The Muon (g - 2) in the Standard Model

Gilberto Colangelo

$u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

SUSY 2024, Madrid, June 14, 2024

Outline

Introduction: $(g - 2)_{\mu}$ in the Standard Model

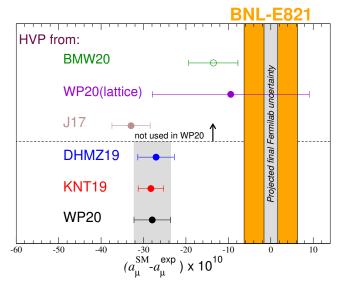
Hadronic Vacuum Polarization contribution White Paper: data-driven approach Lattice: the BMW result Lattice vs data-driven: the window quantity The new CMD3 measurement of $e^+e^- \rightarrow \pi^+\pi^-$

Hadronic light-by-light

Conclusions and Outlook

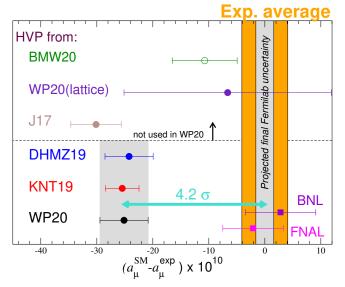
Outline

Introduction: $(g - 2)_{\mu}$ in the Standard Model

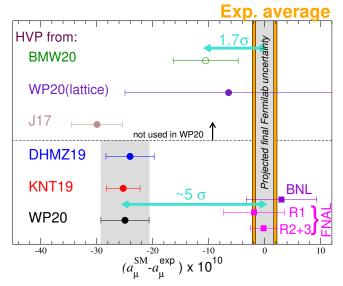

Hadronic Vacuum Polarization contribution White Paper: data-driven approach Lattice: the BMW result Lattice vs data-driven: the window quantity The new CMD3 measurement of $e^+e^- \rightarrow \pi^+\pi^-$

Hadronic light-by-light

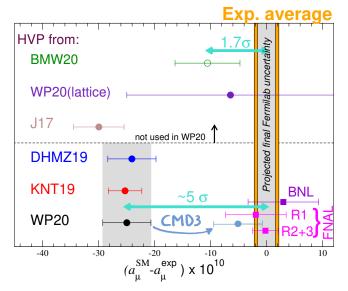
Conclusions and Outlook


Present status of $(g - 2)_{\mu}$: experiment vs SM

Before


Present status of $(g - 2)_{\mu}$: experiment vs SM

After the 2021 Fermilab result


Present status of $(g - 2)_{\mu}$: experiment vs SM

After the 2023 Fermilab result

Present status of $(g - 2)_{\mu}$: experiment vs SM

After the 2023 Fermilab result and $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ from CMD3

Contribution	Value $\times 10^{11}$
HVP LO (e^+e^-)	6931(40)
HVP NLO (e^+e^-)	-98.3(7)
HVP NNLO (e^+e^-)	12.4(1)
HVP LO (lattice, <i>udsc</i>)	7116(184)
HLbL (phenomenology)	92(19)
HLbL NLO (phenomenology)	2(1)
HLbL (lattice, <i>uds</i>)	79(35)
HLbL (phenomenology + lattice)	90(17)
QED	116584718.931(104)
Electroweak	153.6(1.0)
HVP (e^+e^- , LO + NLO + NNLO)	6845(40)
HLbL (phenomenology + lattice + NLO)	92(18)
Total SM Value	116 591 810(43)
Experiment	116 592 059(22)
Difference: $\Delta a_{\mu} := a_{\mu}^{\exp} - a_{\mu}^{SM}$	249(48)

Contribution	Value $\times 10^{11}$
HVP LO (e^+e^-)	6931(40)
HVP NLO (e^+e^-)	-98.3(7)
HVP NNLO (e^+e^-)	12.4(1)
HVP LO (lattice, $udsc$) \rightarrow BMW(20)	7075(55)
HLbL (phenomenology)	92(19)
HLbL NLO (phenomenology)	2(1)
HLbL (lattice, <i>uds</i>)	79(35)
HLbL (phenomenology + lattice)	90(17)
QED	116584718.931(104)
Electroweak	153.6(1.0)
HVP (e^+e^- , LO + NLO + NNLO)	6845(40)
HLbL (phenomenology + lattice + NLO)	92(18)
Total SM Value	116 591 810(43)
Experiment	116 592 059(22)
Difference: $\Delta a_{\mu} := a_{\mu}^{exp} - a_{\mu}^{SM}$	249(48)

White Paper:

T. Aoyama et al. Phys. Rep. 887 (2020) = WP(20)

Muon g - 2 Theory Initiative Steering Committee: GC Michel Davier (vice-chair) Aida El-Khadra (chair) Martin Hoferichter Laurent Lellouch Christoph Lehner (vice-chair) Tsutomu Mibe (J-PARC E34 experiment) Lee Roberts (Fermilab E989 experiment) Thomas Teubner Hartmut Wittig

White Paper:

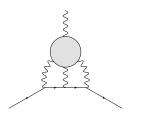
T. Aoyama et al. Phys. Rep. 887 (2020) = WP(20)

Muon g-2 Theory Initiative

Plenary Workshops:

- 1st, Q-Center (Fermilab), 3-6 June 2017
- 2nd, Mainz, 18-22 June 2018
- ▶ 3rd, Seattle, 9-13 September 2019
- 4th, KEK (virtual), 28 June-02 July 2021
- ▶ 5th, Higgs Center Edinburgh, 5-9 Sept. 2022
- 6th, Bern, 4-8 Sept. 2023
- 7th, KEK, 9-13 Sept. 2024

Theory uncertainty comes from hadronic physics


- Hadronic contributions responsible for most of the theory uncertainty
- Hadronic vacuum polarization (HVP) is O(α²), dominates the total uncertainty, despite being known to < 1%

unitarity and analyticity ⇒ dispersive approach
 ⇒ direct relation to experiment: σ_{tot}(e⁺e⁻ → hadrons)
 e⁺e⁻ Exps: BaBar, Belle, BESIII, CMD2/3, KLOE2, SND
 alternative approach: lattice, becoming competitive
 (BMW, ETMC, Fermilab, HPOCD, Mainz, MILC, RBC/UKQCD)

Theory uncertainty comes from hadronic physics

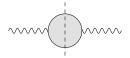
- Hadronic contributions responsible for most of the theory uncertainty
- Hadronic vacuum polarization (HVP) is O(α²), dominates the total uncertainty, despite being known to < 1%</p>
- Hadronic light-by-light (HLbL) is O(α³), known to ~ 20%, second largest uncertainty (now subdominant)

- earlier: model-based—uncertainties difficult to quantify
- ► recently: dispersive approach ⇒ data-driven, systematic treatment
- Iattice QCD is competitive

Outline

Introduction: $(g - 2)_{\mu}$ in the Standard Model

Hadronic Vacuum Polarization contribution White Paper: data-driven approach Lattice: the BMW result Lattice vs data-driven: the window quantity The new CMD3 measurement of $e^+e^- \rightarrow \pi^+\pi^-$

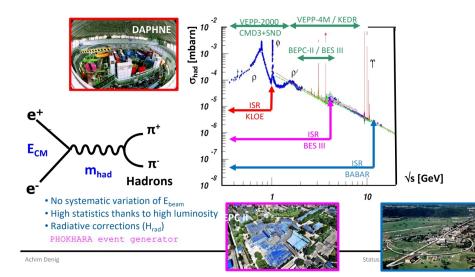

Hadronic light-by-light

Conclusions and Outlook

HVP contribution: Master Formula

Ş

Unitarity relation: simple, same for all intermediate states


 $\mathrm{Im}\bar{\Pi}(q^2) \propto \sigma(e^+e^- \to \mathrm{hadrons}) = \sigma(e^+e^- \to \mu^+\mu^-)R(q^2)$

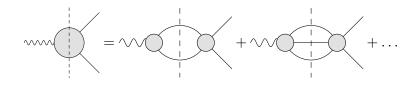
Analyticity $\left[\bar{\Pi}(q^2) = \frac{q^2}{\pi} \int ds \frac{\mathrm{Im}\bar{\Pi}(s)}{s(s-q^2)}\right] \Rightarrow$ Master formula for HVP

$$\Rightarrow \qquad a_{\mu}^{\text{hvp}} = \frac{\alpha^2}{3\pi^2} \int_{s_{th}}^{\infty} \frac{ds}{s} K(s) R(s)$$

K(s) known, depends on m_{μ} and $K(s) \sim \frac{1}{s}$ for large s

HVP contribution: Master Formula

Comparison between DHMZ19 and KNT19

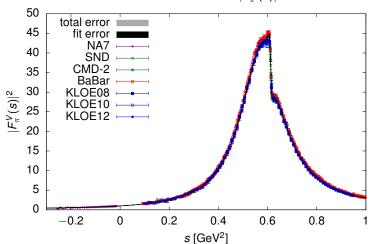

	DHMZ19	KNT19	Difference
$\pi^+\pi^-$	507.85(3.38)	504.23(1.90)	3.62
$\pi^+\pi^-\pi^0$	46.21(1.45)	46.63(94)	-0.42
$\pi^+\pi^-\pi^+\pi^-$	13.68(0.30)	13.99(19)	-0.31
$\pi^+\pi^-\pi^0\pi^0$	18.03(0.55)	18.15(74)	-0.12
K^+K^-	23.08(0.44)	23.00(22)	0.08
$K_{S}K_{L}$	12.82(0.24)	13.04(19)	-0.22
$\pi^{0}\gamma$	4.41(0.10)	4.58(10)	-0.17
Sum of the above	626.08(3.90)	623.62(2.27)	2.46
[1.8, 3.7] GeV (without $c\bar{c}$)	33.45(71)	34.45(56)	-1.00
$J/\psi, \psi(2S)$	7.76(12)	7.84(19)	-0.08
$[3.7,\infty)$ GeV	17.15(31)́	16.95(19)́	0.20
Total $a_{\mu}^{\text{HVP, LO}}$	694.0(4.0)	692.8(2.4)	1.2

Comparison between DHMZ19 and KNT19

	DHMZ19	KNT19	Difference
$\pi^+\pi^-$	507.85(3.38)	504.23(1.90)	3.62
$\pi^+\pi^-\pi^0$	46.21(1.45)	46.63(94)	-0.42
$\pi^+\pi^-\pi^+\pi^-$	13.68(0.30)	13.99(19)	-0.31
$\pi^+\pi^-\pi^0\pi^0$	18.03(0.55)	18.15(74)	-0.12
K^+K^-	23.08(0.44)	23.00(22)	0.08
$K_{S}K_{L}$	12.82(0.24)	13.04(19)	-0.22
$\pi^{0}\gamma$	4.41(0.10)	4.58(10)	-0.17
Sum of the above	626.08(3.90)	623.62(2.27)	2.46
[1.8, 3.7] GeV (without $c\bar{c}$)	33.45(71)	34.45(56)	-1.00
$J/\psi, \psi(2S)$	7.76(12)	7.84(19)	-0.08
$[3.7,\infty)$ GeV	17.15(̀31)́	16.95(19)́	0.20
Total $a_{\mu}^{\text{HVP, LO}}$	694.0(4.0)	692.8(2.4)	1.2

For the dominant $\pi\pi$ channel more theory input can be used

Omnès representation including isospin breaking

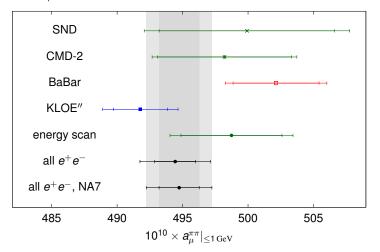

$$F_V(s) = \Omega_{\pi\pi}(s) \cdot G_{\omega}(s) \cdot \Omega_{\mathrm{in}}(s)$$

main contribution $\Omega_{\pi\pi}(s)$: 2 parameters

GC, Hoferichter, Stoffer (18)

Fit results

GC, Hoferichter, Stoffer (18)



Fit result for the VFF $|F_{\pi}^{V}(s)|^{2}$

Fit results

GC, Hoferichter, Stoffer (18)

Result for $a_{\mu}^{\pi\pi}|_{\leq 1 \text{ GeV}}$ from the VFF fits to single experiments and combinations

2π : comparison with the dispersive approach

2π channel described dispersively \Rightarrow more theory constraints

Ananthanarayan, Caprini, Das (19), GC, Hoferichter, Stoffer (18) WP(20)

Energy range	CHS18	DHMZ19	KNT19
\leq 0.6 GeV	110.1(9)	110.4(4)(5)	108.7(9)
$\leq 0.7{ m GeV}$	214.8(1.7)	214.7(0.8)(1.1)	213.1(1.2)
$\leq 0.8{ m GeV}$	413.2(2.3)	414.4(1.5)(2.3)	412.0(1.7)
\leq 0.9 GeV	479.8(2.6)	481.9(1.8)(2.9)	478.5(1.8)
$\leq 1.0{ m GeV}$	495.0(2.6)	497.4(1.8)(3.1)	493.8(1.9)
[0.6, 0.7] GeV	104.7(7)	104.2(5)(5)	104.4(5)
[0.7, 0.8] GeV	198.3(9)	199.8(0.9)(1.2)	198.9(7)
[0.8, 0.9] GeV	66.6(4)	67.5(4)(6)	66.6(3)
$[0.9, 1.0]\mathrm{GeV}$	15.3(1)	15.5(1)(2)	15.3(1)
\leq 0.63 GeV	132.8(1.1)	132.9(5)(6)	131.2(1.0)
[0.6, 0.9] GeV	369.6(1.7)	371.5(1.5)(2.3)	369.8(1.3)
$\left[\sqrt{0.1},\sqrt{0.95}\right]$ GeV	490.7(2.6)	493.1(1.8)(3.1)	489.5(1.9)

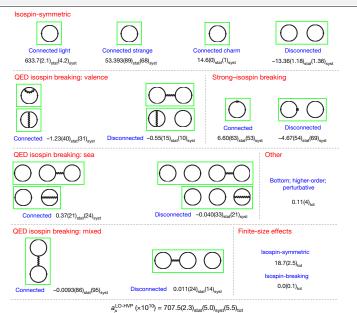
Combination method and final result

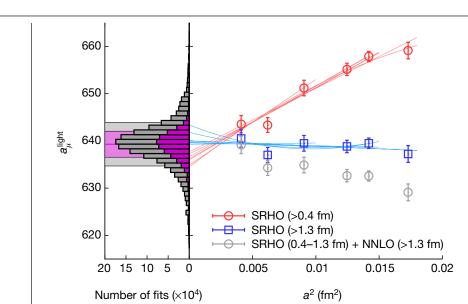
Complete analyses DHMZ19 and KNT19, as well as CHS19 (2π) and HHK19 (3π) , have been so combined:

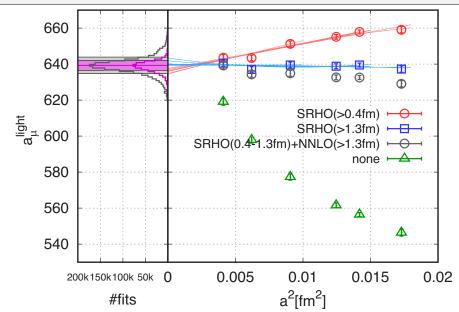
- central values are obtained by simple averages (for each channel and mass range)
- the largest experimental and systematic uncertainty of DHMZ and KNT is taken
- ► 1/2 difference DHMZ-KNT (or BABAR-KLOE in the 2π channel, if larger) is added to the uncertainty

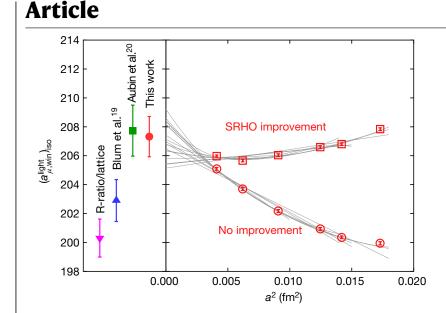
Final result:

$$a_{\mu}^{\text{HVP, LO}} = 693.1(2.8)_{\text{exp}}(2.8)_{\text{sys}}(0.7)_{\text{DV+QCD}} \times 10^{-10} = 693.1(4.0) \times 10^{-10}$$

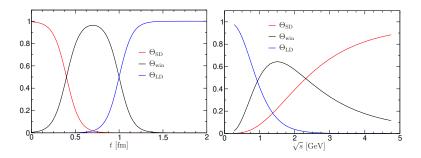

Borsanyi et al. Nature 2021


State-of-the-art lattice calculation of $a_{\mu}^{\text{HVP, LO}}$ based on

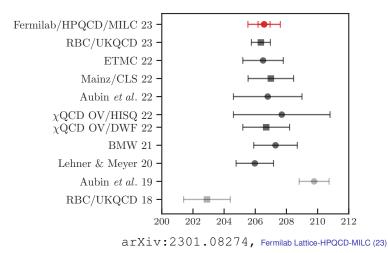

- current-current correlator, summed over all distances, integrated in time with appropriate kernel function (TMR)
- using staggered fermions on an L ~ 6 fm lattice (L ~ 11fm used for finite volume corrections)
- at (and around) physical quark masses
- including isospin-breaking effects


Data-driven Lattice Window CMD3

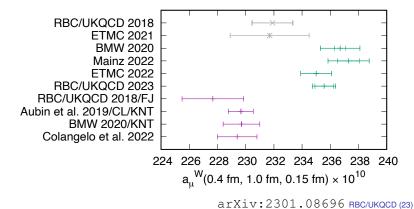
The BMW result



Borsanyi et al. Nature 2021


Weight functions for window quantities

RBC/UKQCD (18)


Present status of the window quantities

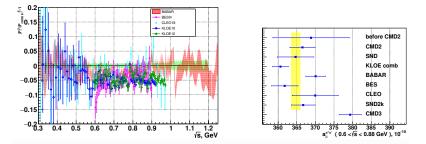
Several lattice calculations have confirmed BMW's result

Present status of the window quantities

Several lattice calculations have confirmed BMW's result

Individual-channel contributions to a_{μ}^{win}

Channel	total	window
$\pi^+\pi^-$	504.23(1.90)	144.08(49)
$\pi^{+}\pi^{-}\pi^{0}$ $\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	46.63(94) 13.99(19)	18.63(35) 8.88(12)
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	18.15(74)	11.20(46)
K^+K^- K_SK_L	23.00(22) 13.04(19)	12.29(12) 6.81(10)
$\pi^0\gamma$	4.58(10)	1.58(4)
Sum of the above	623.62(2.27)	203.47(78)
$egin{aligned} [1.8,3.7] ext{ GeV} (ext{without } car c) \ J/\psi, \psi(2S) \ [3.7,\infty) ext{ GeV} \end{aligned}$	34.45(56) 7.84(19) 16.95(19)	15.93(26) 2.27(6) 1.56(2)
WP(20) / GC, El-Khadra et al. (22)	693.1(4.0)	229.4(1.4)
BMWc Mainz/CLS ETMc RBC/UKQCD	707.5(5.5)	236.7(1.4) 237.3(1.5) 235.0(1.1) 235.6(0.8)

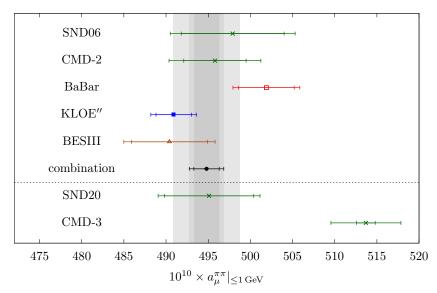

Numbers for the channels refer to KNT19 - thanks to Alex Keshavarzi for providing them

 $\Delta a_{\mu}^{\text{HVP, LO}} = 14.4(6.8)(2.1\sigma),$

$$\Delta a_{\mu}^{
m win} \sim$$
 6.5(1.5) (\sim 4.3 σ)

CMD-3 measurement of $e^+e^- \rightarrow \pi^+\pi^-$

F. Ignatov et al., CMD-3, arXiv: 2302.08834



The comparison of pion form factor measured in this work with the most recent ISR experiments (BABAR [21], KLOE [18, 19], BES [22]) is shown in Fig. 34. The comparison with the most precise previous energy scan experiments (CMD-2 [12, 13, 14, 15], SND [16] at the VEPP-2M and SND [23] at the VEPP-2000) is shown in Fig. 35. [The new result

generally shows larger pion form factor in the whole energy range under discussion. The most significant difference to other energy scan measurements, including previous CMD-2 measurement, is observed at the left side of ρ -meson ($\sqrt{s} = 0.6 - 0.75$ GeV), where it reach up to 5%, well beyond the combined systematic and statistical errors of the new and previous results. The source of this difference is unknown at the moment.

Preliminary analysis of the CMD-3 measurement

GC, Hoferichter and Stoffer, arXiv:2308.04217 (thanks for providing the plot)

Preliminary analysis of the CMD-3 measurement

GC, Hoferichter and Stoffer, arXiv:2308.04217

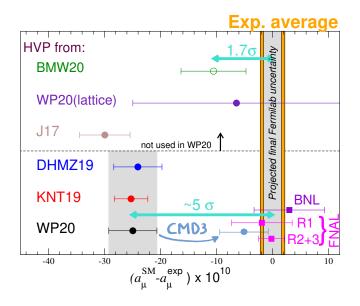
	10 ¹⁰ ×	$a^{\pi\pi}_{\mu\mid_{\leq 1 \mathrm{GeV}}}$	$a_{\mu\mid\leq 1 \mathrm{GeV}}^{\pi\pi,\mathrm{win}}$	$\chi^2/{ m dof}$
SND06		497.9(6.1)(4.2)	139.6(1.8)(1.0)	1.09
CMD-2		495.8(3.7)(4.0)	139.4(1.0)(0.8)	1.01
BaBar		501.9(3.3)(2.2)	140.6(1.0)(0.7)	1.17
KLOE"		490.9(2.1)(1.7)	137.1(0.6)(0.4)	1.13
BESIII		490.4(4.5)(3.0)	137.8(1.3)(0.4)	1.01
SND20		495.1(5.3)(2.9)	139.2(1.5)(0.4)	1.88
CMD-3		513.7(1.1)(4.0)	144.0(0.3)(1.1)	1.09
Combinat	ion	494.8(1.5)(1.4)(3.4)	138.3(0.4)(0.3)(1.1)	1.21

Combination: NA7 + all data sets other than SND20 and CMD-3

$$\Delta a_{\mu}^{\text{HVP, LO}}(ext{cmd-3-Comb.}) = 18.9(5.1), \qquad \Delta a_{\mu}^{ ext{win}}(ext{cmd-3-Comb.}) = 5.7(1.5)$$

 $\Delta a_{\mu}^{ ext{HVP, LO}}(ext{bmw-wp20}) = 14.4(6.8), \qquad \Delta a_{\mu}^{ ext{win}}(ext{Lattice-wp20}) \sim 6.5(1.5)$

Preliminary analysis of the CMD-3 measurement


GC, Hoferichter and Stoffer, arXiv:2308.04217

Discrepancy	$a_{\mu}^{\pi\pi}ig _{[0.60, 0.88]{ m GeV}}$	$\left. \pmb{a}_{\mu}^{\pi\pi} \right _{\leq 1 \mathrm{GeV}}$	int window
SND06	1.8 σ	1.7σ	1.7σ
CMD-2	2.3σ	2.0σ	2 .1 <i>σ</i>
BaBar	3.3σ	2.9σ	3 .1 <i>o</i>
KLOE"	5.6 σ	4.8σ	5.4σ
BESIII	3.0σ	2.8σ	3 .1 <i>o</i>
SND20	2.2 σ	2 .1 σ	2.2 σ
Combination	4.2 σ [6.1 σ]	3 .7σ [5.0σ]	3.8 σ [5.7 σ]

Combination: NA7 + all data sets other than SND20 and CMD-3

$$egin{aligned} &\Delta a_{\mu}^{ ext{HVP, LO}}(ext{cmd-3-Comb.}) = 18.9(5.1)\,, &\Delta a_{\mu}^{ ext{win}}(ext{cmd-3-Comb.}) = 5.7(1.5)\ &\Delta a_{\mu}^{ ext{HVP, LO}}(ext{bmw-wp20}) = 14.4(6.8), &\Delta a_{\mu}^{ ext{win}}(ext{Lattice-wp20}) &\sim 6.5(1.5) \end{aligned}$$

Present status of $(g - 2)_{\mu}$: experiment vs SM

Outline

Introduction: $(g-2)_{\mu}$ in the Standard Model

Hadronic Vacuum Polarization contribution White Paper: data-driven approach Lattice: the BMW result Lattice vs data-driven: the window quantity The new CMD3 measurement of $e^+e^- \rightarrow \pi^+\pi^-$

Hadronic light-by-light

Conclusions and Outlook

HLbL contribution: Master Formula

$$a_{\mu}^{\text{HLbL}} = \frac{2\alpha^3}{48\pi^2} \int_0^{\infty} dQ_1 \int_0^{\infty} dQ_2 \int_{-1}^{1} \sqrt{1-\tau^2} \sum_{i=1}^{12} T_i(Q_1, Q_2, \tau) \bar{\Pi}_i(Q_1, Q_2, \tau)$$

 Q_i^{μ} are the Wick-rotated four-momenta and τ the four-dimensional angle between Euclidean momenta: $Q_1 \cdot Q_2 = |Q_1| |Q_2| \tau$ The integration variables $Q_1 := |Q_1|, Q_2 := |Q_2|$.

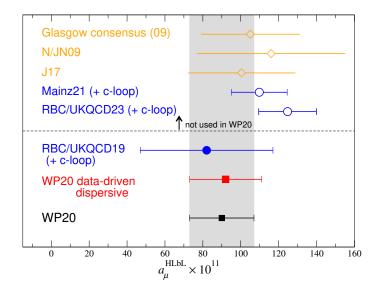
GC, Hoferichter, Procura, Stoffer (15)

T_i: known kernel functions

Improvements obtained with the dispersive approach

Contribution	PdRV(09) Glasgow consensus	N/JN(09)	J(17)	WP(20)
π^0, η, η' -poles π, K -loops/boxes S-wave $\pi\pi$ rescattering	114(13) -19(19) -7(7)	99(16) -19(13) -7(2)	95.45(12.40) -20(5) -5.98(1.20)	93.8(4.0) -16.4(2) -8(1)
subtotal	88(24)	73(21)	69.5(13.4)	69.4(4.1)
scalars tensors axial vectors <i>u, d, s</i> -loops / short-distance	 15(10) 	 22(5) 21(3)	1.1(1) 7.55(2.71) 20(4)	} - 1(3) 6(6) 15(10)
c-loop	2.3	_	2.3(2)	3(1)
total	105(26)	116(39)	100.4(28.2)	92(19)

significant reduction of uncertainties in the first three rows


CHPS (17), Masjuan, Sánchez-Puertas (17) Hoferichter, Hoid et al. (18), Gerardin, Meyer, Nyffeler (19)

resonances and short-distance constraints need to be improved

Danilkin, Hoferichter, Stoffer (21), Lüdtke, Procura, Stoffer (23), Melnikov, Vainshtein (04), Nyffeler (09),

Bijnens et al. (20,21), Cappiello et al. (20), Leutgeb, Rebhan (19,21)

Situation for HLbL

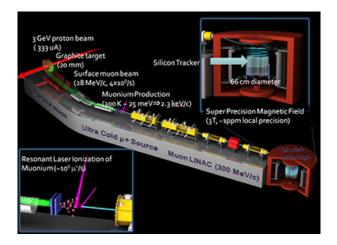
Outline

Introduction: $(g-2)_{\mu}$ in the Standard Model

Hadronic Vacuum Polarization contribution White Paper: data-driven approach Lattice: the BMW result Lattice vs data-driven: the window quantity The new CMD3 measurement of $e^+e^- \rightarrow \pi^+\pi^-$

Hadronic light-by-light

Conclusions and Outlook


Conclusions

- Data-driven evaluation of the HVP contribution (WP20): 0.6% error ⇒ dominates the theory uncertainty
- Dominant contribution to HVP: ππ (<1 GeV). WP20 based on: CMD-2, SND06, BaBar, KLOE, BES-III New puzzle: measurement by CMD-3 significantly higher!
- Recent lattice calculation [BMW(20)] has reached a similar precision but differs from the dispersive one (=from e⁺e[−] data). If confirmed ⇒ discrepancy with experiment ∖ below 2σ
- Intermediate window of BMW has been confirmed by other lattice collaborations (Aubin et al., Mainz, ETMc, RBC/UKQCD, Fermilab-HPQCD-MILC) and disagrees with data-driven [other than CMD-3, which would agree]
- Evaluation of the HLbL contribution based on the dispersive approach: 20% accuracy. Two recent lattice calculations [RBC/UKQCD(23), Mainz(21)] agree with it

Outlook

- The Fermilab experiment aims to reduce the BNL uncertainty by a factor four \Rightarrow potential 7σ discrepancy
- Improvements on the SM theory/data side:
 - Situation for HVP data-driven urgently needs to be clarified:
 - New CMD-3 result—after thorough scrutiny—is a puzzle
 - Forthcoming measur./analyses: BaBar, Belle II, BESIII, KLOE, SND
 - Model-independent evaluation of RadCorr underway (but unlikely the culprit)
 - Monte Carlo codes used by experiments: what is their role?
 - MuonE will provide an alternative way to measure HVP
 - HVP lattice: calculations w/ precision ~ BMW for a^{HVP, LO} expected soon
 - HLbL: goal of ~ 10% uncertainty within reach (both data-driven and lattice)

Future: Muon g - 2/EDM experiment @ J-PARC

