

Combined Higgs boson measurements and interpretations at ATLAS

Rui Zhang

University of Wisconsin-Madison

on behalf of the ATLAS Collaboration

Conferences on Supersymmetry and Unification of Fundamental Interactions (SUSY) 10-14 June 2024

Introduction

- ~ 9 million Higgs bosons in ATLAS Run 2 dataset
 - ATLAS has launched extensive measurement programs to study the Higgs boson

Decay mode	Targeted production processes	\mathcal{L} [fb ⁻¹]
$H \to \gamma \gamma$	ggF, VBF, WH, ZH, ttH, tH	139
$H \rightarrow ZZ$	ggF, VBF, $WH + ZH$, $t\bar{t}H + tH$	139
	$t\bar{t}H + tH$ (multilepton)	36.1
$H \rightarrow WW$	ggF, VBF	139
	WH, ZH	36.1
	$t\overline{t}H + tH$ (multilepton)	36.1
$H \rightarrow Z\gamma$	inclusive	139
$H \rightarrow b \bar{b}$	WH, ZH	139
	VBF	126
	$t\overline{t}H + tH$	139
	inclusive	139
$H \rightarrow \tau \tau$	ggF, VBF, $WH + ZH$, $t\bar{t}H + tH$	139
	$t\bar{t}H + tH$ (multilepton)	36.1
$H \rightarrow \mu \mu$	$ggF + t\bar{t}H + tH$, VBF + WH + ZH	139
$H \rightarrow c \bar{c}$	WH + ZH	139
$H \rightarrow \text{invisible}$	VBF	139
	ZH	139

- Best sensitivity can be achieved by combining individual measurements
 - Latest ATLAS Higgs combination: <u>Nature</u>
 <u>607, 52 (2022)</u>
 - Measurement using H→γγ+4ℓ: JHEP 05 (2023) 028
- Any deviations from the predicted properties by the SM are a smoking gun for New Physics!
 - Interpretation of ATLAS Higgs combination under effective field theory and BSM models: <u>arXiv:2402.05742</u>
- HH combination on <u>Thursday</u>

Rui Zhang

The global Higgs signal strength

- Global signal strength measured with respect to the SM prediction $\mu = (\sigma/\sigma^{SM}) \times (B/B^{SM})$
 - Production process (σ) and decay mode (B) not distinguished
 - Assume all channels scale the same
- p-value for the SM Higgs is 39%,
- Systematic uncertainty reduced by 2x from Run 1 ATLAS+CMS result

 $\mu = 1.05 \pm 0.06 = 1.05 \pm 0.03$ (stat.) ± 0.03 (exp.) ± 0.04 (sig. th.) ± 0.02 (bkg. th.)

Per production and decay mode measurement

- All major Higgs productions observed:
 - ggF (VBF) precision is 7% (12%)
 - WH (ZH) significance is 5.8σ (5.0σ)
 - ttH + tH significance is 6.4σ

- Gauge and 3rd gen. Yukawa observed:
 - B(bb) precision better than 15% (7σ significance)
 - *WW* / *ττ* / *ZZ* / *γγ* precision 10-12%
 - $B(\mu\mu)$ and $B(Z\gamma)$ 2.0 σ and 2.3 σ significance

When measuring production processes assume that decays are SM-like and vice-versa

Production and decay simultaneously measurement

- Production modes and branching ratios measured also simultaneously
- Already down to 10% precision in a few individual ggF channels
- Many channels still dominated by the statistical uncertainty room for big improvements in Run 3!

Nature 607, 52 (2022)

к framework

SUSY 2024

- Used to determine the Higgs coupling to individual particle p (affecting both production σ and decay Γ)
 - Modified for the total Higgs width: $\kappa_H = \kappa_H(\kappa_b, \kappa_W, \kappa_\tau, \kappa_Z, \kappa_c, \kappa_s, \kappa_\mu, B_{invis.}, B_{und.})$
- Three models with progressively fewer assumptions studied:

Rui Zhang

- 1) Single modifier for vector bosons and single modifier for fermion couplings
- 2) Coupling modifiers for W, Z, t, b, c, τ , μ treated independently, loop processes resolved

Higgs combination and interpretation

 $\begin{aligned} \kappa_p^2 &= \sigma_p / \sigma_p^{\rm SM} \\ \kappa_p^2 &= \Gamma_p / \Gamma_p^{\rm SM} \end{aligned}$

6

Nature 607, 52 (2022) Simplified template cross sections (STXS) framework

• Signal cross sections measured in specific kinematic phase spaces.

SUSY 2024

Rui Zhang

Differential cross section in H to yy+4*l*

- Higgs production cross sections measured also in finer bins and variables beyond STXS
 - Combined $H \rightarrow \gamma \gamma$ and $H \rightarrow 4\ell$ production cross section measurement

Rui Zhang

Interpretation within SMEFT with STXS

 SMEFT: extension of SM by adding higher-dimensional operators built upon SM fields
 N_{d=6}
 N_{d=8}

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{i}^{N_{d=6}} \frac{c_i}{\Lambda^2} O_i^{(6)} + \sum_{i}^{N_{d=8}} \frac{b_j}{\Lambda^4} O_j^{(8)} + \dots$$

- Warsaw basis used: complete set of d=6 operators, assuming Λ = 1 TeV
- "Top" flavour scheme:
 - First two generation quarks treated similarly
 - All lepton generations separately
 - 204 CP-even operators, 50 related to Higgs measurement considered in this analysis

Wilson coefficient	Operator	Wilson coefficient	Operator
c_H	$(H^{\dagger}H)^3$	$c_{Oq}^{(1,1)}$	$(\bar{Q}\gamma_{\mu}Q)(\bar{q}\gamma^{\mu}q)$
$c_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$	$c_{Oa}^{(1,8)}$	$(\bar{Q}T^a\gamma_\mu Q)(\bar{q}T^a\gamma^\mu q)$
c_G	$f^{abc}G^{a\nu}_{\mu}G^{b ho}_{\nu}G^{c\mu}_{ ho}$	$c_{Oa}^{(3,1)}$	$(\bar{Q}\sigma^i\gamma_\mu Q)(\bar{q}\sigma^i\gamma^\mu q)$
c_W	$\epsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$c_{Oa}^{(3,8)}$	$(\bar{Q}\sigma^i T^a \gamma_\mu Q)(\bar{q}\sigma^i T^a \gamma^\mu q)$
C _{HDD}	$\begin{pmatrix} H^{\dagger}D^{\mu}H \end{pmatrix} \begin{pmatrix} H^{\dagger}D_{\mu}H \end{pmatrix}$	$C_{aa}^{(3,1)}$	$(\bar{q}\sigma^i\gamma_\mu q)(\bar{q}\sigma^i\gamma^\mu q)$
CHG	$H^{\dagger}HBB^{\mu\nu}$	$c_{tu}^{(1)}$	$(\bar{t}\gamma_{\mu}t)(\bar{u}\gamma^{\mu}u)$
CHW	$H^{\dagger}HW^{I}W^{I\mu\nu}$	$c_{t\mu}^{(8)}$	$(\bar{t}T^a\gamma_\mu t)(\bar{u}T^a\gamma^\mu u)$
C _{HWB}	$H^{\dagger}\tau^{I}HW^{I}_{\mu\nu}B^{\mu\nu}$	$c_{td}^{(1)}$	$(\bar{t}\gamma_{\mu}t)(\bar{d}\gamma^{\mu}d)$
C ⁽¹⁾	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overline{l}_{1}\gamma^{\mu}l_{1})$	$c_{td}^{(8)}$	$(\bar{t}T^a\gamma_\mu t)(\bar{d}T^a\gamma^\mu d)$
$c_{H1,11}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\overline{l}_{2}\gamma^{\mu}l_{2})$	$c_{Qu}^{(1)}$	$(\bar{Q}\gamma_{\mu}Q)(\bar{u}\gamma^{\mu}u)$
$C_{HI33}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}_{3}\gamma^{\mu}l_{3})$	$c_{Qu}^{(8)}$	$(\bar{Q}T^a\gamma_\mu Q)(\bar{u}T^a\gamma^\mu u)$
$c_{HL11}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{1}\tau^{I}\gamma^{\mu}l_{1})$	$c_{Qd}^{(1)}$	$(\bar{Q}\gamma_{\mu}Q)(\bar{d}\gamma^{\mu}d)$
$c_{H1.22}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}_{2}\tau^{I}\gamma^{\mu}l_{2})$	$c_{Od}^{(8)}$	$(\bar{Q}T^a\gamma_\mu Q)(\bar{d}T^a\gamma^\mu d)$
$c_{Hl,33}^{(3)}$	$(H^\dagger i\overleftrightarrow{D}_\mu^I H)(\bar{l}_3\tau^I\gamma^\mu l_3)$	$c_{tq}^{(1)}$	$(\bar{q}\gamma_{\mu}q)(\bar{t}\gamma^{\mu}t)$
$c_{He,11}$	$(H^\dagger i \overleftrightarrow{D}_\mu H) (\bar{e}_1 \gamma^\mu e_1)$	$c_{tq}^{(8)}$	$(\bar{q}T^a\gamma_\mu q)(\bar{t}T^a\gamma^\mu t)$
$c_{He,22}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{2}\gamma^{\mu}e_{2})$	СеН.22	$(H^{\dagger}H)(\bar{l}_2e_2H)$
<i>c_{He,33}</i>	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}_{3}\gamma^{\mu}e_{3})$	СеН,33	$(H^{\dagger}H)(ar{l}_{3}e_{3}H)$
$c_{Hq}^{(1)}$	$(H^{\dagger}iD_{\mu}H)(\bar{q}\gamma^{\mu}q)$	c_{uH}	$(H^{\dagger}H)(\bar{q}Y_{u}^{\dagger}u\widetilde{H})$
$c_{Hq}^{(3)}$	$(H^{\dagger}iD^{I}_{\mu}H)(\bar{q}\tau^{I}\gamma^{\mu}q)$	c_{tH}	$(H^{\dagger}H)(ar{Q}\widetilde{H}t)$
c_{Hu}	$(H^{\dagger}i D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}u_{r})$	c_{bH}	$(H^{\dagger}H)(\bar{Q}Hb)$
c_{Hd}	$(H^{\dagger}i D_{\mu}H)(d_{p}\gamma^{\mu}d_{r})$	c_{tG}	$(\bar{Q}\sigma^{\mu\nu}T^At)\widetilde{H}G^A_{\mu\nu}$
CHQ c ⁽³⁾	$(H^{\dagger}; \overleftrightarrow{D}_{\mu}H)(Q\gamma^{\mu}Q)$	C_{tW}	$(\bar{Q}\sigma^{\mu\nu}t)\tau^I \widetilde{H} W^I_{\mu\nu}$
CHQ	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(QT^{*}\gamma^{\mu}Q)$ $(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{t}\gamma^{\mu}t)$	c_{tB}	$(\bar{Q}\sigma^{\mu\nu}t)\widetilde{H}B_{\mu\nu}$
C _{Hb}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{b}\gamma^{\mu}b)$	$c_{ll,1221}$	$(\bar{l}_1\gamma_\mu l_2)(\bar{l}_2\gamma^\mu l_1)$

arXiv:2402.05742

 $\frac{\sigma_{\text{int}}^{i,k'}}{\sigma_{\text{SM}}^{i,k'}} = \sum_{j} A_{j}^{\sigma_{i,k'}} c_{j} \qquad \qquad \frac{\sigma_{\text{BSM}}^{i,k'}}{\sigma_{\text{SM}}^{i,k'}} = \sum_{j,l \ge j} B_{jl}^{\sigma_{i,k'}} c_{j} c_{l}$

 $\frac{\Gamma_{\text{int}}^{H \to X}}{\Gamma_{\text{SM}}^{H \to X}} = \sum_{j} A_{j}^{\Gamma^{H \to X}} c_{j} \qquad \frac{\Gamma_{\text{BSM}}^{H \to X}}{\Gamma_{\text{SM}}^{H \to X}} = \sum_{j,l \ge j} B_{jl}^{\Gamma^{H \to X}} c_{j} c_{l}$

 $\frac{\Gamma_{\text{int}}^{H}}{\Gamma_{\text{SM}}^{H}} = \sum_{i} A_{j}^{\Gamma^{H}} c_{j} \qquad \frac{\Gamma_{\text{BSM}}^{H}}{\Gamma_{\text{SM}}^{H}} = \sum_{i,l>i} B_{jl}^{\Gamma^{H}} c_{j} c_{l},$

 $A_{j}^{\Gamma^{H}} = \frac{\sum_{X} \Gamma_{SM}^{H \to X} A_{j}^{\Gamma^{H \to X}}}{\sum_{i} \Gamma_{SM}^{H \to X}} \qquad \qquad B_{jl}^{\Gamma^{H}} = \frac{\sum_{X} \Gamma_{SM}^{H \to X} B_{jl}^{\Gamma^{H \to X}}}{\sum_{i} \Gamma_{SM}^{H \to X}}$

Parameterisation

$$(\sigma \times \mathcal{B})_{\text{SMEFT}}^{i,k',H \to X} = \sigma_{\text{SMEFT}}^{i,k'} \times \mathcal{B}_{\text{SMEFT}}^{H \to X} = \left(\sigma_{\text{SM}}^{i,k'} + \sigma_{\text{int}}^{i,k'} + \sigma_{\text{BSM}}^{i,k'}\right) \times \left(\frac{\Gamma_{\text{SM}}^{H \to X} + \Gamma_{\text{int}}^{H \to X} + \Gamma_{\text{BSM}}^{H \to X}}{\Gamma_{\text{SM}}^{H} + \Gamma_{\text{int}}^{H} + \Gamma_{\text{BSM}}^{H}}\right)$$

- Linear term: interference between dim-6 operators and SM
- Quadric term: pure BSM term, product of two dim-6 operators

linear model:
$$(\sigma \times \mathcal{B})^{i,k',H \to X}_{\text{SM},((N)N)NLO} \times \left(\frac{1 + \sum_{j} \left(A_{j}^{\sigma_{i,k'}} + A_{j}^{\Gamma^{H} \to X} \right) c_{j} + O(\Lambda^{-4})}{1 + \sum_{j} A_{j}^{\Gamma^{H}} c_{j} + O(\Lambda^{-4})} \right)$$

$$\text{Quadric model: } (\sigma \times \mathcal{B})_{\text{SM},((N)N)\text{NLO}}^{i,k',H \to X} \cdot \left(\frac{1 + \sum\limits_{j} \left(A_{j}^{\sigma_{i,k'}} + A_{j}^{\Gamma H \to X} \right) c_{j} + \sum\limits_{j,l} \left(A_{j}^{\sigma_{i,k'}} A_{l}^{\Gamma H \to X} \right) c_{j} c_{l} + \sum\limits_{j,l \ge j} \left(B_{jl}^{\sigma_{i,k'}} + B_{jl}^{\Gamma H \to X} \right) c_{j} c_{l} + O\left(\Lambda^{-6}\right) \right) \\ 1 + \sum\limits_{j} \left(A_{j}^{\Gamma H} \right) c_{j} + \sum\limits_{j,l \ge j} \left(B_{jl}^{\Gamma H} \right) c_{j} c_{l} + O\left(\Lambda^{-6}\right) \right)$$

Impact from the modified basis

- Impact of coefficients of the basis on the STXS regions
 - Linear model (filled histograms); Linear+quadric model (open histogram)
- Uncertainties on corresponding regions is shown in the top panel

arXiv:2402.05742

Reorganise coefficients

- Converting Warsaw basis coefficients to fit basis coefficients
 - 19 directions based on the principal component analysis and physics motivations
 - The rest directions are fixed to 0 in fitting

Constraints on SMEFT - linear model

SUSY 2024

Rui Zhang

Constraints on SMEFT - quadric model

- Most operators have more stringent constraints than linear models as the linear+quadric impact is larger than linear one
- Impact from quad term can be big in some operators due to double minima

SUSY 2024

Rui Zhang

Higgs combination and interpretation

14

BSM interpretation

- Interpreted under 4 benchmarks of 2HDM and 7 of MSSM + hMSSM
- Can also be done through the results of EFT which is a low-energy approximation of high energy scale UV-complete model
- A direct interpretation and EFT-based approach are compared and show reasonable agreement
 - The EFT-based approach has weaker constraint than direct interpretation in Type-I, due to the missing of dim-8 operators

Summary

- A detailed check of the SM prediction from the combination of the measurements in the κ and the STXS framework
 - All results are in excellent agreement with the SM prediction
- Results are interpreted under EFT & BSM
- The linear and linear+quadric model are used for the interpretation on STXS measurements
 - No significant deviation from SM is observed

Exciting future ahead with the upcoming Run 3 dataset!

Backup

Impact of rotated SMEFT operators on $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$

