

Exploring correlations between HEFT Higgs couplings κ_V and κ_{2V} via HH production at e^+e^- colliders

Juan Manuel Dávila Illán IFIC (Universitat de València, CSIC)

For more references, see <u>Eur.Phys.J.C 84 (2024) 5, 503</u>, in collaboration with D. Domenech, M. J. Herrero and R. A. Morales.

June 14, 2024 SUSY 2024 - IFT (Madrid)

Motivation

Since discovery of Higgs particle in 2012 \rightarrow big effort in exploring its properties.

Test of **BSM** Higgs physics at colliders: Anomalous Higgs couplings $\rightarrow \kappa$ -modifiers.

Juan Manuel Dávila Illán - IFIC (UV-CSIC)

Motivation

Since discovery of Higgs particle in 2012 \rightarrow big effort in exploring its properties.

Test of **BSM** Higgs physics at colliders: **Anomalous Higgs couplings** $\rightarrow \kappa$ -modifiers.

We focus in the **bosonic sector**, in particular the effective interactions of the Higgs to electroweak (EW) bosons, HVV and HHVV (V = W, Z):

Motivation

 * ATLAS <u>PRD 101, 012002</u> (2020)
 * ATLAS <u>CONF-2024-006</u>

Since discovery of **Higgs particle** in 2012 \rightarrow big effort in exploring its properties.

Test of **BSM** Higgs physics at colliders: **Anomalous Higgs couplings** $\rightarrow \kappa$ -modifiers.

We focus in the **bosonic sector**, in particular the effective interactions of the Higgs to electroweak (EW) bosons, HVV and HHVV (V = W, Z):

Effective Field Theories

Proper way to study anomalous couplings → Effective Field Theories.

Most popular ones:

- **Standard Model Effective Field Theory (SMEFT)**
- Higgs Effective Field Theory (HEFT, also called Electroweak Chiral Lagrangian, EChL)

Effective Field Theories

Proper way to study anomalous couplings → Effective Field Theories.

Most popular ones:

- **Standard Model Effective Field Theory (SMEFT)**
- Higgs Effective Field Theory (HEFT, also called Electroweak Chiral Lagrangian, EChL)

Here, we choose the **HEFT**, since the effective couplings of our interest are given by the leading order (**LO**) Wilson coefficients a and b, which are **independent** and identifiable with the κ -modifiers:

$$a = \kappa_V$$

→ In contrast to the SM and the SMEFT, H is introduced as a singlet, while the Goldstone Bosons (GBs) are introduced in a non-linear representation:

$$U = \exp\left(i\frac{\omega_i\tau_i}{v}\right) \Longrightarrow \begin{cases} \omega_i \to \text{GBs (i = 1, 2, 3)} \\ \tau_i \to \text{Pauli matrices} \end{cases}$$

→ In contrast to the SM and the SMEFT, H is introduced as a singlet, while the Goldstone Bosons (GBs) are introduced in a non-linear representation:

$$U = \exp\left(i\frac{\omega_i\tau_i}{v}\right) \Longrightarrow \begin{cases} \omega_i \to \text{GBs (i = 1, 2, 3)} \\ \tau_i \to \text{Pauli matrices} \end{cases}$$

→ It maintains the EW gauge symmetry $SU(2)_L \times U(1)_Y$ from the SM. The fermionic and QCD sectors will be considered to be SM-like throughout this work.

→ In contrast to the SM and the SMEFT, H is introduced as a singlet, while the Goldstone Bosons (GBs) are introduced in a non-linear representation:

$$U = \exp\left(i\frac{\omega_i au_i}{v}
ight)
ightarrow \begin{cases} \omega_i o \operatorname{GBs} (i=1, 2, 3) \\ au_i o \operatorname{Pauli matrices} \end{cases}$$

→ It maintains the EW gauge symmetry $SU(2)_L \times U(1)_Y$ from the SM. The fermionic and QCD sectors will be considered to be SM-like throughout this work.

→ Inspired in the QCD Chiral Lagrangian, follows the formalism of Chiral
 Perturbation Theory (ChPT): the effective operators are classified by their chiral
 dimension → The boson masses and the derivatives of U count as dimension 1.

Juan Manuel Dávila Illán

Relevant HEFT terms at LO

LO-HEFT Lagrangian:

$$\mathcal{L}_{\text{LO}}^{\text{HEFT}} = \frac{v^2}{4} \left(1 + 2\boldsymbol{a} \frac{H}{v} + \boldsymbol{b} \frac{H^2}{v^2} \right) \text{Tr}[D_{\mu}U^{\dagger}D^{\mu}U] + \frac{1}{2}\partial_{\mu}H\partial^{\mu}H - V(H)$$
$$- \frac{1}{2g^2}\text{Tr}[\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}] - \frac{1}{2g'^2}\text{Tr}[\hat{B}_{\mu\nu}\hat{B}^{\mu\nu}] + \mathcal{L}_{GF} + \mathcal{L}_{FP}$$
$$\bullet \quad \text{Potential:} \quad V(H) = \frac{1}{2}m_H^2H^2 + \kappa_3\lambda vH^3 + \kappa_4\frac{\lambda}{4}H^4 \quad (\text{Here, } \kappa_{3,4} = 1)$$

2

Chiral dimension

Relevant HEFT terms at LO

LO-HEFT Lagrangian:

2

Chiral dimension

$$\mathcal{L}_{\text{LO}}^{\text{HEFT}} = \frac{v^2}{4} \left(1 + 2\boldsymbol{a} \frac{H}{v} + \boldsymbol{b} \frac{H^2}{v^2} \right) \text{Tr}[D_{\mu}U^{\dagger}D^{\mu}U] + \frac{1}{2}\partial_{\mu}H\partial^{\mu}H - V(H)$$
$$- \frac{1}{2g^2}\text{Tr}[\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}] - \frac{1}{2g'^2}\text{Tr}[\hat{B}_{\mu\nu}\hat{B}^{\mu\nu}] + \mathcal{L}_{GF} + \mathcal{L}_{FP}$$

• Potential:
$$V(H) = \frac{1}{2}m_H^2 H^2 + \kappa_3 \lambda v H^3 + \kappa_4 \frac{\lambda}{4} H^4$$
 (Here, $\kappa_{3,4} = 1$)

In this work, we are only interested in the coefficients *a* and *b*, and correlations between deviations from their SM values: $\Delta a = 1 - a$ and $\Delta b = 1 - b$.

Juan Manuel Dávila Illán

Once a particular underlying UV theory is assumed to generate the low-energy theory, the Wilson coefficients from the EFT can be derived by a matching procedure at low energies. Thus, we can get different correlation hypothesis between Δa and Δb :

Once a particular underlying UV theory is assumed to generate the low-energy theory, the Wilson coefficients from the EFT can be derived by a matching procedure at low energies. Thus, we can get different correlation hypothesis between Δa and Δb :

→ MCHM, SILH model, SMEFT → $4 \Delta a = \Delta b$. [Agashe '04], [Contino '06], [Giudice '07], [Domenech '22]

Once a particular underlying UV theory is assumed to generate the low-energy theory, the Wilson coefficients from the EFT can be derived by a matching procedure at low energies. Thus, we can get different correlation hypothesis between Δa and Δb :

- → MCHM, SILH model, SMEFT → $4 \Delta a = \Delta b$. [Agashe '04], [Contino '06], [Giudice '07], [Domenech '22]
- → Dilaton models, Iso-singlet mixing models $\rightarrow a^2 = b \rightarrow 2 \Delta a = \Delta b$

Juan Manuel Dávila Illán

Goldberger '07],

[Englert '11], [Englert '23]

Once a particular underlying UV theory is assumed to generate the low-energy theory, the Wilson coefficients from the EFT can be derived by a matching procedure at low energies. Thus, we can get different correlation hypothesis between Δa and Δb :

- → MCHM, SILH model, SMEFT → $4 \Delta a = \Delta b$. [Agashe '04], [Contino '06], [Giudice '07], [Domenech '22]
- → Dilaton models, Iso-singlet mixing models $\rightarrow a^2 = b \rightarrow 2 \Delta a = \Delta b$

[Goldberger '07], [Englert '11], [Englert '23]

- → 2HDM^{*} → $-2 \Delta a = \Delta b$. [Arco '23]
 - * In the decoupling limit and within the region close to the alignment condition: $\cos(\alpha \beta) \ll 1$

Double Higgs Production via WBF

Sensitive process to *a* and *b* → Double Higgs Production via *WW* Vector Boson Fusion (**WBF**).

4 diagrams contribute to the amplitude:

The amplitude of the process is gauge invariant → we choose the **Unitary Gauge** (no internal GBs).

Juan Manuel Dávila Illán

WW → HH channel amplitudes at high energies

At high energies ($\sqrt{s} \gg m_H$, m_W), the dominant contribution comes from W_L . [Domenech '22]

$$\begin{aligned} \mathcal{A}_{C}^{L} &= b \frac{g^{2}}{4m_{W}^{2}} s + \mathcal{O}(s^{0}) \\ \mathcal{A}_{S}^{L} &= 0 + \mathcal{O}(s^{0}) \\ \mathcal{A}_{T}^{L} &= a^{2} \frac{g^{2}}{8m_{W}^{2}} (\cos \theta - 1) s + \mathcal{O}(s^{0}) \\ \mathcal{A}_{U}^{L} &= -a^{2} \frac{g^{2}}{8m_{W}^{2}} (\cos \theta + 1) s + \mathcal{O}(s^{0}) \end{aligned}$$

Juan Manuel Dávila Illán

Pseudorapidity $\eta_H = -\log(\tan(\theta/2))$

Pseudorapidity distributions of WW → HH

→ **BSM** distributions present a central maximum when $a^2 - b$ differs from 0.

→ Expect to have phenomenological consequences in the full process.

Juan Manuel Dávila Illán

HH production in e^+e^- colliders

- → Complete process that contains WW → HH in a collider.
- → Already studied at the LHC → limited sensitivity to b (hadron collider).
- → Alternative: e⁺e⁻ colliders. Here, we consider:
 - International Linear Collider (ILC) at 500 GeV and 1 TeV.
 - Compact Linear Collider (CLIC) at 3 TeV.
- → Simulation with MadGraph (MG5) to compute the cross section.

HH production in *e⁺e⁻* colliders

- → Complete process that contains WW → HH in a collider.
- → Already studied at the LHC → limited sensitivity to b (hadron collider).
- → Alternative: e⁺e⁻ colliders. Here, we consider:
 - International Linear Collider (ILC) at 500 GeV and 1 TeV.
 - Compact Linear Collider (CLIC) at 3 TeV.
- → Simulation with MadGraph (MG5) to compute the cross section.

→ Process of interest: $e^+e^- \rightarrow HH\nu_e\bar{\nu}_e$

Juan Manuel Dávila Illán

- → Bounds on *a* and *b* → Ensure
 perturbative unitarity.
- → Higher collider energy →
 higher sensitivity to *a* and *b*.
- → Minimum of the xsection close to $a^2 = b \rightarrow 2 \Delta a = \Delta b$

- → Bounds on *a* and *b* → Ensure
 perturbative unitarity.
- → Higher collider energy →
 higher sensitivity to *a* and *b*.
- → Minimum of the xsection close to $a^2 = b \rightarrow 2 \Delta a = \Delta b$

- → Bounds on *a* and *b* → Ensure
 perturbative unitarity.
- → Higher collider energy →
 higher sensitivity to *a* and *b*.
- → Minimum of the xsection close to $a^2 = b \rightarrow 2 \Delta a = \Delta b$

- → Higher cross sections are reached if the correlation between Δa and Δb follows a path approximately 'perpendicular' to the line $a^2 = b$.
- → From now on, focus on **3 TeV**.

Phenomenological consequences of correlations between HEFT LO parameters

→ How do different correlations between Δa and Δb affect kinematic variables?

Phenomenological consequences of correlations between HEFT LO parameters

- → How do different correlations between Δa and Δb affect kinematic variables?
- → We computed the differential cross section of the process with respect to:
 - The invariant mass of the *HH* pair.
 - The pseudorapidity of one of the final *H*.
 - The transverse momentum of one of the final *H*.

Phenomenological consequences of correlations between HEFT LO parameters

- → How do different correlations between Δa and Δb affect kinematic variables?
- → We computed the differential cross section of the process with respect to:
 - The invariant mass of the *HH* pair.
 - The pseudorapidity of one of the final *H*.
 - The transverse momentum of one of the final *H*.
- → A linear correlation between Δa and Δb is assumed: $\Delta b = C \Delta a$.

Phen. cons. of correlations between HEFT LO parameters: Invariant *HH* Mass

 $e^+e^- \to HH\nu_e\bar{\nu}_e$ at $\sqrt{s} = 3$ TeV

→ In general, going BSM distorts the distributions elevating the tails at high M_{HH}.

• Exception: $C = 2 \rightarrow$ close to $a^2 = b$.

Phen. cons. of correlations between HEFT LO parameters: Pseudorapidity

Peak at $\eta_H = 0$ in contrast to SM \rightarrow **high transversality**.

Phen. cons. of correlations between HEFT LO parameters: Transverse Momentum

The **tail at large** *p*_{*T*} is higher for most BSM distributions.

Accessibility to a and b in e^+e^- colliders

→ Higgs bosons are **unstable** → dominant decay channel: $H \to b\bar{b}$ →

→ Full process: $e^+e^- \to HH\nu_e\bar{\nu}_e \to b\bar{b}b\bar{b}\nu_e\bar{\nu}_e$

Accessibility to *a* and *b* in *e*⁺*e*⁻ colliders

→ Higgs bosons are **unstable** → dominant decay channel: $H \rightarrow b\bar{b}$ →

- → Full process: $e^+e^- \to HH\nu_e\bar{\nu}_e \to b\bar{b}b\bar{b}\nu_e\bar{\nu}_e$
- → The b-jets are defined at parton level and some energy will be missing through the neutrinos.
- → Minimal detection cuts: $p_T^b > 20 \text{ GeV}$, $|\eta^b| < 2$, $\Delta R_{bb} > 0.4$, $E_T > 20 \text{ GeV}$ [Gonzalez-Lopez '20], [Abramowicz '16]
- → *b*-tagging efficiency factor $\varepsilon_{h} = 0.8$. [Contino '13]
- → Expected luminosity for CLIC: 5 ab^{-1} .

Accessibility to a and b in e^+e^- colliders

→ Higgs bosons are **unstable** → dominant decay channel: $H \to b\bar{b} \implies H$

- → Full process: $e^+e^- \to HH\nu_e\bar{\nu}_e \to b\bar{b}b\bar{b}\nu_e\bar{\nu}_e$
- → The b-jets are defined at parton level and some energy will be missing through the neutrinos.
- → Minimal detection cuts: $p_T^b > 20 \text{ GeV}$, $|\eta^b| < 2$, $\Delta R_{bb} > 0.4$, $E_T > 20 \text{ GeV}$ [Gonzalez-Lopez '20], [Abramowicz '16]
- → *b*-tagging efficiency factor $\varepsilon_{h} = 0.8$. [Contino '13]
- → Expected luminosity for CLIC: 5 ab^{-1} .
- → **Background** not taken into account → additional cuts on M_{bb} .

Juan Manuel Dávila Illán

Accessibility to *a* and *b* in *e⁺e⁻* colliders

$$R = \frac{N_{BSM} - N_{SM}}{\sqrt{N_{SM}}}$$

- → R quantifies the sensitivity to departures from the SM.
- → Colored region → accessible region for R > 3.

Conclusions

- → In the region close to $a^2 = b$ it is very **difficult to test** both *a* and *b*, but correlation hypothesis for Δa versus Δb that point in a 'perpendicular' direction to the $a^2 = b$ line will reach **higher sensitivities** for small deviations with respect to the SM.
- → In general, BSM predictions show a high-transversality behaviour of the final Higgs bosons in comparison with the SM.
- → Most of the correlations $\Delta b = C \Delta a$ will be **testable** at **CLIC** (and potentially at **ILC**). One **exception**: C = 2, which is the closest to the line $a^2 = b$.
- → Access to these correlations will provide **interesting information** on the UV theory.

Thank you for your attention!!

Juan Manuel Dávila Illán

BACKUP

• Covariant Derivative:
$$D_{\mu}U = \partial_{\mu}U + i\hat{W}_{\mu}U - iU\hat{B}_{\mu}$$

• **EW gauge fields:**
$$\hat{W}_{\mu} = \frac{g}{2} W^{i}_{\mu} \tau^{i}$$
 $\hat{B}_{\mu} = \frac{g'}{2} B_{\mu} \tau^{3}$

Perturbative Unitarity Violation

Juan Manuel Dávila Illán

Angular distributions of $WW \rightarrow HH$ (Ex. $\Delta b = \Delta a/2$)

- At high energies, the **BSM** angular distributions present 2 minima and a plateau .
- Larger value of Δa and $\Delta b \rightarrow$ higher plateau.
- Linked to a dependence in the factor $(a^2 b)$ in the amplitude.

Juan Manuel Dávila Illán

Pseudorapidity distributions of WW → HH

Juan Manuel Dávila Illán

Phen. cons. of correlations between HEFT LO parameters: Invariant *HH* Mass

SUSY24

Juan Manuel Dávila Illán

26

Phen. cons. of correlations between HEFT LO parameters: Invariant *HH* Mass

Juan Manuel Dávila Illán

Phen. cons. of correlations between HEFT LO parameters: Pseudorapidity

Juan Manuel Dávila Illán

Phen. cons. of correlations between HEFT LO parameters: Pseudorapidity

Juan Manuel Dávila Illán

Phen. cons. of correlations between HEFT LO parameters: Transverse Momentum

Juan Manuel Dávila Illán

SUSY24

30

Phen. cons. of correlations between HEFT LO parameters: Transverse Momentum

Juan Manuel Dávila Illán

Feynman diagrams contributing to the full process

- Generated by MG5 in the unitary gauge.
- The mass of the electron is neglected.