Measurements of Higgs boson mass, width, and Spin/CP with the ATLAS detector

Davide Mungo, on behalf of the ATLAS Collaboration

University of Toronto

11 June 2024

INTRODUCTION

- LHC experiments discovered Higgs boson in 2012, very rich phenomenology now explored
- $m_{\rm H}$ is a **fundamental parameter** of the SM \rightarrow to be measured experimentally
 - Higgs width and coupling are predicted in the SM once is known m_H
- Higgs CP-even scalar with $J^{CP} = 0^{++} \Rightarrow$ CP-odd couplings indicates BSM phenomena
- Higgs boson properties are one of our most promising windows into new physics ⇒ increase precision, perform combinations and interpretations!

Higgs boson mass

$m_{ m H}$ measurement in $H ightarrow ZZ^* ightarrow 4\ell$ analysis

Рнуз. Lett. В 843 (2023) 137880

- Analysis in 4 exclusive regions
- DNN discriminates signal from background
- Quantile regression NN describes per-event m_{4ℓ} resolution
- Signal PDF modelled as a function of σ_i , $D_{NN}, m_{4\ell}$

- Improved muon momentum-scale calibration
 - 20% better wrt latest Run 2 results
- Results statistically limited ⇒ room for improvement in Run 3

Combined Run 1 + Run 2 result

$$m_H = 124.94 \pm 0.18 \text{ GeV}$$

= 124.94 ± 0.17 (stat.) ± 0.03 (syst.) GeV

- Model the signal and smoothly falling background with analytical functions
- Separate events in 14 mutually exclusive categories based on photons kinematic
 - Minimizing the total expected uncertainty on $m_H \Rightarrow 6\%$ improvement wrt partial Run 2 results
- m_H from a maximum likelihood fit on the $m_{\gamma\gamma}$ distributions simultaneously in all categories

Worked hard to reduce the energy scale uncertainties and understand the detector better

- Improved material modelling in front of calorimeter (x3 better)
- Improved description of on-detector electronics non-linearity (x2 better)
- Improved electron-to-photon scale extrapolation (x3 better)
- Improved layer intercalibration (50% better)
- $E_{\rm T}$ dependent systematics constrained by measured $Z \rightarrow ee$ scale factors (linearity fit)

Reaching a precision of 0.11%: systematic uncertainties smaller than statistical ones!

- Inclusion of $gg \rightarrow H \rightarrow \gamma\gamma$ and $gg \rightarrow \gamma\gamma$ interference as systematic
- Uncertainty due to PES decreased by a factor of 4 (320 MeV → 90 MeV) ⇒ below statistical uncertainty

Source	Impact $[MeV]$
Photon energy scale	83
$Z \to e^+ e^-$ calibration	59
$E_{\rm T}$ -dependent electron energy scale	44
$e^{\pm} \rightarrow \gamma$ extrapolation	30
Conversion modelling	24
Signal–background interference	26
Resolution	15
Background model	14
Selection of the diphoton production vertex	5
Signal model	1
Total	90

_

Current most precise measurement of *m_H* reaching a sub-permil precision (0.09%)
 Systematic uncertainties dominated by *H* → γγ channel uncertainties, but room for improvements in Run 3

D. MUNGO (UNIVERSITY OF TORONTO)

Higgs boson width

WIDTH MEASUREMENT

SM predicts the Higgs boson width of $\Gamma_{\rm H}=4.1\,\text{MeV}\rightarrow\text{too}$ small for direct on-shell measurement!

- Interesting because BSM contributions could bring a huge enhancement
- \blacksquare Unfortunately Γ_{H} intrinsically interwined with couplings

Two possible solutions

- On-shell $\sigma_{on} \sim \frac{g_1^2 g_1^2}{m_H^2 \Gamma^2}$ fully degenerate with couplings
 - needs strong assumptions on κ-modifiers to extract B_i (results in Rui's presentation)
- Infer $\Gamma_{\rm H}$ from ratio of off-shell cross section $\sigma_{off} \sim \frac{g_i^2 g_f^2}{(s-m_H)^2}$ to on-shell one Assuming $(g_i^2 g_f^2) = (g_i^2 g_f^2) g_i^2$
 - Assuming (g_i²g_f²)_{on} = (g_i²g_f²)_{off}
 Indirect measurement performed in the H^{*} → ZZ decay channel ⇒ need good understanding of interfering background

tex

Off-shell width measurement in ${\cal H}^* o ZZ$

4ℓ channel

- $H \rightarrow 4\ell$ events with $m_{4\ell} > 220 \,\text{GeV}$
- Use multi-class neural network (NN) to enhance signal sensitivity (S vs B vs not-interfering B) ⇒ 3 different SRs
 - ▶ EWK SR, one jet SR and ggF

$2\ell 2\nu$ channel

- Require 2 isolated leptons and large $E_{\rm T}^{\rm miss}$
- $m_{\rm T}^{ZZ}$ as discriminating variable
- 3 SRs similar to 4ℓ analysis

Width measurement in $H^* \rightarrow ZZ$ and combination Phys. Lett. B 846 (2023) 138223

- Simultaneously fit signal strength and background normalization factors in all signal regions and control regions
- Direct measurement of off-shell signal strength

 $\mu_{\text{off-shell}} = 1.1 \stackrel{+0.7}{_{-0.6}}$ with significance off-shell production $3.3(2.2)\sigma$

• Combination with on-shell $H \to ZZ^* \to 4\ell$ measurement

 $\Gamma_{\rm H} = 4.5\,^{+3.3}_{-2.5}$ and $0.5(0.1) < \Gamma_{\rm H} < 10.5(10.9) \text{MeV}$ @95% CL

Unfortunately all results compatible with SM

Higgs boson spin/CP

CP-odd Higgs boson couplings to other particles can be described by adding corresponding terms to the SM Lagrangian

Coupling to **Bosons**

Parametrized with SMEFT operators $c_{H\tilde{B}}, c_{H\tilde{W}B}, c_{H\tilde{W}}$

$$\mathcal{M} = \mathcal{M}_{SM} + \tilde{d} \cdot \mathcal{M}_{BSM}$$
 with $\tilde{d} = \tilde{d}(c_{H\tilde{B}}, c_{H\tilde{W}B}, c_{H\tilde{W}})$

Define Optimal Observable, asymmetric if CP-odd contributions are present

$$\mathcal{OO} = rac{2 \mathrm{Re}(\mathcal{M}_{SM}^* \mathcal{M}_{BSM})}{\left|\mathcal{M}_{SM}
ight|^2}$$

Coupling to Fermions

- Parametrized by a mixing angle α between CP-even and CP-odd components
 - Pure CP-even has $\alpha = 0$, while pure CP-odd has $\alpha = 90$

$$\mathcal{L}_{HFF} = -\frac{m_F}{v} \kappa_F (\cos \alpha \bar{\psi} \psi + \sin \alpha \bar{\psi} i \gamma_5 \psi) H$$

Plethora of measurements already available by ATLAS

- H-boson coupling: VBF $H \rightarrow \gamma \gamma$, VBF $H \rightarrow \tau \tau$
- H-fermion coupling: $ttH \rightarrow \gamma\gamma$, (t)tH $\rightarrow b\bar{b}$

I will go through only the latest results

• H-boson: $H \rightarrow WW^*$ differential analysis and VBF $H \rightarrow 4\ell$ CP analysis

CP measurement in $H \rightarrow WW^*$ differential

Interpret differential $H \rightarrow WW^*$ analysis for CP measurement

- Unfolding multiple observables simultaneously and interpret with EFT operators
- ΔΦ_{jj} in VBF channel being particularly sensitive to CP-odd contributions
- Analysis designed around 2 BDTs to enhance S/B ratio: selecting VBF and reject top+VV

CP measurement in $H ightarrow 4\ell$

Search for CP violation both in production and decay

ATLAS HIGGS BOSON PROPERTIES

17/20

- Maximum-likelihood fit performed for CP-odd coupling parameters
- Also constrain on coupling parameters obtained scanning individually and in 2D
- No deviation from SM expectation observed

Operator	Structure	Structure Coupling			$\begin{array}{c} \textbf{ATLAS} \\ H \rightarrow ZZ^{\star} \rightarrow 4I \end{array}$			Expected: Stat+Sys — — Observed: Stat+Sys Deserved: Stat-Only		
	Warsaw Basis			√s = 13 TeV, SMEFT CP-o	, 139 fb ⁻¹ dd couplir	igs				
$O_{\Phi ilde W}$	$\Phi^{\dagger}\Phi ilde{W}^{I}_{\mu u}W^{\mu u I}$	$c_{H\widetilde{W}}$						Best Fit	95% CL	
$O_{\Phi \tilde{W} B}$	$\Phi^\dagger au^I \Phi ilde W^I_{\mu u} B^{\mu u}$	$c_{H\widetilde{W}B}$	с _{нё} с	E				-0.078	[-0.61, 0.54]	
$O_{\Phi ilde{B}}$	$\Phi^{\dagger}\Phi ilde{B}_{\mu u}B^{\mu u}$	$c_{H\widetilde{B}}$	нwв С _{НŴ}		-	-		0.6	[-0.81, 1.54]	
	Higgs Basis		- đ		E-=-3		× 10	-0.003	[-0.026, 0.025	
$O_{hZ\tilde{Z}}$	$h Z_{\mu u} \tilde{Z}^{\mu u}$	\widetilde{c}_{zz}	- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			E		0.78	[-1.2, 1.75]	
$O_{hZ\tilde{A}}$	$h Z_{\mu u} \tilde{A}^{\mu u}$	$\widetilde{c}_{z\gamma}$	<i>c</i> _{zγ} ~	E	-			0.083	[-0.84, 0.83]	
$O_{hA ilde{A}}$	$hA_{\mu u}\tilde{A}^{\mu u}$	$\widetilde{c}_{\gamma\gamma}$	c _{yy}	-0.5	0	0.5	1	-0.0083	[-0.99, 0.93]	
			-	Parameter value						

- CP coupling properties are probed both via boson and fermion interactions
- CP measurements can be performed with dedicated analysis or re-interpretation of available ones
 - EFT interpretations of differential and STXS/coupling analyses
- Unfortunately no signs of CP-odd contributions in the interaction so far

Higgs-Bosons coupling CP summary

- Impressive progress made in measuring the Higgs boson properties with Run 2 dataset
- Huge effort in improving detector understanding from precision analyses like m_H
 - Greatly beneficial for the whole ATLAS collaboration!
- Higgs boson mass known with 0.09% uncertainty, combining golden channels and Run 1 results
- \blacksquare Higgs boson width measurements around SM expectation $\Gamma_{\rm H} = 4.5 \, {}^{+3.3}_{-2.5}$
- No signs of Higgs CP-odd interactions measured so far

Nonetheless, exciting time ahead of us with Run 3 data taking in full swing

- Already collected 100 fb⁻¹ of data, expect to double the Run 2 luminosity!
- New triggers and new analysis technique will be able to boost even more our sensitivity!

Thank you