Measurements of Higgs boson production and decay rates with the ATLAS experiment

Ricardo Barrué, on behalf of the ATLAS Collaboration

Motivation

Higgs rates are sensitive probes of physics beyond the Standard Model (BSM)

• From e.g. "new" heavy particles in loops

Largest dataset ever collected of Higgs bosons from pp collisions at \sqrt{s} =13 TeV

• Best ever sensitivity to small deviations from new physics

New dataset at \sqrt{s} =13.6 TeV, the highest energy ever achieved in pp collisions

• Can probe the growth of Higgs rates with \sqrt{s} for new physics effects

Where we stand

Latest ATLAS/CMS combinations show that nature agrees remarkably well with the SM

• <u>Nature 607, 52 (2022)</u> (ATLAS) / <u>Nature 607, 60 (2022)</u> (CMS)

Outline

Full Run 2 (13 TeV, 140 fb⁻¹)

- 1. VBF WH <u>arXiV:2402.00426</u>
- 2. High-pT V(qq)H(bb) Phys. Rev. Lett. 132, 131802 (2024)
- 3. Zγ decay (ATLAS + CMS) <u>Phys. Rev. Lett. 132, 021803 (2024)</u>
- 4. V(leptons)H($\tau\tau$) <u>arXiV:2312.02394</u>
- 5. H(*ττ*) STXS <u>ATLAS-CONF-2024-007</u>

Run 3 (13.6 TeV, 31.4-29.0 fb⁻¹):

• Production cross-sections with $H(\gamma\gamma)$ and $H(4\ell)$ decays - <u>Eur. Phys. J. C 84, 78 (2024)</u>

VBF WH

Sensitive to ratio of Higgs couplings to W and Z, $\lambda_{WZ} = \kappa_W / \kappa_Z$

- $\lambda_{WZ} = 1$ in the SM \rightarrow low cross-section
- $\lambda_{WZ} < 0$ in some BSM models \rightarrow enhancement in cross-section + modified kinematics

Events with one lepton, 2 b-tagged jets, ≥ 2 non b-tagged jets (2 tagged as VBF jets)

2 separate (similar) analyses for λ_{WZ} > 0 and λ_{WZ} < 0

VBF WH - results

Region of $\lambda_{WZ} = k_W/k_Z < 0$ within 2σ boundaries of latest ATLAS combination <u>Nature 607, 52 (2022)</u>

Excluded by $\lambda_{WZ} < 0$ analysis with significance greater than $5\sigma \Rightarrow \lambda_{WZ} > 0$!

 λ_{WZ} > 0 analysis obtains for the signal strength $\mu = \sigma/\sigma_{pred.} = 0.9^{+4.0}_{-4.3}$

• upper limit of 9.0, equivalent to $\sigma \times B(H \to b\bar{b})$ = 308 fb

High-pT V(qq)H(bb)

High-pT phase spaces very sensitive to new physics contributions in VH production

• V(qq)H(bb) channel has highest statistics - difficult due to large multijet background

Events with 2 large-R jets tagged as $W/Z \rightarrow qq$ and $H \rightarrow bb$

Multijet background estimated from data in CR

- Extrapolated to SR using transfer factors
- Alternative method (BDT) for validation and derivation of uncertainties

High-pT V(qq)H(bb) - results

Fit to the invariant mass inclusive in p_T^H

- $\mu = 1.4^{+1.0}_{-0.9}$, dominated by syst. uncertainty
- Dominant systematic: multijet shape uncertainty
- Significance: 1.7σ (1.2σ) obs. (exp.)

Additional fit of μ in each p_T^H category.

All results agree with SM prediction !

• Larger data samples and improved methods will improve analysis sensitivity

Phys. Rev. Lett. 132, 021803 (2024)

$Z\gamma$ decay (ATLAS+CMS)

Rare (loop) decay ($B_{SM} = 1.54 \times 10^{-3}$)

• sensitive to BSM heavy particles

Events assigned to different categories, with different S/B:

- ATLAS: 6 categories, inc. 1 targetting VBF topology
- CMS: 8 categories, inc. 1 targetting VH/ttH and 3 based
 on BDT targetting VBF

Signal and background modelled with analytical functions

• **Definition of background models** is the main difference between ATLAS and CMS analyses

Zγ decay (ATLAS+CMS) - results

Several theoretical uncertainties correlated

- $\mu = 2.2 \pm 0.7$, dominated by statistical uncertainty
- Dominant systematic: H → Zγ branching fraction, background modelling

Combined significance > 3σ – **first evidence @ LHC !**

Fit to branching ratio (assuming SM production cross-sections):

• $B(H \to Z\gamma) = (3.4 \pm 1.1) \times 10^{-3} (1.9\sigma \text{ away from SM})$

V(leptons)H($\tau\tau$)

Rare production+decay mode $(\sigma \times B)_{SM} = 6.59 \pm 0.03$ fb

Events with light leptons and ≥ 1 hadronically decaying taus

Improved methods for hadronic tau identification (ML-based)

Misidentified jet background estimated from data.

Neural network (NN) to separate signal from diboson background

• Mass-based analysis as cross check

V(leptons)H($\tau\tau$) - results

Fitting combined signal strengths + split in WH/ZH

- Dominated by statistical uncertainty
- Dominant systematic: tau reconstruction

Significance: 4.2σ (3.6σ) observed (expected)

Results consistent with the SM.

Mass-based analysis: similar signal strengths, lower significance - 3.5σ obs., 2.6σ exp.

• Shows power of machine learning techniques

ATLAS-CONF-2024-007

H($\tau\tau$) STXS

Cross-sections for specific production modes/regions of phase space:

- VBF, V(qq)H, ttH(OL)H($\tau_{had}\tau_{had}$), ggH (high-pT)
- Categorization in #jets, p_T^H and m_{jj}

New w.r.t. previous Run 2 analysis:

- Finer split in VBF and ttH
- Reconstruction of p_T^H for categorization improved with NN

BDT discriminants to separate signal- and background-rich regions

ATLAS-CONF-2024-007

H($\tau\tau$) STXS - results

Highlights:

- first VBF STXS measurement for high p_T^H
- most precise VBF STXS measurements for low p_T^H
- 25% improvement on ttH μ w.r.t. previous publication
- 95% CL upper limits on ttH STXS

All results consistent with the SM.

H(γγ**)**, **H(**4ℓ**) @** 13.6 TeV

Inclusive Higgs boson production cross-section @ 13.6 TeV

- 1. fiducial cross-section measurement
- 2. extrapolation to full phase space

New: $H \rightarrow \gamma \gamma$ uses generative ML model to create very highstatistics template of the continuum $\gamma \gamma^*$ background

• More accurate estimation of background modelling uncertainty

Measured-fiducial correction factors derived from simulated signal.

H($\gamma\gamma$), H(4 ℓ) @ 13.6 TeV - results

Full phase space cross-sections $\sigma(pp \rightarrow H)$:

- $H \rightarrow \gamma \gamma: 67^{+12}_{-11} \text{ pb}$
- $H \rightarrow 4\ell: 46 \pm 12 \text{ pb}$
- $H \rightarrow \gamma \gamma + H \rightarrow 4\ell$: 58.2 \pm 7.5 (*stat.*) \pm 4.5 (*syst.*) pb

Dominant systematics:

- $H \rightarrow \gamma \gamma$: background modelling
- $H \rightarrow 4\ell$: lepton reconstruction uncertainties

Measured cross-sections agree with SM value, $\sigma(pp \rightarrow H)_{SM} = 59.9 \pm 2.6 \text{ pb}$

A lot more to come from Run 3 dataset !

Conclusions

ATLAS continues its exploration of the Higgs boson sector:

- $\lambda_{WZ} < 0$ excluded at > 5 σ , evidence of H $\rightarrow Z\gamma$ (with CMS), ...
- first ATLAS Higgs measurements at 13.6 TeV

Latest results agree with the SM quite well... but we're not stopping yet

- Still coming up with creative methods and analyses ideas to explore the Run 2 dataset
- Collecting more (and better) data in Run 3 dataset

Always hopeful for a sign of new physics !

VBF WH - I

Predictions were obtained for various values of κW and κZ using the procedure outlined in Phys. Rev. D **102**, 033006

Variable	Description	SR ⁻	SR ⁺ _{loose}	$\mathrm{SR}^+_{\mathrm{tight}}$	
$m_{b\bar{b}}$	Invariant mass of the two <i>b</i> -jets ($b\bar{b}$ system).	€ (105, 145) GeV	€ (105, 145) GeV	$\in (105, 145) \text{GeV}$	
$\Delta R_{b\bar{b}}$	ΔR between the two <i>b</i> -jets.	< 1.2	< 1.6	< 1.2	
$p_{\mathrm{T}}^{bar{b}}$	$p_{\rm T}$ of the $b\bar{b}$ system.	> 250 GeV	> 100 GeV	> 180 GeV	
m_{jj}	Invariant mass of the VBF jets.	-	> 600 GeV	> 1000 GeV	
Δy_{jj}	Rapidity separation of the VBF jets.	> 4.4	> 3.0	> 3.0	
m ^{lep}	Invariant mass of the W and either	> 260 GeV	> 260 GeV	> 260 GeV	
top	<i>b</i> -jet that is closest to 172.7 GeV.	. 200 00	200 000	200 001	
Ewit	$\frac{ y_{Wb\bar{b}} - y_{jj} }{\Delta y_{jj}}$, where $y_{Wb\bar{b}}(y_{jj})$ is the	< 0.3	< 0.3	< 0.3	
SWDD	rapidity of the $Wb\bar{b}$ (VBF-jet) system.				
$\Delta \phi(W b \bar{b} i i)$	Azimuthal separation between the	_	_	> 2 7	
$\Delta \varphi(w bb, jj)$	$Wb\bar{b}$ system and the VBF-jet system.			> 2.1	
Nveto	Number of nontagged, non-VBF jets	_	< 1	- 0	
¹ v _{jets}	with $p_{\rm T} > 25$ GeV and $ \eta < 2.5$.	_	21	- 0	

Variable	$t\bar{t}$ CR ⁻	$t\bar{t} \operatorname{CR}^+$	W+jets CR ⁻	W+jets CR ⁺	$Wt \ CR^-$	$Wt \ CR^+$
$m_{b\bar{b}}$	> 145 GeV	> 145 GeV	< 70 GeV	< 70 GeV	> 145 GeV	> 145 GeV
$\Delta R_{b\bar{b}}$	< 1.2	< 1.2	$< 2.23 - 0.007 p_{\rm T}^{b\bar{b}}/{\rm GeV}$	$< 2.23 - 0.007 p_{\rm T}^{b\bar{b}}/{ m GeV}$	> 1.5	> 1.6
$p_{\mathrm{T}}^{bar{b}}$	> 200 GeV	-	\in (150, 250) GeV	> 80 GeV	> 250 GeV	> 180 GeV
m_{top}^{lep}	> 260 GeV	> 220 GeV	> 275 GeV	> 260 GeV	> 320 GeV	> 320 GeV
Δy_{jj}	∈ (3, 4.4)	> 3	> 3	> 3	> 3	> 3
m_{jj}	_	\in (400, 1000) GeV	-	> 500 GeV	_	> 500 GeV
$N_{\rm iets}^{\rm veto}$	_	< 2	-	< 1	-	< 2
p_{T}^W	_	< 350 GeV	-	-	> 250 GeV	> 250 GeV
$m_{ m T}^W$	_	-	-	< 200 GeV	_	_
$p_{\mathrm{T}}^{j_{\mathrm{T}}}$	-	-	> 70 GeV	> 70 GeV	$< 350 \mathrm{GeV}$	$< 350 \mathrm{GeV}$

VBF WH - II

Uncertainty source	$\Delta \mu$
$t\bar{t}$ modelling	± 0.033
Jet energy resolution	± 0.017
Wt modelling	± 0.013
Jet energy scale	± 0.011
Signal modelling	± 0.007
W+jets modelling	± 0.006
MC statistical uncertainty	± 0.005
Jet vertex tagging	± 0.003
Flavor tagging	± 0.002
$E_{\rm T}^{\rm miss}$ scale and trigger efficient	± 0.001
Luminosity and pileup reweigh	ting ± 0.001
Other background modelling	± 0.001
Lepton scale and efficiency	< 0.001
Total systematic	± 0.045
Normalization factors	± 0.016
Total statistical	± 0.032
Total uncertainty	± 0.055

Uncertainty source	$\Delta \mu$
W+jets modelling	±1.9
$t\bar{t}$ modelling	± 1.8
Jet energy resolution	± 1.3
Jet energy scale	± 0.8
MC statistical uncertainty	± 0.8
Other background modelling	± 0.5
Signal modelling	± 0.4
Wt modelling	± 0.3
$E_{\rm T}^{\rm miss}$ scale and trigger efficiency	± 0.3
Flavor tagging	± 0.1
Luminosity and pileup reweighting	± 0.1
Jet vertex tagging	± 0.1
Lepton scale and efficiency	< 0.1
Total systematic	± 3.3
Normalization factors	±1.4
Total statistical	± 2.5
Total uncertainty	±4.1

 $\lambda_{WZ} < 0$

 $\lambda_{WZ} > 0$

High-pT V(qq)H(bb) - I

Kinematic region	Observed μ	Observed σ [fb]	Expected σ [fb]
$250 \le p_{\rm T}^H < 450 {\rm GeV}, y_H < 2$	$0.8^{+2.2}_{-1.9}$	47^{+125}_{-109}	57.0
$450 \le p_{\rm T}^H < 650 { m ~GeV}, y_H < 2$	$0.4^{+1.7}_{-1.5}$	2^{+10}_{-9}	5.9
$p_{\rm T}^H \geq 650~{\rm GeV}, y_H < 2$	$5.3^{+11.3}_{-3.2}$	$6^{+13}_{-4} \ (<\!43)$	1.2

Uncertainty source	$\delta \mu$
Signal modeling	$^{+0.10}_{-0.02}$
MC statistical uncertainty	$^{+0.13}_{-0.13}$
Instrumental (pileup, luminosity)	$^{+0.012}_{-0.004}$
Large-R jet	$^{+0.13}_{-0.14}$
Top-quark modeling	$^{+0.14}_{-0.15}$
Other theory modeling	$^{+0.05}_{-0.03}$
$H \to b \bar{b}$ tagging	$^{+0.52}_{-0.23}$
Multijet estimate (TF uncertainty)	$^{+0.52}_{-0.41}$
Multijet modeling (TF vs. BDT)	$^{+0.14}_{-0.18}$
Total systematic uncertainty	$^{+0.80}_{-0.61}$
Signal statistical uncertainty	$^{+0.60}_{-0.60}$
Z+jets normalization	$^{+0.42}_{-0.20}$
Total statistical uncertainty	$^{+0.63}_{-0.63}$
Total uncertainty	$^{+1.02}_{-0.88}$

V(leptons)H(au au) - I

Category	Region	Cuts	Major process contributing to the background from misidentified jets		
	W+jets	PRESELECTION same-sign $\tau_{\text{had-vis}}$ $m_{\text{T}}(\ell, E_{\text{T}}^{\text{miss}}) < 60 \text{ GeV}$	W+jets ~ 70%		
WH, $H \rightarrow \tau_{\rm had} \tau_{\rm had}$	$Z \rightarrow \tau \tau$	$\frac{P_{\text{RESELECTION}}}{m_{2\text{T}} < 60 \text{ GeV}}$ $m_{\text{T}}(\ell, E_{\text{T}}^{\text{miss}}) < 40 \text{ GeV}$	$Z \to \tau \tau \sim 50\%$		
	top-quark	PRESELECTION # b jets > 0	$t\bar{t} \sim 70\%$		
WH, $H \rightarrow \tau_{\rm lep} \tau_{\rm had}$	$Z \to \tau \tau$	$P_{\text{RESELECTION}}$ opposite-sign light leptons $m_{\text{coll}}(\ell, \ell) \in [60, 120] \text{ GeV}$ $m_{ee} \notin [80, 100] \text{ GeV}$	$Z \to \tau \tau \sim 40\%$		
-	All Same Sign	PRESELECTION all objects with same-sign $m_{ee} \notin [80, 100]$ GeV	W+jets ~ 70%		

Selection	$WH, H \rightarrow \tau_{\text{lep}} \tau_{\text{had}}$	$WH, H \rightarrow \tau_{had} \tau_{had}$	$ZH, H \rightarrow \tau_{\rm lep} \tau_{\rm had}$	$ZH, H \rightarrow \tau_{had} \tau_{had}$
Preselection	exactly 1 $ au_{had-vis}$ exactly 2 ℓ <i>b</i> -jet veto	exactly 2 $\tau_{\text{had-vis}}$ exactly 1 ℓ <i>b</i> -jet veto	exactly 1 $\tau_{had-vis}$ exactly 3 ℓ same-flavour, OS ℓ pair $m_{\ell\ell} \in [81, 101]$ GeV	exactly 2 $\tau_{had-vis}$ exactly 2 ℓ same-flavour, OS ℓ pair $m_{\ell\ell} \in [71, 111]$ GeV
SIGNAL REGION	$ \begin{array}{c c} 1 \ \tau_{\text{had-vis}} \ \text{and} \ 1 \ \tau_{\text{lep}} \ \text{OS} \\ \text{exactly} \ 2 \ \ell \ \text{SS} \\ \sum_{\ell} \ p_{\text{T}}(\ell) + p_{\text{T}}(\tau_{\text{had-vis}}) > 90 \ \text{GeV} \\ m_{ee} \notin [80, 100] \ \text{GeV} \end{array} $	$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$	exactly 1 $\tau_{had-vis}$ and 1 τ_{lep} OS $\sum_{\tau_{had-vis}, \tau_{lep}} p_{T}(\tau) > 60 \text{ GeV}$	exactly 2 $\tau_{\text{had-vis}}$ OS $\sum_{\tau_{\text{had-vis}}} p_{\text{T}}(\tau) > 75 \text{ GeV}$
HIGGS BOSON MASS WINDOW CUT (ONLY APPLIED IN THE NN-BASED ANALYSIS)	$m_{2T} \in [60, 130] \text{ GeV}$	$m_{2T} \in [80, 130] \text{ GeV}$	$m_{\rm MMC} \in [100, 170] {\rm GeV}$	$m_{\rm MMC} \in [100, 180] {\rm GeV}$

V(leptons)H(au au) - II

All categories	$ZH, H \rightarrow \tau_{had} \tau_{had}$	$ZH, H \rightarrow \tau_{\rm lep} \tau_{\rm had}$	$WH, H \rightarrow \tau_{had} \tau_{had}$
N-prongs(τ_1)	N-prongs(τ_2)	$p_{\mathrm{T}}(\ell_2)$	N-prongs(τ_2)
$p_{\mathrm{T}}(\tau_1)$	$p_{\mathrm{T}}(\tau_2)$	$\eta(\ell_2)$	$p_{\mathrm{T}}(\tau_2)$
$\eta(\tau_1)$	$\eta(\tau_2)$	$\phi(\ell_2)$	$\eta(\tau_2)$
$\phi(\tau_1)$	$\phi(\tau_2)$	$p_{\mathrm{T}}(H)$	$\phi(\tau_2)$
$\Delta R(\tau_1, \ell_1)$	$p_{\mathrm{T}}(\ell_2)$	$\eta(\ell_{\tau})$	$\sqrt{\eta(\ell_1)^2 + \phi(\ell_1)^2}$
$p_{\mathrm{T}}(l_1)$	$\eta(\ell_2)$	$\phi(\ell_{\tau})$	
$\eta(\ell_1)$	$\phi(\ell_2)$	$\Delta R(\ell, \ell)$	
$\phi(\ell_1)$	$m_{\ell\ell}$	$m_{\ell\ell}$	
$p_{\rm T}(E_{\rm T}^{\rm miss})$	$\Delta R(\ell, \ell)$		
$\phi(E_{\rm T}^{\rm miss})$			
	WH, $W \to e v_e$, $H \to \tau_e \tau_{had}$	WH, $W \to e(\mu) v_{e(\mu)}, H \to \tau_{\mu(e)} \tau_{had}$	WH, $W \to \mu \nu_{\mu}, H \to \tau_{\mu} \tau_{had}$
	$p_{\mathrm{T}}(\ell_{\tau})$	$p_{\rm T}(\ell_{\tau})$	$p_{\mathrm{T}}(\ell_{\tau})$
	$\eta(\ell_{\tau})$	$\eta(\ell_{\tau})$	$\eta(\ell_{\tau})$
	$\phi(\ell_{ au})$	$\phi(\ell_{\tau})$	$\phi(\ell_{\tau})$
	$\Delta \eta(\ell, \ell_{\tau})$	$\Delta \eta(\ell, \ell_{\tau})$	$\Delta \eta(\ell, \ell_{\tau})$
	jet width(τ_1)	jet width(τ_1)	jet width(τ_1)
	$p_{\mathrm{T}}(H)$	$m(au_1, \ell_{ au})$	$\Delta R(\ell, \ell_{\tau})$
	$m(au_1, \ell_{ au})$	$\Delta R(\ell,\ell_{ au})$	$m(\tau_1, l_{\tau})$
	$\Delta \eta(\tau_1, \ell_{\tau})$	$\Delta \eta(\tau_1, \ell_{\tau})$	$\Delta \eta(au_1, \ell_{ au})$
	$\Delta \phi(l_1, \ell_{\tau})$	$\sum p_{\rm T}(\text{all visible})$	$\Delta R(\tau_1, \ell_{\tau})$
	$\Delta_{\phi}(\tau_1, E_{\rm T}^{\rm miss})$	$\Delta \phi(au_1, E_{\mathrm{T}}^{\mathrm{miss}})$	$\sum p_{\rm T}(\text{all visible})$
	$\Delta R(\ell, \ell_{\tau})$		$\Delta \phi(\ell_1,\ell_{ au})$

Source of uncertainty	$\delta \mu / \mu_{\rm VH}^{\tau \tau}$ [%]
Hadronic τ -lepton decay	9
Simulated background sample size	9
Misidentified jets	4
Jet and $E_{\rm T}^{\rm miss}$	4
Theoretical uncertainty in signal	4
Theoretical uncertainty in top-quark, VV and VVV processes	4
Electrons and muons	2
Luminosity	1
Flavour tagging	< 1
Total systematic uncertainty	16
Total statistical uncertainty	24
Total	30

Uncertainty breakdown

NN variables

H($\tau\tau$) STXS

	Variable	VBF	ttH multiclass	Combined		I •1		0.93	+0.12 -0.11 (+0.07 -0.06	+0.10 -0.09			
Jet properties	Invariant mass of the two leading jets $p_{\rm T}(jj)$ Product of η of the two leading jets Sub-leading jet $p_{\rm T}$ η of the 5 leading jets Scalar sum of all jets $p_{\rm T}$ Scalar sum of all <i>b</i> -tagged jets $p_{\rm T}$ Best <i>W</i> -candidate dijet invariant mass Best <i>t</i> -quark-candidate three-jet invariant mass	• • •	•	VBF inclusive	0 e	1	2	3 sub-lead $m_{jj} > \frac{1}{\eta}$	$\begin{array}{c} 4\\ (\mathfrak{c}\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$p_{\mathrm{T}} > 3$ $p_{\mathrm{T}} > 3$ $j_{1} > 1$	$\frac{5}{30 \text{ GeV}}$	6 3) SM		
Angular distances	$\begin{array}{l} \Delta\phi \text{ between the two leading jets} \\ \Delta\eta \text{ between the two leading jets} \\ \text{Minimum } \Delta R \text{ between two jets} \\ \text{Minimum } \Delta R \text{ between a } b\text{-tagged jet and a } \tau_{\text{had-vis}} \\ \Delta\eta(\tau,\tau) \\ \Delta R(\tau,\tau) \end{array}$	•	•	VH inclusive	e lepton o	centrality:	visib	le decay 60 GeV sub-leac	product $V < m_{jj}$ ling jet	< 120 $p_{\rm T} > 3$	he $ au$ lep) GeV 30 GeV	tons b	etween VBF j	ets
τ prop.	$\begin{array}{l} p_{\rm T}(\tau\tau) \\ {\rm Sub-leading} \ \tau \ p_{\rm T} \\ {\rm Leading} \ \tau \ \eta \end{array}$		•	${ m tt}(0\ell)H o au_{ m had} au_{ m had}$	1		# or	of jets ≩ # of jets	≥ 6 and ≥ 5 and	# of <i>l</i> d # of	b -jets $\geq b$ -jets \geq	$1 \ge 2$		
H cand. plus jets system $\vec{E}_{\mathrm{T}}^{\mathrm{miss}}$	$p_{\rm T}(Hjj)$ Missing transverse momentum $E_{\rm T}^{\rm miss}$ Smallest $\Delta \phi$ (τ , $\vec{E}_{\rm T}^{\rm miss}$)	•	•	Boost inclusive	e			No No $p_{\rm T}$	t VBF i ot VH ir (H) > 1	nclusiv Iclusiv 100 Ge	ve re V			

H→ττ √s = 13 TeV, 140 fb⁻¹

+0.32 -0.27

+0.17 -0.15

0.91 ^{+0.63} _0.60

> +1.01 -0.92

0.94

0.93

0.77

p-value = 99%

Tot. (Stat. Syst.)

+0.28)

+0.12 -0.10)

+0.35 -0.33)

+0.52 -0.50)

(+0.15 -0.15

(+0.12 -0.11

(+0.53 -0.51

(+0.87 -0.77

ATLAS Preliminary

H

•

-Stat.

- Tot.

ggH

VBF

VH

ttH

Η(γγ)

	Photons	Source	Uncertainty [%]
Leading (sub-leading	$p^{\gamma} = p^{\gamma}/m = > 0.35(0.25)$	Statistical uncertainty	14.0
Decudoranidity	$p_{\rm T} = p_{\rm T}/m_{\gamma\gamma} > 0.35(0.23)$	Systematic uncertainty	10.3
Iselation	$ \eta < 2.47$ and outside $1.57 < \eta < 1.52$	Background modelling (spurious signal)	6.0
Isolation	$E_{\rm T}^{20}/E_{\rm T}^{2} < 0.05$	Photon trigger and selection efficiency	5.8
	Di-photon system	Photon energy scale & resolution	5.5
Mass window	105 GeV < m < 160 GeV	Luminosity	2.2
	$100 \text{ GeV} \times m_{\gamma\gamma} \times 100 \text{ GeV}$	Pile-up modelling	1.2
		Higgs boson mass	0.1

Fiducial selection

otal	17.4	
Theoretical (signal) modelling	<0.1	
Higgs boson mass	0.1	
r ne-up moderning	1.2	

Uncertainty breakdown

Total

H(4ℓ)

Source	Uncertainty [%]
Statistical uncertainty	25.1
Systematic uncertainty	7.9
Electron uncertainties	6.3
Muon uncertainties	3.8
Luminosity	2.2
ZZ^* theoretical uncertainties	0.7
Reducible background estimation	0.6
Other uncertainties	<1.0
Total	26.4

Uncertaint y breakdown

Leptons		
Muons	$p_{\rm T} > 5$ GeV, $ \eta < 2.5$	
Electrons	$E_{\rm T} > 7 {\rm GeV}, \eta < 2.47$	
Lepton selection and pairing		
Lepton kinematics	$p_{\rm T} > 20, 15, 10 {\rm GeV}$	
Leading pair (m_{12})	SFOC lepton pair with smallest $ m_Z - m_{\ell\ell} $	
Subleading pair (m_{34})	remaining SFOC lepton pair with smallest $ m_Z - m_{\ell\ell} $	
Event selection (at most one Higgs boson candidate per channel)		
Mass requirements	50 GeV < m_{12} < 106 GeV and $m_{\text{threshold}}$ < m_{34} < 115 GeV	
Lepton separation	$\Delta R(\ell_i, \ell_j) > 0.1$	
J/ψ veto	$m(\ell_i, \ell_j) > 5$ GeV for all SFOC lepton pairs	
Impact parameter	$ d_0 /\sigma(d_0) < 5$ (3) for electrons (muons)	
Mass window	105 GeV $< m_{4\ell} < 160$ GeV	
Vertex selection	$\chi^2/N_{\rm dof} < 6$ (9) for 4 μ (other channels)	
If extra lepton with $p_{\rm T} > 12$ GeV	quadruplet with largest ME value	

Detector-level selection

Leptons		
Leptons	$p_{\rm T} > 5 {\rm GeV}, \eta < 2.7$	
Lepton selection and pairing		
Lepton kinematics	$p_{\rm T} > 20, 15, 10 {\rm GeV}$	
Leading pair (m_{12})	SFOC lepton pair with smallest $ m_Z - m_{\ell\ell} $	
Subleading pair (m_{34})	remaining SFOC lepton pair with smallest $ m_Z - m_{\ell\ell} $	
Event selection (at most one quadruplet per event)		
Mass requirements	50 GeV < m_{12} < 106 GeV and 12 GeV < m_{34} < 115 GeV	
Lepton separation	$\Delta R(\ell_i, \ell_j) > 0.1$	
J/ψ veto	$m(\ell_i, \ell_j) > 5$ GeV for all SFOC lepton pairs	
Mass window	105 GeV < $m_{4\ell}$ < 160 GeV	
If extra lepton with $p_{\rm T} > 12$ GeV	quadruplet with largest matrix element value	

Fiducial selection