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Present status of (g − 2)µ: experiment vs SM
Before
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Present status of (g − 2)µ: experiment vs SM
After the 2021 Fermilab result
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Present status of (g − 2)µ: experiment vs SM
After the 2023 Fermilab result
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Present status of (g − 2)µ: experiment vs SM
After the 2023 Fermilab result and σ(e+e− → π+π−) from CMD3
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White Paper (2020): (g − 2)µ, experiment vs SM

Contribution Value ×1011

HVP LO (e+e−) 6931(40)
HVP NLO (e+e−) −98.3(7)
HVP NNLO (e+e−) 12.4(1)
HVP LO (lattice, udsc) 7116(184)
HLbL (phenomenology) 92(19)
HLbL NLO (phenomenology) 2(1)
HLbL (lattice, uds) 79(35)
HLbL (phenomenology + lattice) 90(17)

QED 116 584 718.931(104)
Electroweak 153.6(1.0)
HVP (e+e−, LO + NLO + NNLO) 6845(40)
HLbL (phenomenology + lattice + NLO) 92(18)

Total SM Value 116 591 810(43)
Experiment 116 592 059(22)
Difference: ∆aµ := aexp

µ − aSM
µ 249(48)



Introduction HVP HLbL Conclusions

White Paper (2020): (g − 2)µ, experiment vs SM

Contribution Value ×1011

HVP LO (e+e−) 6931(40)
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White Paper (2020): (g − 2)µ, experiment vs SM
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Steering Committee:
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White Paper (2020): (g − 2)µ, experiment vs SM
White Paper:
T. Aoyama et al. Phys. Rep. 887 (2020) = WP(20)

Muon g − 2 Theory Initiative
Plenary Workshops:

▶ 1st, Q-Center (Fermilab), 3-6 June 2017

▶ 2nd, Mainz, 18-22 June 2018

▶ 3rd, Seattle, 9-13 September 2019

▶ 4th, KEK (virtual), 28 June-02 July 2021

▶ 5th, Higgs Center Edinburgh, 5-9 Sept. 2022

▶ 6th, Bern, 4-8 Sept. 2023

▶ 7th, KEK, 9-13 Sept. 2024
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Theory uncertainty comes from hadronic physics

▶ Hadronic contributions responsible for most of the theory
uncertainty

▶ Hadronic vacuum polarization (HVP) is O(α2), dominates
the total uncertainty, despite being known to < 1%

▶ unitarity and analyticity ⇒ dispersive approach
▶ ⇒ direct relation to experiment: σtot(e+e− → hadrons)
▶ e+e− Exps: BaBar, Belle, BESIII, CMD2/3, KLOE2, SND
▶ alternative approach: lattice, becoming competitive

(BMW, ETMC, Fermilab, HPQCD, Mainz, MILC, RBC/UKQCD)
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Theory uncertainty comes from hadronic physics

▶ Hadronic contributions responsible for most of the theory
uncertainty

▶ Hadronic vacuum polarization (HVP) is O(α2), dominates
the total uncertainty, despite being known to < 1%

▶ Hadronic light-by-light (HLbL) is O(α3), known to ∼ 20%,
second largest uncertainty (now subdominant)

▶ earlier: model-based—uncertainties
difficult to quantify

▶ recently: dispersive approach ⇒
data-driven, systematic treatment

▶ lattice QCD is competitive
(Mainz, RBC/UKQCD)
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HVP contribution: Master Formula
Unitarity relation: simple, same for all intermediate states

ImΠ̄(q2) ∝ σ(e+e− → hadrons) = σ(e+e− → µ+µ−)R(q2)

Analyticity
[
Π̄(q2) = q2

π

∫
ds ImΠ̄(s)

s(s−q2)

]
⇒ Master formula for HVP

Bouchiat, Michel (61)

⇔ ahvp
µ =

α2

3π2

∫ ∞

sth

ds
s

K (s)R(s)

K (s) known, depends on mµ and K (s) ∼ 1
s for large s
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HVP contribution: Master Formula

Slide by Achim Denig, MUonE Workshop, June 2024



Introduction HVP HLbL Conclusions Data-driven Lattice Window CMD3

Comparison between DHMZ19 and KNT19

DHMZ19 KNT19 Difference

π+π− 507.85(3.38) 504.23(1.90) 3.62
π+π−π0 46.21(1.45) 46.63(94) −0.42

π+π−π+π− 13.68(0.30) 13.99(19) −0.31
π+π−π0π0 18.03(0.55) 18.15(74) −0.12

K+K− 23.08(0.44) 23.00(22) 0.08
KSKL 12.82(0.24) 13.04(19) −0.22
π0γ 4.41(0.10) 4.58(10) −0.17

Sum of the above 626.08(3.90) 623.62(2.27) 2.46

[1.8,3.7]GeV (without cc̄) 33.45(71) 34.45(56) −1.00
J/ψ, ψ(2S) 7.76(12) 7.84(19) −0.08
[3.7,∞)GeV 17.15(31) 16.95(19) 0.20

Total aHVP, LO
µ 694.0(4.0) 692.8(2.4) 1.2
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Comparison between DHMZ19 and KNT19

DHMZ19 KNT19 Difference

π+π− 507.85(3.38) 504.23(1.90) 3.62
π+π−π0 46.21(1.45) 46.63(94) −0.42

π+π−π+π− 13.68(0.30) 13.99(19) −0.31
π+π−π0π0 18.03(0.55) 18.15(74) −0.12

K+K− 23.08(0.44) 23.00(22) 0.08
KSKL 12.82(0.24) 13.04(19) −0.22
π0γ 4.41(0.10) 4.58(10) −0.17

Sum of the above 626.08(3.90) 623.62(2.27) 2.46

[1.8,3.7]GeV (without cc̄) 33.45(71) 34.45(56) −1.00
J/ψ, ψ(2S) 7.76(12) 7.84(19) −0.08
[3.7,∞)GeV 17.15(31) 16.95(19) 0.20

Total aHVP, LO
µ 694.0(4.0) 692.8(2.4) 1.2

For the dominant ππ channel more theory input can be used
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Omnès representation including isospin breaking

= + + . . .

FV (s) = Ωππ(s) · Gω(s) · Ωin(s)

main contribution Ωππ(s): 2 parameters
GC, Hoferichter, Stoffer (18)



Introduction HVP HLbL Conclusions Data-driven Lattice Window CMD3

Fit results
GC, Hoferichter, Stoffer (18)
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Fit results
GC, Hoferichter, Stoffer (18)

485 490 495 500 505
1010 × aππ

µ |≤1 GeV

Result for aππ
µ |≤1 GeV from the VFF fits to single experiments and combinations

all e+e−, NA7

all e+e−

energy scan

KLOE′′

BaBar

CMD-2

SND
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2π: comparison with the dispersive approach
2π channel described dispersively ⇒ more theory constraints

Ananthanarayan, Caprini, Das (19), GC, Hoferichter, Stoffer (18) WP(20)

Energy range CHS18 DHMZ19 KNT19

≤ 0.6 GeV 110.1(9) 110.4(4)(5) 108.7(9)
≤ 0.7 GeV 214.8(1.7) 214.7(0.8)(1.1) 213.1(1.2)
≤ 0.8 GeV 413.2(2.3) 414.4(1.5)(2.3) 412.0(1.7)
≤ 0.9 GeV 479.8(2.6) 481.9(1.8)(2.9) 478.5(1.8)
≤ 1.0 GeV 495.0(2.6) 497.4(1.8)(3.1) 493.8(1.9)

[0.6,0.7]GeV 104.7(7) 104.2(5)(5) 104.4(5)
[0.7,0.8]GeV 198.3(9) 199.8(0.9)(1.2) 198.9(7)
[0.8,0.9]GeV 66.6(4) 67.5(4)(6) 66.6(3)
[0.9,1.0]GeV 15.3(1) 15.5(1)(2) 15.3(1)

≤ 0.63 GeV 132.8(1.1) 132.9(5)(6) 131.2(1.0)
[0.6,0.9]GeV 369.6(1.7) 371.5(1.5)(2.3) 369.8(1.3)[√
0.1,

√
0.95

]
GeV 490.7(2.6) 493.1(1.8)(3.1) 489.5(1.9)
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Combination method and final result
Complete analyses DHMZ19 and KNT19, as well as CHS19
(2π) and HHK19 (3π), have been so combined:

▶ central values are obtained by simple averages (for each
channel and mass range)

▶ the largest experimental and systematic uncertainty of
DHMZ and KNT is taken

▶ 1/2 difference DHMZ−KNT (or BABAR−KLOE in the 2π
channel, if larger) is added to the uncertainty

Final result:

aHVP, LO
µ = 693.1(2.8)exp(2.8)sys(0.7)DV+QCD × 10−10

= 693.1(4.0)× 10−10

WP(20)
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The BMW result Borsanyi et al. Nature 2021

State-of-the-art lattice calculation of aHVP, LO
µ based on

▶ current-current correlator, summed over all distances,
integrated in time with appropriate kernel function (TMR)

▶ using staggered fermions on an L ∼ 6 fm lattice (L ∼ 11fm
used for finite volume corrections)

▶ at (and around) physical quark masses

▶ including isospin-breaking effects
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The BMW result Borsanyi et al. Nature 2021

2  |  Nature  |  www.nature.com

Article

(up, down, strange and charm), in a lattice formulation that takes  
into account all dynamical effects. We also consider the tiny contribu-
tions of the bottom and top quarks, as discussed in Supplementary  
Information.

We compute aμ
LO HVP‐  in the so-called time–momentum representa-

tion8, which relies on the following two-point function with zero 
three-momentum in Euclidean time t:

∫∑G t
e

x J t J( ) =
1

3
d ⟨ ( , ) (0)⟩, (1)

μ
μ μ2

=1,2,3

3 x

where Jμ is the quark electromagnetic current, with uγ u= −
J

e μ
2
3

μ  
d γ d s γ s cγ c− +μ μ μ

1
3

1
3

2
3

. u, d, s and c are the up, down, strange and charm 
quark fields, respectively, and the angle brackets stand for the 
QCD + QED expectation value to order e2. It is convenient to decompose 
G(t) into light, strange, charm and disconnected components, which 
have very different statistical and systematic uncertainties. Integrating 
the one-photon-irreducible part of the two-point function (equa-
tion (1)), G1γI, yields the LO-HVP contribution to the magnetic moment 
of the muon8–11:

‐ ∫a α tK t G t= d ( ) ( ), (2)μ γ
LO HVP 2

0

∞

1 I

with weight function

























∫K t

Q
m

ω
Q
m

t
Q

Qt
( ) =

d
−

4
sin

2
, (3)

μ μ0

∞ 2

2

2

2
2

2
2

and where ω r r r r r r( ) = [ + 2 − ( + 4) ] / ( + 4)2 , α is the fine-structure 
constant in the Thomson limit and mμ is the muon mass. Because we 
consider only the LO-HVP contribution, for brevity we drop the super-
script and multiply the result by 1010, that is, aμ stands for ‐a × 10μ

LO HVP 10 
in the following.

The subpercent precision that we are aiming for represents a huge 
challenge for lattice QCD. To reach that goal, we must address four 
critical issues: scale determination; noise reduction; QED and strong–
isospin symmetry breaking; and infinite-volume and continuum extrap-
olations. We discuss these one by one.

The first issue is scale determination. The quantity aμ depends 
on the muon mass. When computing equation (2) on the lattice, mμ 
must be converted into lattice units, amμ, where a is the lattice spac-
ing. A relative error of the lattice spacing propagates into about a 
twice-as-large relative error on aμ, so that a must be determined with a 
precision of few parts per thousand. We use the mass of the Ω baryon, 
MΩ = 1,672.45(29) MeV, from ref. 1 to set the lattice spacing, where the 
uncertainty in the parentheses denotes one standard deviation. We 
also use a scale based on the gradient flow from ref. 12, denoted as w0, 
to define an isospin decomposition of our observables. Although w0 
can be determined with sub-per-thousand precision on the lattice, it 
is inaccessible experimentally. In this work we determine the physical 
value of w0 by including QED and strong–isospin symmetry-breaking 
effects: w0 = 0.17236(29)stat(63)syst(70)tot fm, where the first error is 
statistical, the second is systematic and the third is the total error. 
In total, we reach a relative accuracy of 4‰, which is better than the 
error of the previous best determination13, the value of which agrees 
with ours. There the pion decay constant was used as experimental 

Strong–isospin breaking

Connected light Connected strange Connected charm Disconnected

633.7(2.1)stat(4.2)syst 53.393(89)stat(68)syst –13.36(1.18)stat(1.36)syst

0.11(4)tot

Bottom; higher-order;
perturbative

Other

Finite-size effects

Disconnected

–4.67(54)stat(69)syst

aLO-HVP (×1010) = 707.5(2.3)stat(5.0)syst(5.5)tot

QED isospin breaking: valence 

Isospin-symmetric

Connected Disconnected

Connected Disconnected

Connected

DisconnectedConnected

–0.55(15)stat(10)syst

–0.040(33)stat(21)syst

0.011(24)stat(14)syst

–1.23(40)stat(31)syst

–0.0093(86)stat(95)syst

0.37(21)stat(24)syst

6.60(63)stat(53)syst

QED isospin breaking: sea

QED isospin breaking: mixed

Isospin-symmetric

Isospin-breaking

18.7(2.5)tot

0.0(0.1)tot

14.6(0)stat(1)syst

Fig. 1 | Contributions to aμ, including examples of the corresponding 
Feynman diagrams. Solid lines are quarks and curly lines are photons. Gluons 
are not shown explicitly, and internal quark loops are shown only if they are 
attached to photons. Dots represent coordinates in position space, boxes 
denote the mass insertion relevant for strong–isospin symmetry breaking.  
The numbers give our result for each contribution; they correspond to our 

‘reference’ system size defined by Lref = 6.272 fm spatial and Tref = 9.408 fm 
temporal lattice extents. We also explicitly compute the finite-size corrections 
that must be added to these results, which are given separately in the lower 
right panel. The first error is the statistical and the second is the systematic 
uncertainty, except for the contributions for which only a single, total error is 
given. Central values are medians; errors are s.e.m.
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The BMW result Borsanyi et al. Nature 2021
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input, and the isospin-symmetry-breaking effects were included only 
as an estimate.

The second issue is noise reduction. Our result for aμ is obtained 
as an integral over the conserved current–current correlation func-
tion, from zero to infinite time separation, as shown in equation (2). 
For large separations the correlator is noisy, and this noise manifests 
itself as a statistical error in aμ. To reach the desired accuracy on aμ, one 
needs high precision at every step. Over 20,000 configurations were 
accumulated for our 27 ensembles on L ≈ 6 fm lattices (L is the spatial 
extent of the lattice). In addition, we include a lattice with L ≈ 11 fm. 
The most important improvement over our earlier aμ determination 
in ref. 14 is the extensive use of analysis techniques that are based on the 
lowest eigenmodes of the Dirac operator; see, for example, refs. 15–18.  
An accuracy gain of about an order of magnitude can be reached using 
this technique for aμ (refs. 19,20).

The third issue is isospin-symmetry breaking. The precision needed 
cannot be reached with pure, isospin-symmetric QCD. Thus, we 
include QED effects and allow the up and down quarks to have differ-
ent masses. These effects are included both in the scale determination 
and in the current–current correlators. We note that the separation 
of isospin-symmetric and isospin-symmetry-breaking contributions 
requires a convention, which we discuss in detail in Supplementary 
Information. Strong–isospin breaking is implemented by taking deriva-
tives of QCD + QED expectation values with respect to up/down quark 
masses and computing the resulting observables on isospin-symmetric 
configurations21. We note that the first derivative of the fermionic 
determinant vanishes. We also implement derivatives with respect 
to the electric charge22. It is useful to distinguish between the electric 
charge in the fermionic determinant (es or sea electric charge) and in 
the observables (ev or valence electric charge). The complete list of 
graphs that should be evaluated are shown in Fig. 1 with our numerical 
results for them.

The final observable is given as a Taylor expansion around the 
isospin-symmetric, physical-mass point with zero sea and valence 
charges. Instead of the quark masses, we use the pseudoscalar meson 
masses of pions and kaons, which can be determined with high preci-
sion. Using the expansion coefficients, we extrapolate in the charges, 
in the strong–isospin symmetry-breaking parameter and in the lattice 
spacing, and interpolate in the quark masses to the physical point. Thus, 
we obtain aμ and its statistical and systematic uncertainties.

The fourth issue is the extrapolation to the infinite-volume and con-
tinuum limit. The standard wisdom for lattice calculations is that MπL > 4 
should be taken, where Mπ is the mass of the pion. Unfortunately, this 
is not satisfactory in the present case: aμ is far more sensitive to L than 
other quantities, such as hadron masses, and large volumes are needed 
to reach per-thousand accuracy. For less volume-sensitive quantities, 
we use well established results to determine the finite-volume correc-
tions on the pion decay constant23 and on charged hadron masses24–26. 
Leading-order chiral perturbation theory27 and two-loop, partially 
quenched chiral perturbation theory20,28 for aμ help to describe 
finite-size corrections, but the non-perturbative, leading-order, large-L 
expansion of ref. 29 indicates that those approaches still lead to sys-
tematic effects that are larger than the accuracy that we are aiming 
for. In addition to the infinite-volume extrapolation, the continuum 
extrapolation is also difficult. This is connected to the taste-symmetry 
breaking of staggered fermions, which we use in this work.

We correct for finite-volume effects on aμ by computing them directly 
by performing lattice simulations on L ≈ 11 fm lattices, with highly 
suppressed taste violations and with physical, taste-averaged pion 
masses. These corrections are cross-checked against three models 
that describe the relevant long-distance physics, in turn validating 
the use of these models for the residual, sub-per-thousand extrapola-
tion to infinite volume. These models include: (i) the full two-loop, 
finite-volume, chiral perturbation theory corrections for aμ; (ii) the 

0 0.005 0.01 0.015 0.02

a2 (fm2)

SRHO (>0.4 fm)
SRHO (>1.3 fm)
SRHO (0.4–1.3 fm) + NNLO (>1.3 fm)
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5101520
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Fig. 2 | Continuum extrapolation of the light connected component of aμ, 
a μ

light. Before extrapolation we apply a taste-improvement procedure on the 
correlator, starting at some distance tsep. (See Supplementary Information for 
details on the improvement ‘SRHO’.) Datasets are shown for two choices of tsep, 
0.4 fm (red) and 1.3 fm (blue). The corresponding lines show fits using linear 
and quadratic terms of a2 with varying number of lattice spacings in the fit. Our 
final analysis involves about 500,000 different continuum extrapolations, 
shown in the histogram on the left. The purple line in the left panel shows the 
central value of the final result. To estimate the error related to the 
taste-improvement procedure, we use next-to-next-to-leading-order 
staggered chiral perturbation theory (NNLO) in the long-distance part of the 
correlator (t > 1.3 fm). The corresponding data are shown with grey points, 
together with a histogram, from which the systematic error related to the taste 
improvement is obtained. The total error of the final result is given by the grey 
band in the left panel. Central values are medians; errors are s.e.m. The results 
are obtained on lattices of sizes L ≈ 6 fm.

Colangelo et al.5,
Hoferichter et al.6

Keshavarzi et al.4

Davier et al.3

Borsanyi et al.14

Blum et al.19

Giusti et al.34

Davies et al.33

Gérardin et al.32

This work

 660  680  700  720  740

 aLO-HVP ( ×1010) 

Lattice R-ratio

No new physics

Fig. 3 | Comparison of recent results for the LO-HPV contribution to the 
anomalous magnetic moment of the muon. See ref. 7 for a recent review. 
Green squares are lattice results: this result (filled symbol) and those of 
Gérardin et al.32, Davies et al.33, Giusti et al.34, Blum et al.19 and our earlier work, 
Borsanyi et al.14. Central values are medians; error bars are s.e.m. Compared to 
Borsanyi et al.14, this work has increased the accuracy of the scale setting from 
the per cent to the per thousand level; has decreased the statistical error from 
7.5 to 2.3; has computed all isospin-symmetry-breaking contributions, as 
opposed to estimating it, with the corresponding error being 1.4, down from 
5.1; has made a dedicated finite-size study to decrease the finite-size error from 
13.5 to 2.5; has decreased the continuum extrapolation error from 8.0 to 4.1 by 
obtaining much more statistics on our finest lattice and applying taste 
improvement. Red circles were obtained using the R-ratio method by Davier 
et al.3, Keshavarzi et al.4, and Colangelo et al.5 and Hoferichter et al.6; these 
results use the same experimental data as input. The blue shaded region is the 
value that ‐a μ

LO HVP should have to explain the experimental measurement of 
(gμ − 2), assuming no new physics.
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Extended Data Fig. 3 | Example continuum limits of a μ
ightl . The light-green 

triangles labelled ‘none’ correspond to our lattice results with no taste 
improvement. The blue squares repesent data that have undergone no taste 
improvement for t < 1.3 fm and SRHO improvement above. The blue curves 
correspond to example continuum extrapolations of improved data to 
polynomials in a2, up to and including a4. We note that extrapolations in 
a2αs(1/a)3, with αs(1/a) the strong coupling at the lattice scale, are also 
considered in our final result. The red circles and curves are the same as the 

blue points, but correspond to SRHO taste improvement for t ≥ 0.4 fm and no 
improvement for smaller t. The purple histogram results from fits using the 
SRHO improvement, and the corresponding central value and error is the 
purple band. The darker grey circles correspond to results corrected with 
SRHO in the range 0.4–1.3 fm and with NNLO SXPT for larger t. These latter fits 
serve to estimate the systematic uncertainty of the SRHO improvement. The 
grey band includes this uncertainty, and the corresponding histogram is shown 
with grey. Errors are s.e.m.
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Meyer–Lellouch–Lüscher–Gounaris–Sakurai technique described in 
Supplementary Information; and (iii). the ρ–π–γ model of Jegerlehner 
and Szafron30, already used in a lattice context in ref. 31. Moreover, to 
reduce discretization errors in the light-quark contributions to aμ, 
before extrapolating those contributions to the continuum, we apply 
a taste-improvement procedure that reduces lattice artefacts due to 
taste-symmetry breaking. The procedure is built upon the three models 
of π–ρ physics mentioned above. We provide evidence that validates 
this procedure in Supplementary Information.

Combining all of these ingredients, we obtain as a final result 
aμ = 707.5(2.3)stat(5.0)syst(5.5)tot. The statistical error comes mainly 
from the noisy, large-distance region of the current–current correla-
tor. The systematic error is dominated by the continuum extrapola-
tion and the finite-size effect computation. The total error is obtained 
by adding the first two in quadrature. In total, we reach a relative 
accuracy of 0.8%. In Fig. 2 we show the continuum extrapolation of 
the light, connected component of aμ, which gives the dominant 
contribution to aμ.

Figure 3 compares our result with previous lattice computations and 
also with results from the R-ratio method, which have recently been 
reviewed in ref. 7. In principle, one can reduce the uncertainty of our 
result by combining our lattice correlator, G(t), with the one obtained 
from the R-ratio method, in regions of Euclidean time in which the lat-
ter is more precise19. We do not do so here because there is a tension 
between our result and those obtained by the R-ratio method, as can be 
seen in Fig. 3. For the total LO-HVP contribution to aμ, our result is 2.0σ, 
2.5σ, 2.4σ and 2.2σ larger than the R-ratio results of aμ = 694.0(4.0) (ref. 3),  
aμ = 692.78(2.42) (ref. 4), aμ = 692.3(3.3) (refs. 5,6) and the combined 
result aμ = 693.1(4.0) of ref. 7, respectively. It is worth noting that the 
R-ratio determinations are based on the same experimental datasets 
and are therefore strongly correlated, although these datasets were 
obtained in several different and independent experiments that we have 

no reason to believe are collectively biased. Clearly, these comparisons 
need further investigation, although it should also be kept in mind 
that the tensions observed here are smaller, for instance, than what 
is usually considered experimental evidence for a new phenomenon 
(3σ) and much smaller than what is needed to claim an experimental 
discovery (5σ).

As a first step in that direction, it is instructive to consider a mod-
ified observable, where the correlator G(t) is restricted to a finite 
interval by a smooth window function19. This observable, which we 
denote as aμ,win, is obtained much more readily than aμ on the lattice. 
Its shorter-distance nature makes it far less susceptible to statistical 
noise and to finite-volume effects. Moreover, in the case of staggered 
fermions, it has reduced discretization artefacts. This is shown in 
Fig. 4, where the light, connected component of aμ,win is plotted as 
a function of a2. Because the determination of this quantity does 
not require overcoming many of the challenges described above, 
other lattice groups have obtained it with errors comparable to 
ours19,20. This allows a sharper benchmarking of our calculation of 
this challenging, light-quark contribution that dominates aμ.  
Our aμ,win

light  differs by 0.2σ and 2.2σ from the lattice results of ref. 20 
and ref. 19, respectively. Moreover, aμ,win can be computed using the 
R-ratio approach, and we do so using the dataset provided by the 
authors of ref. 4. However, here we find a 3.7σ tension with our lattice 
result.

To conclude, when combined with the other standard-model con-
tributions (see, for example, refs. 3,4), our result for the leading-order 
hadronic contribution to the anomalous magnetic moment of the 
muon, a = 707.5(5.5) × 10μ

LO HVP
tot

−10‐ , weakens the long-standing dis-
crepancy between experiment and theory. However, as discussed above 
and can be seen in Fig. 2, our lattice result shows some tension with the 
R-ratio determinations of refs. 3–6. Obviously, our findings should be 
confirmed—or refuted—by other studies using different discretizations 
of QCD. Those investigations are underway.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
tributions and competing interests; and statements of data and code 
availability are available at https://doi.org/10.1038/s41586-021-03418-1.
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Fig. 4 | Continuum extrapolation of the isospin-symmetric, light, 
connected component of the window observable aμ,win, a( )isoμ,win

ightl . The data 
points are extrapolated to the infinite-volume limit. Central values are 
medians; error bars are s.e.m. Two different ways to perform the continuum 
extrapolations are shown: one without improvement, and another with 
corrections from a model involving the ρ meson (SRHO). In both cases the lines 
show linear, quadratic and cubic fits in a2 with varying number of lattice 
spacings in the fit. The continuum-extrapolated result is shown with the results 
from Blum et al.19 and Aubin et al.20. Also plotted is our R-ratio-based 
determination, obtained using the experimental data compiled by the authors 
of ref. 4 and our lattice results for the non-light-connected contributions. This 
plot is convenient for comparing different lattice results. Regarding the total 
aμ,win, for which we must also include the contributions of flavours other than 
light and isospin-symmetry-breaking effects, we obtain 236.7(1.4)tot on the 
lattice and 229.7(1.3)tot from the R-ratio; the latter is 3.7σ or 3.1% smaller than the 
lattice result.
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Weight functions for window quantities RBC/UKQCD (18)
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Present status of the window quantities

Several lattice calculations have confirmed BMW’s result

200 202 204 206 208 210 212

RBC/UKQCD 18

Aubin et al . 19

Lehner & Meyer 20

BMW 21

χQCD OV/DWF 22
χQCD OV/HISQ 22

Aubin et al . 22

Mainz/CLS 22

ETMC 22

RBC/UKQCD 23

Fermilab/HPQCD/MILC 23

arXiv:2301.08274, Fermilab Lattice-HPQCD-MILC (23)
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Present status of the window quantities

Several lattice calculations have confirmed BMW’s result

Colangelo et al. 2022
BMW 2020/KNT

Aubin et al. 2019/CL/KNT
RBC/UKQCD 2018/FJ

RBC/UKQCD 2023
ETMC 2022
Mainz 2022
BMW 2020

ETMC 2021
RBC/UKQCD 2018

 224  226  228  230  232  234  236  238  240
aµ

W(0.4 fm, 1.0 fm, 0.15 fm) × 1010

arXiv:2301.08696 RBC/UKQCD (23)
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Individual-channel contributions to awin
µ

Channel total window

π+π− 504.23(1.90) 144.08(49)
π+π−π0 46.63(94) 18.63(35)

π+π−π+π− 13.99(19) 8.88(12)
π+π−π0π0 18.15(74) 11.20(46)

K+K− 23.00(22) 12.29(12)
KSKL 13.04(19) 6.81(10)
π0γ 4.58(10) 1.58(4)

Sum of the above 623.62(2.27) 203.47(78)

[1.8, 3.7] GeV (without cc̄) 34.45(56) 15.93(26)
J/ψ, ψ(2S) 7.84(19) 2.27(6)
[3.7,∞) GeV 16.95(19) 1.56(2)

WP(20) / GC, El-Khadra et al. (22) 693.1(4.0) 229.4(1.4)

BMWc 707.5(5.5) 236.7(1.4)
Mainz/CLS 237.3(1.5)

ETMc 235.0(1.1)
RBC/UKQCD 235.6(0.8)

Numbers for the channels refer to KNT19 — thanks to Alex Keshavarzi for providing them

∆aHVP, LO
µ = 14.4(6.8) (2.1σ), ∆awin

µ ∼ 6.5(1.5) (∼ 4.3σ)
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CMD-3 measurement of e+e− → π+π−

F. Ignatov et al., CMD-3, arXiv:2302.08834
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Preliminary analysis of the CMD-3 measurement
GC, Hoferichter and Stoffer, arXiv:2308.04217 (thanks for providing the plot)

475 480 485 490 495 500 505 510 515 520

1010 ⇥ a⇡⇡
µ |1 GeV

combination

CMD-3

SND20

BESIII

KLOE
00

BaBar

CMD-2

SND06

Figure 4: Results for a⇡⇡
µ in the energy range  1 GeV. The smaller error bars are the fit uncertainties, inflated

by
p
�2/dof, the larger error bars are the total uncertainties. The gray bands correspond to the combined fit

to NA7 and all e+e� data sets apart from SND20 and CMD-3, with the largest band including the additional

systematic effect due to the BaBar–KLOE tension.
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Figure 5: Results for the phase of the ⇢–! mixing parameter, �✏. The smaller error bars are the fit uncertainties,

inflated by
p
�2/dof, the larger error bars are the total uncertainties. The gray bands correspond to the

combined fit to NA7 and all e+e� data sets apart from SND20 and CMD-3, with the largest band including

the additional systematic effect due to the BaBar–KLOE tension.
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Preliminary analysis of the CMD-3 measurement
GC, Hoferichter and Stoffer, arXiv:2308.04217

1010× aππ
µ |≤1GeV

aππ,win
µ |≤1GeV

χ2/dof

SND06 497.9(6.1)(4.2) 139.6(1.8)(1.0) 1.09
CMD-2 495.8(3.7)(4.0) 139.4(1.0)(0.8) 1.01
BaBar 501.9(3.3)(2.2) 140.6(1.0)(0.7) 1.17
KLOE” 490.9(2.1)(1.7) 137.1(0.6)(0.4) 1.13

BESIII 490.4(4.5)(3.0) 137.8(1.3)(0.4) 1.01
SND20 495.1(5.3)(2.9) 139.2(1.5)(0.4) 1.88
CMD-3 513.7(1.1)(4.0) 144.0(0.3)(1.1) 1.09

Combination 494.8(1.5)(1.4)(3.4) 138.3(0.4)(0.3)(1.1) 1.21

Combination: NA7 + all data sets other than SND20 and CMD-3

∆aHVP, LO
µ (CMD-3-Comb.) = 18.9(5.1) , ∆awin

µ (CMD-3-Comb.) = 5.7(1.5)

∆aHVP, LO
µ (BMW-WP20) = 14.4(6.8), ∆awin

µ (Lattice-WP20) ∼ 6.5(1.5)
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Preliminary analysis of the CMD-3 measurement
GC, Hoferichter and Stoffer, arXiv:2308.04217

Discrepancy aππ
µ

∣∣
[0.60,0.88] GeV aππ

µ

∣∣
≤1 GeV int window

SND06 1.8σ 1.7σ 1.7σ
CMD-2 2.3σ 2.0σ 2.1σ
BaBar 3.3σ 2.9σ 3.1σ
KLOE′′ 5.6σ 4.8σ 5.4σ
BESIII 3.0σ 2.8σ 3.1σ
SND20 2.2σ 2.1σ 2.2σ

Combination 4.2σ [6.1σ] 3.7σ [5.0σ] 3.8σ [5.7σ]

Combination: NA7 + all data sets other than SND20 and CMD-3

∆aHVP, LO
µ (CMD-3-Comb.) = 18.9(5.1) , ∆awin

µ (CMD-3-Comb.) = 5.7(1.5)

∆aHVP, LO
µ (BMW-WP20) = 14.4(6.8), ∆awin

µ (Lattice-WP20) ∼ 6.5(1.5)



Introduction HVP HLbL Conclusions Data-driven Lattice Window CMD3

Present status of (g − 2)µ: experiment vs SM
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HLbL contribution: Master Formula

aHLbL
µ =

2α3

48π2

∫ ∞

0
dQ1

∫ ∞

0
dQ2

∫ 1

−1
dτ

√
1 − τ2

12∑

i=1

Ti(Q1,Q2, τ)Π̄i(Q1,Q2, τ)

Qµ
i are the Wick-rotated four-momenta and τ the four-dimensional

angle between Euclidean momenta: Q1 · Q2 = |Q1||Q2|τ
The integration variables Q1 := |Q1|, Q2 := |Q2|.

GC, Hoferichter, Procura, Stoffer (15)

▶ Ti : known kernel functions
▶ Π̄i are amenable to a dispersive treatment:

imaginary parts are related to measurable subprocesses
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Improvements obtained with the dispersive approach

Contribution PdRV(09) N/JN(09) J(17) WP(20)
Glasgow consensus

π0, η, η′-poles 114(13) 99(16) 95.45(12.40) 93.8(4.0)
π, K -loops/boxes −19(19) −19(13) −20(5) −16.4(2)

S-wave ππ rescattering −7(7) −7(2) −5.98(1.20) −8(1)

subtotal 88(24) 73(21) 69.5(13.4) 69.4(4.1)

scalars − − −
}

− 1(3)tensors − − 1.1(1)
axial vectors 15(10) 22(5) 7.55(2.71) 6(6)

u, d, s-loops / short-distance − 21(3) 20(4) 15(10)

c-loop 2.3 − 2.3(2) 3(1)

total 105(26) 116(39) 100.4(28.2) 92(19)

▶ significant reduction of uncertainties in the first three rows
CHPS (17), Masjuan, Sánchez-Puertas (17) Hoferichter, Hoid et al. (18), Gerardin, Meyer, Nyffeler (19)

▶ resonances and short-distance constraints need to be improved
Danilkin, Hoferichter, Stoffer (21), Lüdtke, Procura, Stoffer (23), Melnikov, Vainshtein (04), Nyffeler (09),
Bijnens et al. (20,21), Cappiello et al. (20), Leutgeb, Rebhan (19,21)



Introduction HVP HLbL Conclusions

Situation for HLbL
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Conclusions

▶ Data-driven evaluation of the HVP contribution (WP20):
0.6% error ⇒ dominates the theory uncertainty

▶ Dominant contribution to HVP: ππ (<1 GeV). WP20 based on:
CMD-2, SND06, BaBar, KLOE, BES-III
New puzzle: measurement by CMD-3 significantly higher!

▶ Recent lattice calculation [BMW(20)] has reached a similar precision
but differs from the dispersive one (=from e+e− data).
If confirmed ⇒ discrepancy with experiment ↘ below 2σ

▶ Intermediate window of BMW has been confirmed by other lattice
collaborations (Aubin et al., Mainz, ETMc, RBC/UKQCD, Fermilab-HPQCD-MILC)

and disagrees with data-driven [other than CMD-3, which would agree]

▶ Evaluation of the HLbL contribution based on the dispersive
approach: 20% accuracy. Two recent lattice calculations
[RBC/UKQCD(23), Mainz(21)] agree with it
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Outlook

▶ The Fermilab experiment aims to reduce the BNL uncertainty by
a factor four ⇒ potential 7σ discrepancy

▶ Improvements on the SM theory/data side:
▶ Situation for HVP data-driven urgently needs to be clarified:

• New CMD-3 result—after thorough scrutiny—is a puzzle
• Forthcoming measur./analyses: BaBar, Belle II, BESIII, KLOE,SND

• Model-independent evaluation of RadCorr underway
(but unlikely the culprit)

• Monte Carlo codes used by experiments: what is their role?
• MuonE will provide an alternative way to measure HVP

▶ HVP lattice:
calculations w/ precision ∼ BMW for aHVP, LO

µ expected soon

▶ HLbL: goal of ∼ 10% uncertainty within reach
(both data-driven and lattice)
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Future: Muon g − 2/EDM experiment @ J-PARC

Credit: J-PARC
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