not statistically significant yet
 - \Rightarrow definitive answer will likely require new experiments:
 - T2K and NO νA will run till ~ 2027
 - **JUNO** started taking data in $2024 \Rightarrow$ Ordering
 - Hyper-K and DUNE expected within a decade \Rightarrow Ordering, δ_{CP} & θ_{23}
- Oscillations DO NOT determine the lightest mass
- Oscillations DO NOT distinguish Dirac/Majorana

Neutrino Mass Scale: β **Decay**

Single β decay : Dirac or Majorana ν mass modify spectrum endpoint

$$m_{\nu_e}^2 = \sum m_j^2 |U_{ej}|^2 = c_{13}^2 c_{12}^2 m_1^2 + c_{13}^2 s_{12}^2 m_2^2 + s_{13}^2 m_3^2$$

Purely kinematics \Rightarrow Only model independent probe ν -mass scale

Massive Neutrinos 20 Majorana or Dirac: $0\nu\beta\beta$ Decay

ncha Gonzalez-Garcia

 $0\nu\beta\beta \Rightarrow L \text{ violation} \Leftrightarrow \text{Majorana } \nu$

Best bounds from ¹³⁶Xe (KamLAND-ZEN): $T_{1/2}^{0\nu, \text{Xe}} > 2.3 \times 10^{26} \text{ yr at } 90\% \text{CL}$ ⁷⁶Ge (Gerda): $T_{1/2}^{0\nu, {
m Ge}} > 1.8 \times 10^{26}$ yr at 90%CL 130 Te (Cuore): $T_{1/2}^{0\nu,{
m Te}} > 2.2 \times 10^{25}$ yr at 90%CL

Massive Neutrinos 20 Majorana or Dirac: $0\nu\beta\beta$ Decay

ncha Gonzalez-Garcia

 $0\nu\beta\beta \Rightarrow L \text{ violation} \Leftrightarrow \text{Majorana } \nu$

If m_{ν} only source of ΔL

$$T_{1/2}^{0\nu} = \frac{m_e}{G_{0\nu} M_{\text{nucl}}^2 m_{ee}^2}$$

$$m_{ee} = \left| \sum_{e_j} U_{e_j}^2 m_j \right|$$

= $\left| c_{13}^2 c_{12}^2 m_1 e^{i\eta_1} + c_{13}^2 s_{12}^2 m_2 e^{i\eta_2} + s_{13}^2 m_3 e^{-i\delta_{CP}} \right|$

 $= f(m_{\ell}, \text{order}, \text{maj phases})$

Best bounds from ¹³⁶Xe (KamLAND-ZEN): $T_{1/2}^{0
u,{
m Xe}} > 2.3 imes 10^{26}$ yr at 90%CL ⁷⁶Ge (Gerda): $T_{1/2}^{0\nu, \text{Ge}} > 1.8 \times 10^{26} \text{ yr at } 90\% \text{CL}$ 130 Te (Cuore):

 $T_{1/2}^{0\nu, {
m Te}} > 2.2 \times 10^{25}$ yr at 90%CL

KamLAND-Zen Coll. ArXiv:2203.02139

Massive Neutrinos Probes of Mass Scale in 3ν -mixing ^a

a Gonzalez-Garcia

Single β decay : Pure kinematics, Dirac or Majorana ν 's, only model independent

$$m_{\nu_e}^2 = \sum m_j^2 |U_{ej}|^2 = \begin{cases} \text{NO}: m_\ell^2 + \Delta m_{21}^2 c_{13}^2 s_{12}^2 + \Delta m_{31}^2 s_{13}^2 \\ \text{IO}: m_\ell^2 + \Delta m_{21}^2 c_{13}^2 s_{12}^2 - \Delta m_{31}^2 c_{13}^2 \end{cases}$$

Present bound: $m_{\nu_e} \leq 0.8 \text{ eV}$ (90% CL KATRIN 2021) ⁻ ^TKatrin (20XX) Sensitivity to $m_{\nu_e} \sim 0.2 \text{ eV}$

COSMO for Dirac or Majorana m_{ν} affect growth of structures

K (T)

$$\sum m_i = \begin{cases} \text{NO}: \sqrt{m_{\ell}^2} + \sqrt{\Delta m_{21}^2 + m_{\ell}^2} + \sqrt{\Delta m_{31}^2 + m_{\ell}^2} \\ \text{IO} \ \sqrt{m_{\ell}^2} + \sqrt{-\Delta m_{31}^2 - \Delta m_{21}^2 - m_{\ell}^2} + \sqrt{-\Delta m_{31}^2 - m_{\ell}^2} \end{cases}$$

M Neutrino Mass Scale: The Cosmo-Lab Connection

cia

Global oscillation analysis \Rightarrow Correlations m_{ν_e} , m_{ee} and $\sum m_{\nu}$ (Fogli *et al* (04))

^M Neutrino Mass Scale: The Cosmo-Lab Connection

tia

Global oscillation analysis \Rightarrow Correlations m_{ν_e} , m_{ee} and $\sum m_{\nu}$ (Fogli *et al* (04))

Confirmed Low Energy Picture and MY List of Q&A

- 3ν scenario: Robust determination of $\theta_{12}, \theta_{13}, \Delta m_{21}^2, |\Delta m_{3\ell}^2|$
 - Mass ordering, θ_{23} Octant, CPV depend on subdominant 3ν -effects

 \Rightarrow interplay of LBL/reactor/ATM results. But not statistically significant yet \Rightarrow definitive answer will likely require new experiments

- What about mass scale and Dirac vs Majorana?
 - Only model independent probe of $m_{\nu} \beta$ decay: $\sum m_i^2 |U_{ei}|^2 \le (0.8 \text{ eV})^2$
 - Dirac or Majorana?: We do not know, anxiously waiting for ν -less $\beta\beta$ decay
 - Cosmological effects?: Steadily improving bounds

Confirmed Low Energy Picture and MY List of Q&A

- 3ν scenario: Robust determination of $\theta_{12}, \theta_{13}, \Delta m_{21}^2, |\Delta m_{3\ell}^2|$
 - Mass ordering, θ_{23} Octant, CPV depend on subdominant 3ν -effects

 \Rightarrow interplay of LBL/reactor/ATM results. But not statistically significant yet \Rightarrow definitive answer will likely require new experiments

- What about mass scale and Dirac vs Majorana?
 - Only model independent probe of $m_{\nu} \beta$ decay: $\sum m_i^2 |U_{ei}|^2 \le (0.8 \text{ eV})^2$
 - Dirac or Majorana?: We do not know, anxiously waiting for ν -less $\beta\beta$ decay
 - Cosmological effects?: Steadily improving bounds
- Only three light states?

Massive Neutrinos Beyond 3ν 's: Light Sterile Neutrinos

• Several Observations which can be Interpreted as Oscillations with $\Delta m^2 \sim { m eV}^2$

LSND & MiniBoone

LSND 2001:

Signal $\nu_{\mu} \rightarrow \nu_{e} (3.8 \sigma)$ MiniBooNE 2020:

 $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \& \nu_{\mu} \rightarrow \nu_{e}$ (639 ± 132.8 events)

Gallium Anomaly

Acero, Giunti, Laveder, 0711.4222 Giunti, Laveder, 1006.3244

Radioactive Sources (⁵¹Cr, ³⁷Ar) in calibration of Ga Solar Exp; $\nu_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-$

Give a rate lower than expected

Explained as ν_e disappearance

Reactor Anomaly (2011)

a Gonzalez-Garcia

Huber, 1106.0687 Mention *etal* ,1101.2755

New reactor flux calculation

 \Rightarrow Deficit in data at $L \lesssim 100 \text{ m}$

Explained as $\bar{\nu}_e$ disappearance
Massive Neutrinos Beyond 3ν 's: Light Sterile Neutrinos a Gonzalez-Garcia • Several Observations which can be Interpreted as Oscillations with $\Delta m^2 \sim eV^2$ LSND & MiniBoone Gallium Anomaly Reactor Anomaly (2011) Acero, Giunti, Laveder, 0711.4222 Huber, 1106.0687 LSND 2001: Giunti, Laveder, 1006.3244 Mention etal ,1101.2755 Signal $\nu_{\mu} \rightarrow \iota$ culation Oscillation Interpretation Requires O(eV) sterile ν 's $\lesssim 100 \text{ m}$ MiniBooNE 202 $\bar{\nu}_{\mu}
ightarrow \bar{\nu}_{e} \& \nu_{\mu}$ Palo Verde RENO - SRP Rovno88 ------STEREC (639 ± 132.8) ν_s ν_{τ} Δm_{41}^2 ν_{μ} $\overline{R}_{HM} = 0.936^{+0.024}_{-0.023}$ ν_e 10 ppearance Δm_{31}^2 Δm_{21}^2

Massive Neutrinos Beyond 3ν 's: Light Sterile Neutrinos

LSND & MiniBoone

 $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_e \& \nu_{\mu} \rightarrow \nu_e$

 $\sin^2 2\theta_{\mu e} \sim \frac{1}{4} \sin^2 2\theta_{ee} \sin^2 2\theta_{\mu\mu}$

Strong tension with

non-obervation of ν_{μ} dissap

Purely sterile oscillation robustly disfavoured additional SM or NP effects?

Beyond 3*ν***'s: Light Sterile Neutrinos**

a Gonzalez-Garcia

LSND & MiniBoone

 $\bar{\nu}_{\mu}
ightarrow \bar{\nu}_{e} \& \nu_{\mu}
ightarrow \nu_{e}$

 $\sin^2 2\theta_{\mu e} \sim \frac{1}{4} \sin^2 2\theta_{ee} \sin^2 2\theta_{\mu\mu}$

Strong tension with non-obervation of ν_{μ} dissap

Purely sterile oscillation robustly disfavoured additional SM or NP effects?

Gallium Anomaly

Acero etal, 0711.4222;Giunti, Laveder, 1006.3244

$$\nu_e$$
 + ⁷¹Ga \rightarrow ⁷¹Ge + e^-

Rate lower than expected

Explained as ν_e disappearance

Confirming results from BEST

Requires large mixings

Ruled out/tension by solar and reactor $\nu's$ Goldhagen etal 2109.14898 Berryman etal 2111.12530 Giunti etal, 2209.00916

Beyond 3*ν***'s: Light Sterile Neutrinos**

a Gonzalez-Garcia

LSND & MiniBoone

 $\bar{\nu}_{\mu} \to \bar{\nu}_e \& \nu_{\mu} \to \nu_e$

 $\sin^2 2\theta_{\mu e} \sim \frac{1}{4} \sin^2 2\theta_{ee} \sin^2 2\theta_{\mu\mu}$

Strong tension with non-obervation of ν_{μ} dissap

Purely sterile oscillation robustly disfavoured additional SM or NP effects?

Gallium Anomaly

Acero etal, 0711.4222;Giunti, Laveder,1006.3244 $\nu_e + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^-$ Rate lower than expected Explained as ν_e disappearance Confirming results from BEST 2109.11482 10 20 10 ${}^$

Requires large mixings Ruled out/tension by solar and reactor $\nu's$ Goldhagen etal 2109.14898 Berryman etal 2111.12530 Giunti etal, 2209.00916

Reactor Anomaly

Huber, 1106.068,Mention *etal*,1101.2755 2011 reactor flux calculation \Rightarrow Deficit in $R = \frac{\text{data}}{\text{predict}}$ at $L \lesssim 100 \text{ m}$ Explained as $\bar{\nu}_e$ disappearance

2022 with updated inputs (^{235}U)

Berryman Huber, 2005.01756 Kipeikin etal, 2103.01486 Giunti etal, 2110.06820

(Fig from Giunti etal, 2110.06820)

Anomaly $\sim 1\,\sigma$ with new fluxes

Spectral ratios at different baselines \Rightarrow Independent of flux normalizations.

But low statistical significance (Wilk's theorem fails) Berryman, etal 2111.12530 MC estimation of prob distribution \Rightarrow no significant indication of ν_s oscillations

Confirmed Low Energy Picture and MY List of Q&A

- 3ν scenario: Robust determination of $\theta_{12}, \theta_{13}, \Delta m_{21}^2, |\Delta m_{3\ell}^2|$
 - Mass ordering, θ_{23} Octant, CPV depend on subdominant 3ν -effects

 \Rightarrow interplay of LBL/reactor/ATM results. But not statistically significant yet \Rightarrow definitive answer will likely require new experiments

- What about mass scale and Dirac vs Majorana?
 - Only model independent probe of $m_{\nu} \beta$ decay: $\sum m_i^2 |U_{ei}|^2 \le (0.8 \text{ eV})^2$
 - Dirac or Majorana?: We do not know, anxiously waiting for ν -less $\beta\beta$ decay
 - Cosmological effects?: Steadily improving bounds
- Only three light states? No consistent/stable description/status of SBL anomalies Expected relevant result from: SBNP@FNAL: MicroBooNE and Icarus running; SBND expected 2024 Sterile@JPARK: JNS2² (II) running (upcoming)

SoLid reactor experiment running

Confirmed Low Energy Picture and MY List of Q&A

- 3ν scenario: Robust determination of $\theta_{12}, \theta_{13}, \Delta m_{21}^2, |\Delta m_{3\ell}^2|$
 - Mass ordering, θ_{23} Octant, CPV depend on subdominant 3ν -effects

 \Rightarrow interplay of LBL/reactor/ATM results. But not statistically significant yet \Rightarrow definitive answer will likely require new experiments

- What about mass scale and Dirac vs Majorana?
 - Only model independent probe of $m_{\nu} \beta$ decay: $\sum m_i^2 |U_{ei}|^2 \le (0.8 \text{ eV})^2$
 - Dirac or Majorana?: We do not know, anxiously waiting for ν -less $\beta\beta$ decay
 - Cosmological effects?: Steadily improving bounds
- Only three light states? No consistent/stable description/status of SBL anomalies Expected relevant result from: SBNP@FNAL: MicroBooNE and Icarus running; SBND expected 2024 Sterile@JPARK: JNS2² (II) running (upcoming) SoLid reactor experiment running
- Other NP at play?

Neutral Current Non Standard ν Interactions

• Effective Lagrangian

$$\mathcal{L}_{\rm NSI}^{\rm NC} = -2\sqrt{2}G_F \varepsilon_{\alpha\beta}^{fP} (\bar{\nu}_{\alpha}\gamma^{\mu}L\nu_{\beta})(\bar{f}\gamma_{\mu}Pf), \qquad P = L, R$$

Neutral Current Non Standard ν **Interactions**

• Effective Lagrangian

$$\mathcal{L}_{\rm NSI}^{\rm NC} = -2\sqrt{2}G_F \varepsilon_{\alpha\beta}^{fP} (\bar{\nu}_{\alpha}\gamma^{\mu}L\nu_{\beta})(\bar{f}\gamma_{\mu}Pf), \quad P = L, R$$

• Generically understood as:

Neutral Current Non Standard ν Interactions

• Depending on Z' (Mediator) Mass:

 \Rightarrow For mediator mass $\lesssim O(10)'s$ MeV– GeV effects in scattering suppressed

NSI in ν **Oscillations : Degeneracies**

• In matter with NSI:
$$i\frac{d}{dx}\vec{\nu} = H^{\nu}\vec{\nu}$$
 $H^{\nu} = U_{\text{vac}}\begin{pmatrix} 0 & 0 & 0\\ 0 & \frac{\Delta m_{21}^2}{2E_{\nu}} & 0\\ 0 & 0 & \frac{\Delta m_{31}^2}{2E_{\nu}} \end{pmatrix} U_{\text{vac}}^{\dagger} + H_{\text{mat}}^{\text{SM}} + H_{\text{mat}}^{\text{NSI}}$
Convention $U_{\text{vac}} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13}e^{i\delta_{\text{CP}}} & s_{13}\\ -s_{12}c_{23}e^{-i\delta_{\text{CP}}} - c_{12}s_{13}s_{23} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta_{\text{CP}}} & c_{13}s_{23}\\ s_{12}s_{23}e^{-i\delta_{\text{CP}}} - c_{12}s_{13}c_{23} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta_{\text{CP}}} & c_{13}c_{23} \end{pmatrix}$
 $H_{\text{mat}}^{\text{SM}} + H_{\text{mat}}^{\text{NSI}} \equiv \sqrt{2}G_F N_e(r) \begin{pmatrix} 1 + \varepsilon_{ee} - \varepsilon_{\mu\mu} & \varepsilon_{e\mu} & \varepsilon_{e\tau}\\ \varepsilon_{e\mu}^* & 0 & \varepsilon_{\mu\tau}\\ \varepsilon_{e\tau}^* & \varepsilon_{\mu\tau}^* & \varepsilon_{\tau\tau} - \varepsilon_{\mu\mu} \end{pmatrix} \text{ with } \varepsilon_{\alpha\beta}(r) \equiv \sum_f \frac{N_f(r)}{N_e(r)} \varepsilon_{\alpha\beta}^f$

NSI in ν **Oscillations : Degeneracies**

• In matter with NSI:
$$i\frac{d}{dx}\vec{\nu} = H^{\nu}\vec{\nu} \quad H^{\nu} = U_{\text{vac}}\begin{pmatrix} 0 & 0 & 0\\ 0 & \frac{\Delta m_{21}^2}{2E_{\nu}} & 0\\ 0 & 0 & \frac{\Delta m_{31}^2}{2E_{\nu}} \end{pmatrix} U_{\text{vac}}^{\dagger} + H_{\text{mat}}^{\text{SM}} + H_{\text{mat}}^{\text{NSI}}$$
Convention
$$U_{\text{vac}} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13}e^{i\delta_{\text{CP}}} & s_{13}\\ -s_{12}c_{23}e^{-i\delta_{\text{CP}}} - c_{12}s_{13}s_{23} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta_{\text{CP}}} & c_{13}s_{23}\\ s_{12}s_{23}e^{-i\delta_{\text{CP}}} - c_{12}s_{13}c_{23} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta_{\text{CP}}} & c_{13}c_{23} \end{pmatrix}$$

$$H_{\text{mat}}^{\text{SM}} + H_{\text{mat}}^{\text{NSI}} \equiv \sqrt{2}G_F N_e(r) \begin{pmatrix} 1 + \varepsilon_{ee} - \varepsilon_{\mu\mu} & \varepsilon_{e\mu} & \varepsilon_{e\tau} \\ \varepsilon_{e\mu}^* & 0 & \varepsilon_{\mu\tau} \\ \varepsilon_{e\tau}^* & \varepsilon_{\mu\tau}^* & \varepsilon_{\tau\tau} - \varepsilon_{\mu\mu} \end{pmatrix} \text{ with } \varepsilon_{\alpha\beta}(r) \equiv \sum_f \frac{N_f(r)}{N_e(r)} \varepsilon_{\alpha\beta}^f$$

• So $H \to -H^*$ (\equiv Probabilities are Invariant) if simultaneously:

 $\begin{array}{ll} \theta_{12} \rightarrow \frac{\pi}{2} - \theta_{12} & (\varepsilon_{ee} - \varepsilon_{\mu\mu}) \rightarrow -(\varepsilon_{ee} - \varepsilon_{\mu\mu}) - 2 \text{ New "Dark" } (\theta_{12} > \frac{\pi}{4}) \text{ region (solar)} \\ \Delta m_{31}^2 \rightarrow -\Delta m_{32}^2 & \text{and} & (\varepsilon_{\tau\tau} - \varepsilon_{\mu\mu}) \rightarrow -(\varepsilon_{\tau\tau} - \varepsilon_{\mu\mu}) & \text{Lost order info (ATM&LBL)} \\ \delta \rightarrow \pi - \delta & \varepsilon_{\alpha\beta} \rightarrow -\varepsilon_{\alpha\beta}^* & (\alpha \neq \beta) & \text{CPV confusion (ATM&LBL)} \\ \end{array}$ $\begin{array}{l} \text{Miranda, Tortola, Valle, hep-ph/0406280} \\ \text{MCGG, Maltoni, Salvado 1103.4265} \\ \text{Coloma, Schwetz, 1604.05772} \end{array}$ $\begin{array}{l} \text{If } N_f(r)/N_e(r) \neq \text{constant } \varepsilon_{\alpha\beta} \text{ are not constants} \Rightarrow \text{degeneracy only approximate} \end{array}$

NSI in ν -OSC: Global Analysis

• In matter with NSI:
$$i \frac{d}{dx} \vec{\nu} = H^{\nu} \vec{\nu}$$
 with $H^{\nu} = H_{\text{vac}} + H_{\text{mat}}^{\text{SM}} + H_{\text{mat}}^{\text{NSI}}$

$$H_{\rm mat}^{\rm SM} + H_{\rm mat}^{\rm NSI} \equiv \sqrt{2} G_F N_e(r) \begin{pmatrix} 1 + \varepsilon_{ee} - \varepsilon_{\mu\mu} & \varepsilon_{e\tau} \\ \varepsilon_{e\mu}^* & 0 & \varepsilon_{\mu\tau} \\ \varepsilon_{e\tau}^* & \varepsilon_{\mu\tau}^* & \varepsilon_{\tau\tau} - \varepsilon_{\mu\mu} \end{pmatrix} \text{ with } \varepsilon_{\alpha\beta}(r) \equiv \sum_f \frac{N_f(r)}{N_e(r)} \varepsilon_{\alpha\beta}^f$$

 $\Rightarrow 3\nu$ evolution depends on 6 (vac) + 8 [5 if real] per f (mat) parameters \Rightarrow Too many!!

NSI in ν **-OSC: Global Analysis**

• In matter with NSI:
$$i\frac{d}{dx}\vec{\nu} = H^{\nu}\vec{\nu}$$
 with $H^{\nu} = H_{\text{vac}} + H_{\text{mat}}^{\text{SM}} + H_{\text{mat}}^{\text{NSI}}$
 $H_{\text{mat}}^{\text{SM}} + H_{\text{mat}}^{\text{NSI}} \equiv \sqrt{2}G_F N_e(r) \begin{pmatrix} 1 + \varepsilon_{ee} - \varepsilon_{\mu\mu} & \varepsilon_{e\mu} & \varepsilon_{e\tau} \\ \varepsilon_{e\mu}^* & 0 & \varepsilon_{\mu\tau} \\ \varepsilon_{e\tau}^* & \varepsilon_{\mu\tau}^* & \varepsilon_{\tau\tau} - \varepsilon_{\mu\mu} \end{pmatrix}$ with $\varepsilon_{\alpha\beta}(r) \equiv \sum_f \frac{N_f(r)}{N_e(r)} \varepsilon_{\alpha\beta}^f$

 $\Rightarrow 3\nu$ evolution depends on 6 (vac) + 8 [5 if real] per f (mat) parameters \Rightarrow Too many!!

- Start assuming NSI with f = u OR f = d

⇒ NSI only affect matter effects MCGG M.Maltoni, J. Salvado 1103.4265;MCG-G M.Maltoni, 1307.3092
 − Introduce couplings to general combination of u and d quarks

$$\varepsilon^f_{\alpha\beta} = \xi^f(\eta)\varepsilon_{\alpha\beta}$$
 with $\xi^p = \sqrt{5}\cos\eta$ $\xi^n = \sqrt{5}\sin\eta$

⇒ NSI still only affect matter effects Esteban etal 1805.04530, Coloma eta 1911.09109
 – Introduce couplings to general combinatins of u and d quarks and electrons

$$\varepsilon_{\alpha\beta}^{f} = \xi^{f}(\eta,\zeta)\varepsilon_{\alpha\beta}$$
 with $\xi^{e} = \sqrt{5}\cos\eta\sin\zeta$ $\xi^{p} = \sqrt{5}\cos\eta\cos\zeta$ $\xi^{n} = \sqrt{5}\sin\eta$
 $\Rightarrow \text{If } M_{\text{med}} \gtrsim 0.5 \text{ MeV NSI with } e^{-} \text{ can also affect ES (SK, SNO, Borexino)}$
Coloma eta 2305.07698

Massive NSI in ν -OSC (and CE ν Ns): Global Analysis

z-Garcia

With most general couplings: – LMA-D allowed by oscillations

- Adding CE ν Ns ($M_{\rm med} \gtrsim 50$ MeV) \Rightarrow LMA-D only above 2σ

Still important bounds on the NSI's \Rightarrow Maximum effect at future LBL experiments $\varepsilon_{\alpha\beta}^{\oplus} = \varepsilon_{\alpha\beta}^{e} + (2 + Y_{n}^{\oplus})\varepsilon_{\alpha\beta}^{u} + (1 + 2Y_{n}^{\oplus})\varepsilon_{\alpha\beta}^{d}$ GLOB-OSC w NSI in ES+CE ν NS $\Delta \chi^2 = 2.30$ — 3.0 GLOB-OSC w NSI in ES+CE ν NS $\Delta \chi^2 = 6.18$ — NSI from mediators with $M_{\rm med} \gtrsim 50 \,\,{\rm MeV}$ 0.04 5.0 0.02 4.0 3.0 2.0 Ranges at 99% CL marginalized ⊕r -0.02 GLOB-OSC w NSI in ES + $CE\nu NS$ 1.0 $\varepsilon_{ee}^{\oplus}$ $[-0.23, +0.25] \oplus [+0.81, +1.3]$ 1.200.80

Coloma, MCGG, Maltoni, Pinheiro, Urrea 2305.07698

Concha Gonzalez-Garcia

Bounds on Z' **Models**

Coloma, MCGG, Maltoni ArXiv:2009.14220

 $\mathcal{L}_{\nu \text{prop}}^{Z'} = -g' \left(a_u \, \bar{u} \gamma^{\alpha} u + a_d \, \bar{d} \gamma^{\alpha} d + a_e \, \bar{e} \gamma^{\alpha} e + b_e \, \bar{\nu}_e \gamma^{\alpha} P_L \nu_e + b_\mu \, \bar{\nu}_\mu \gamma^{\alpha} P_L \nu_\mu + b_\tau \, \bar{\nu}_\tau \gamma^{\alpha} P_L \nu_\tau \right) Z'_{\alpha}$ We can map $\mathcal{L}_{\nu \text{prop}}^{Z'}$ to

$$\mathcal{L}_{\rm NSI}^{\rm NC} = -2\sqrt{2}G_F \varepsilon^{f}_{\alpha\beta} (\bar{\nu}_{\alpha}\gamma^{\mu}L\nu_{\beta})(\bar{f}\gamma_{\mu}f), \quad f = e, u, d$$

with

$$\varepsilon^{f}_{\alpha\beta} = \delta_{\alpha\beta} a_{f} b_{\alpha} \varepsilon^{0} \text{ with } \varepsilon^{0} = \frac{1}{\sqrt{2}G_{F}} \frac{g^{\prime 2}}{M_{Z^{\prime}}^{2}}$$

 \Rightarrow adapt our OSC+NSI fit BUT performed in subspace of flavour diagonal NSI

Coloma, MCGG, Maltoni ArXiv:2009.14220

Concha Gonzalez-Garcia

Z' Models: v Oscillations Bounds

 $M_{Z'} \gtrsim \mathcal{O}(\text{MeV}) \Rightarrow \text{Contact Interaction in } H_{\text{mat}}$

Coloma, MCGG, Maltoni ArXiv:2009.14220

Confirmed Low Energy Picture and MY List of Q&A

- 3ν scenario: Robust determination of $\theta_{12}, \theta_{13}, \Delta m_{21}^2, |\Delta m_{3\ell}^2|$
 - Mass ordering, θ_{23} Octant, CPV depend on subdominant 3ν -effects

 \Rightarrow interplay of LBL/reactor/ATM results. But not statistically significant yet \Rightarrow definitive answer will likely require new experiments

- What about mass scale and Dirac vs Majorana?
 - Only model independent probe of $m_{\nu} \beta$ decay: $\sum m_i^2 |U_{ei}|^2 \le (0.8 \text{ eV})^2$
 - Dirac or Majorana?: We do not know, anxiously waiting for ν -less $\beta\beta$ decay
 - Cosmological effects?: Steadily improving bounds
- Only three light states? No consistent/stable description/status of SBL anomalies
- Other NP at play?
 - L α -dependent or ν -helicity-flipping NP \Rightarrow modified matter potential \Rightarrow Bounds
 - Most relevant bounds for scenarios with extra-light mediators

MCG-G work funded by USA-NSF grant PHY-2210533 and by the European Union's through the Horizon 2020 research and innovation program (Marie Skłodowska-Curie grant agreement 860881-HIDDeN) and the Horizon Europe research and innovation programme (Marie Skłodowska-Curie Staff Exchange grant agreement 101086085-ASYMMETRY), and by MCIN/AEI/10.13039/501100011033 grant PID2022-126224NB-C21 and Excellence Maria de Maeztu 2020-2023" award to the ICC-UB CEX2019-000918-M, as well as from grant 2021-SGR-249 (Generalitat de Catalunya).

Backup Slides

• Last decade: after including $\theta_{13} \simeq 9^{\circ}$ the comparison of KamLAND vs Solar

 $heta_{12}$ better than 1σ agreement But $\sim 2\sigma$ tension on Δm_{12}^2 • Last decade: after including $\theta_{13} \simeq 9^{\circ}$ the comparison of KamLAND vs Solar

 $heta_{12}$ better than 1σ agreement But $\sim 2\sigma$ tension on Δm_{12}^2

• Tension arising from:

Smaller-than-expected MSW low-E turn-up in SK/SNO spectrum at global b.f.

"too large" of Day/Night at SK $A_{D/N,SK4-2055} = [-3.1 \pm 1.6(stat.) \pm 1.4(sys.)]\%$

• Last decade: after including $\theta_{13} \simeq 9^{\circ}$ the comparison of KamLAND vs Solar

 $heta_{12}$ better than 1σ agreement But $\sim 2\sigma$ tension on Δm_{12}^2

• Tension arising from:

Smaller-than-expected MSW low-E turn-up in SK/SNO spectrum at global b.f.

"too large" of Day/Night at SK $A_{D/N,SK4-2055} = [-3.1 \pm 1.6(stat.) \pm 1.4(sys.)]\%$

• AFTER NU2020: With SK4 2970 days data Slightly more pronounced low-E turn-up

Smaller of Day/Night at $A_{D/N,SK4-2055} = [-3.1 \pm 1.6(stat.) \pm 1.4(sys.)]\%$ $A_{D/N,SK4-2970} = [-2.1 \pm 1.1]\%$

• In NuFIT 5.2

 \Rightarrow Agreement of Δm^2_{21} between solar and KamLAND at 1 σ

Tension between NOvA and T2K data

- Neutrino 2020: tension on δ_{CP} between T2K and NOvA for NO (no problem for IO);
- official joint T2K/NOvA analysis finally presented [20], results very similar to estimates [13].

[20] M. Sanchez [NOvA], talk at Moriond-EW 2024, La Thuile, Italy, March 24–31, 2024.
[13] I. Esteban *et al.*, JHEP 09 (2020) 178 [arXiv:2007.14792] & NuFIT 5.2 [http://www.nu-fit.org].

Michele Maltoni <michele.maltoni@csic.es>

RIUNIONE CSN2, FOLIGNO, 12/04/2024

Concha Gonzalez-Garcia

Δm^2_{3l} in LBL & Reactors

• At LBL determined in ν_{μ} and $\bar{\nu}_{\mu}$ disappearance spectrum

$$\Delta m_{\mu\mu}^2 \simeq \Delta m_{3l}^2 + \frac{c_{12}^2 \Delta m_{21}^2 \text{ NO}}{s_{12}^2 \Delta m_{21}^2 \text{ IO}} + \dots$$

• At MBL Reactors (Daya-Bay, Reno, D-Chooz) determined in $\bar{\nu}_e$ disapp spectrum

$$\Delta m_{ee}^2 \simeq \Delta m_{3l}^2 + \frac{s_{12}^2 \Delta m_{21}^2 \text{ NO}}{c_{12}^2 \Delta m_{21}^2 \text{ IO}} \qquad \text{Nunokawa,Parke,Zukanovich (2005)}$$

 \Rightarrow Contribution to NO/IO from combination of LBL with reactor data

Concha Gonzalez-Garcia

Δm^2_{3l} in LBL & Reactors

• At LBL determined in ν_{μ} and $\bar{\nu}_{\mu}$ disappearance spectrum

$$\Delta m_{\mu\mu}^2 \simeq \Delta m_{3l}^2 + \frac{c_{12}^2 \Delta m_{21}^2 \text{ NO}}{s_{12}^2 \Delta m_{21}^2 \text{ IO}} + \dots$$

• At MBL Reactors (Daya-Bay, Reno, D-Chooz) determined in $\bar{\nu}_e$ disapp spectrum

$$\Delta m_{ee}^2 \simeq \Delta m_{3l}^2 + \frac{s_{12}^2 \Delta m_{21}^2}{c_{12}^2 \Delta m_{21}^2} \frac{\text{NO}}{\text{IO}} \qquad \text{Nunokawa,Parke,Zukanovich} (2005)$$

 \Rightarrow Contribution to NO/IO from combination of LBL with reactor data

Massive Neutrinos Beyond 3ν 's: Light Sterile Neutrinos

a Gonzalez-Garcia

• Several Observations which can be Interpreted as Oscillations with $\Delta m^2 \sim eV^2$ <u>LSND & MiniBoone</u>

LSND 2001:

Signal $\nu_{\mu} \rightarrow \nu_{e} (3.8 \sigma)$

MiniBooNE 2020:

 $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e} \& \nu_{\mu} \rightarrow \nu_{e}$ (639 ± 132.8 events)

MicroBooNE 2021/2022:

No support for excess ν_e interpretation in MiniBooNE

(Fig from Kopp's ν 2022 talk) MicroBooNE Coll. 2110 14054

Near Future for CP and Ordering: Strategies

• $\nu/\bar{\nu}$ comparison with or without Earth matter effects in $\nu_{\mu} \rightarrow \nu_{e} \& \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ at LBL: DUNE (wide band beam, L=1300 km), HK (narrow band beam, L=300 km)

$$P_{\mu e} \simeq s_{23}^2 \sin^2 2\theta_{13} \left(\frac{\Delta_{31}}{\Delta_{31} \pm V}\right)^2 \sin^2 \left(\frac{\Delta_{31} \pm V L}{2}\right) +8 J_{CP}^{\max} \frac{\Delta_{12}}{V} \frac{\Delta_{31}}{\Delta_{31} \pm V} \sin \left(\frac{VL}{2}\right) \sin \left(\frac{\Delta_{31} \pm VL}{2}\right) \cos \left(\frac{\Delta_{31}L}{2} \pm \delta_{CP}\right)$$

 $J_{CP}^{max} = c_{13}^2 s_{13} c_{23} s_{23} c_{12} s_{12}$ – Challenge: Parameter degeneracies, Normalization uncertainty, E_{ν} reconstruction

Near Future for CP and Ordering: Strategies

• $\nu/\bar{\nu}$ comparison with or without Earth matter effects in $\nu_{\mu} \rightarrow \nu_{e} \& \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ at LBL: DUNE (wide band beam, L=1300 km), HK (narrow band beam, L=300 km)

$$P_{\mu e} \simeq s_{23}^2 \sin^2 2\theta_{13} \left(\frac{\Delta_{31}}{\Delta_{31} \pm V}\right)^2 \sin^2 \left(\frac{\Delta_{31} \pm VL}{2}\right) +8 J_{\rm CP}^{\rm max} \frac{\Delta_{12}}{V} \frac{\Delta_{31}}{\Delta_{31} \pm V} \sin \left(\frac{VL}{2}\right) \sin \left(\frac{\Delta_{31} \pm VL}{2}\right) \cos \left(\frac{\Delta_{31}L}{2} \pm \delta_{CP}\right)$$

 $J_{CP}^{max} = c_{13}^2 s_{13} c_{23} s_{23} c_{12} s_{12}$ – Challenge: Parameter degeneracies, Normalization uncertainty, E_{ν} reconstruction

• Reactor experiment at $L \sim 60$ km (vacuum) able to observe the difference between oscillations with Δm_{31}^2 and Δm_{32}^2 : JUNO, RENO-50

$$P_{\nu_e,\nu_e} = 1 - c_{13}^4 \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E}\right) - \sin^2 2\theta_{13} \left[c_{12}^2 \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) + s_{12}^2 \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E}\right)\right]$$

- Challenge: Energy resolution

Near Future for CP and Ordering: Strategies

• $\nu/\bar{\nu}$ comparison with or without Earth matter effects in $\nu_{\mu} \rightarrow \nu_{e} \& \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ at LBL: DUNE (wide band beam, L=1300 km), HK (narrow band beam, L=300 km)

$$P_{\mu e} \simeq s_{23}^2 \sin^2 2\theta_{13} \left(\frac{\Delta_{31}}{\Delta_{31} \pm V}\right)^2 \sin^2 \left(\frac{\Delta_{31} \pm V L}{2}\right) +8 J_{\rm CP}^{\rm max} \frac{\Delta_{12}}{V} \frac{\Delta_{31}}{\Delta_{31} \pm V} \sin \left(\frac{VL}{2}\right) \sin \left(\frac{\Delta_{31} \pm VL}{2}\right) \cos \left(\frac{\Delta_{31} L}{2} \pm \delta_{CP}\right)$$

 $J_{CP}^{max} = c_{13}^2 s_{13} c_{23} s_{23} c_{12} s_{12}$ – Challenge: Parameter degeneracies, Normalization uncertainty, E_{ν} reconstruction

• Reactor experiment at $L \sim 60$ km (vacuum) able to observe the difference between oscillations with Δm_{31}^2 and Δm_{32}^2 : JUNO, RENO-50

$$P_{\nu_e,\nu_e} = 1 - c_{13}^4 \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E}\right) - \sin^2 2\theta_{13} \left[c_{12}^2 \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right) + s_{12}^2 \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E}\right)\right]$$

– Challenge: Energy resolution

- Earth matter effects in large statistics ATM ν_{μ} disapp : HK,INO, PINGU,ORCA . . .
 - Challenge: ATM flux contains both ν_{μ} and $\bar{\nu}_{\mu}$, ATM flux uncertainties

JUNO: Sensitivity to Oscillation Parameters

	Central Value	PDG2020	$100\mathrm{days}$	6 years	20 years
$\Delta m_{31}^2 \ (\times 10^{-3} \ {\rm eV}^2)$	2.5283	± 0.034 (1.3%)	$\pm 0.021 \ (0.8\%)$	$\pm 0.0047 \ (0.2\%)$	$\pm 0.0029 \ (0.1\%)$
$\Delta m_{21}^2 \; (\times 10^{-5} \; \text{eV}^2)$	7.53	$\pm 0.18~(2.4\%)$	± 0.074 (1.0%)	$\pm 0.024 \ (0.3\%)$	$\pm 0.017~(0.2\%)$
$\sin^2 \theta_{12}$	0.307	± 0.013 (4.2%)	± 0.0058 (1.9%)	$\pm 0.0016~(0.5\%)$	$\pm 0.0010 \ (0.3\%)$
$\sin^2 \theta_{13}$	0.0218	$\pm 0.0007 (3.2\%)$	± 0.010 (47.9%)	$\pm 0.0026 (12.1\%)$	± 0.0016 (7.3%)

2204.13249

SENSITIVITY TO NEUTRINO MASS ORDERING

Introduction Experiment Status Physics Conclusion

Maxim Gonchar (JINR)

JUNO

Impact of systematics:

🐎 ð p 🏠

* ② *

- Paper under preparation.
- Combination of reactor and atmospheric channels within JUNO is investigated.

DUNE & Hyper-Kamiokande: CPV and MO

Massive Neutrinos 2024

Concha Gonzalez-Garcia

Z' Models: Viable models for LMA-D

Survey 10000 set of models characterized by the six relevant fermion U(1) charges About 5% lead to a viable LMA-D solution.

None was anomaly-free with $SM\nu_R$ states only

Two examples

Coloma, MCGG, Maltoni ArXiv:2009.14220