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Vacuum stability: SM vs. Susy SKIT
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Vacuum stability analysis IT

Karlsruher Institut fir Technologie

Idea: In models with extended scalar sectors the EW vacuum might not correspond to the global
minimum of the potential.

— The EW vacuum is not stable
— If the EW vacuum is short-lived! a parameter point is unphysical

— Constraints on the parameter space of the model

Vacuum-stability constraints in the MSSM and the NMSSM

We improve the computation of vacuum decay rates using neural networks

Lin comparison to the age of the Universe
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Vacuum stability analysis A\K"

Step 1: Is the EW vacuum meta-stable?
— Determination of all stationary points of the scalar potential below the EW minimum.
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Vacuum stability analysis IT

Karlsruher Institut fir Technologie

Step 1: Is the EW vacuum meta-stable?
— Determine all stationary points of the scalar potential below the EW minimum.

Step 2: What is the lifetime of the EW vacuum?
— Compute the vacuum decay rates for each possible transition

[’
V — Ke_SE

[Coleman, 1977]

SEg: Euclidean bounce action
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Vacuum stability analysis IT

Step 1: Is the EW vacuum meta-stable?
— Determine all stationary points of the scalar potential below the EW minimum.

Step 2: What is the lifetime of the EW vacuum?
— Compute the vacuum decay rates for each possible transition

Step 3: Is the EW vacuum sufficiently long-lived?
— Compare the smallest inverse decay rate (lifetime) to the age of the universe

Sk <390 : Short-lived EW vacuum, unphysical
390 < Sg < 440 : Uncertain fate of the EW vacuum
Sp > 440 : Long-lived (meta-stable) EW vacuum, physical

[W. Hollik, G. Weiglein, J. Wittbrodt: 1812.04644]
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Homotopy continuation method XIT

ruher Institut fur Technol

Solutions of a system of polynomial equations can be found using homotopy continuation methods.

— Can be used to determine all stationary points F'(Z) = 0 of tree-level scalar potentials

H(Zt)=(1—t)-F(?)+t-§(2) =0, solutions of §(Z) = 0 are known.

0 t 1

[Kobayashi, Wynn, 1310.6515]

We use HOM4PS2 v.2: Polyhedral homotopy continuation [Lee, Li, Tsai, 2008]
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The bounce solution: 1 field A\KIT

The bounce solution is the key object describing the vacuum transition.

2¢ 3dp o -

? l < _
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qb) with p = r? — ¢?
Boundary conds.:

[C.L. Wainwright, 1109.4189]

In one dimensions this can be solved using the overshoot-undershoot method.
Shooting methods: [e.g. Stoer, Bulirsch, 1972]
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Bounce action: Sg =
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Bounce solution: Multi-field case A\‘(IT

Important obstacle in many dimensions is finding the correct tunneling path in field space.

Method 1: Straight path approximation
Compute the bounce action assuming that the true tunneling path is well approximated
by a straight path connecting the true and false minima.

Method 2: Path deformation algorithm
Iterative procedure that deforms the straight path into the correct path by minimizing
perpendicular forces along the path (cosmoTransitions).

Method 3: Using neural network (NN) to solve differential equations
Transform the problem of solving a system of differential equations into a minimization
problem. Then use NN to minimize the loss function.

Methods 2 and 3 now implemented into a new version of EVADE.

Many public codes: cosmoTransitions, AnyBubble, FindBounce, SimpleBounce, BSMPT-v.3, ...
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Neural-network method A\KIT

Bounce equations are a system of coupled differential equations: [Callan, Coleman, Curtis, 1977]
¢ 3dé o - 8, . i3y
dp? Sdn VeV =0 BC: = Qfalse d —_— =
dp*> ~ pdp sV(#) ¢p(0) = Pfaise AN 7|
p:

Loss function L for neural network with set of weights and biases {w, b}, simplest way:
Loss = “squared sum” of discretized diff. eqs. + squared BC
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Neural network: Trained to minimze £ (adam optimizer)

2
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p=0

[Piscopo, Spannowsky, Waite, 1902.05563]

-,

One neuron in input layer (p) and N = dim(¢) neurons in output layer
Depending on model 3 to 5 inner layers with 20 to 50 neurons each

CPU and GPU implementation (tensorflow, CUDA, XLA)

Thomas Biekotter SUSY 2024 at the IFT in Madrid 8 /19



Toy model: 2 singlet fields

N=2
Vi = O Nigh! + Aug? — mio}

=1
Straight-path approximation —
Path-deformation algorithm —

Neural-network approach —

Only the neural-network approach is able to
determine the correct tunneling path

| B B, By Ly
Neural network 107.24 107.26 107.28 0.0915\
Straight path 47.78  AT.57T 4737 \ 08215’
Path deformation || —15332 3060 21452 357,

Lye: quality measure (smaller is better)
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[TB, F. Campello, G. Weiglein, tbp]
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Toy model: 2 singlet fields IT
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4000 £ neural network
path deformation
3000 E —— straight path
< 2000 F E
1000 F E
0 E 1 N 1 1 E
0 1 2
Pi /
. . 7 £ -15
If £; = L(p;) > 0, the predicted solution ¢(p) ; 20
does not satisfy the bounce equations at p = p; ’ - e
— Neural network found correct solution [TB, F. Campello, G. Weiglein, tbp]
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Toy model: many singlet fields  2XIT
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Loss Bounce action Runtime (NN on GPU)
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[TB, F. Campello, G. Weiglein, tbp]
For sizeable number of fields only the neural network is able to determine the bounce solution
— suitable method to analyze vacuum stability in SUSY models
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The NMSSM SKIT
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NMSSM: Next-to Minimal Supersymmetric Standard Model: MSSM + singlet

Standard Model particles** Supersymmetric partners

OQuarks @ Leptons @ Gauge @ Higgs OSquarks O Sleptons O Gluino O Neutralinos
bosons @ Singlet Higgs O & charginos

[Slide from Christoph Borschenksy]
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Scalar potential of the NMSSM  XIT

...............................
Susy gives a recipe for constructing the scalar potential:

V=F+D+ Vi

Thomas Biekotter SUSY 2024 at the IFT in Madrid 13 /19



Scalar potential of the NMSSM  XIT
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Susy gives a recipe for constructing the scalar potential:

V=F+D+ Vg

F-term contributions from the Superpotential:
, 1 _ _ -
W= gf{Sd + )\SHU : H(l + :UI/QL : Hut[f + ybHd : QLZ)R + /,UTH(] . LLTR

F=Y10.W[, ¢e{hl,hi hG hy ir,br, 7.0, th by 7}
[0}
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Scalar potential of the NMSSM  2XIT

Susy gives a recipe for constructing the scalar potential:

V=F+D+ Vo

D-term contributions from the gauge structure:

D = Dy, +Dsv), + Dsv),
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Scalar potential of the NMSSM  XIT

Susy gives a recipe for constructing the scalar potential:
V=F+D+ Vg
Contributions from soft Susy breaking:

. . . . n 1 .
Vioft = mésTs —+ mf,“ hl b, + mf[d hhha + (AAsh,,, ~hg + gA,‘.,sd + h.c.)

+ mé&QlQL + migiliL + m%,s ltr|* + 7773)3 V;H|2 + m%a |7r|?

+ (ijALf}(DL “hy + ybAblN)}hd QL + Yr ArThha - Ly + h.(:.) ,
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Scalar potential of the NMSSM  XIT
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Susy gives a recipe for constructing the scalar potential:

V=F+ D+ Vi

Physical EW vacuum (the one we want to be in):

_ ((va+ ha +iaq)/V2 _ hat — (v i
Hd( ht c He= {4 h tia)va) 0 F = 0T he i)V

with v, vy, vs € R and 0% = vfl + vi = 2462 GeV?

BUT: V is a function in many (field) dimensions with many parameters

— In general there can be several local (dangerous) minima below the EW minimum
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M!*(7) benchmark scenario SKIT

Karlsruher Institut fiir Technologie
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[TB, F. Campello, G. Weiglein, tbp]
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M}!*(7) benchmark scenario
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Comparison: straight-path approximation — true tunneling path

stability stability
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[W. Hollik, G. Weiglein, J. Wittbrodt, 1812.04644] [TB. F. Campello, G. Weiglein, tbp]
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M!*(A) benchmark scenario K

Karlsruher Institut fiir Technologie
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M}!*(A) benchmark scenario

EVADE

Vevacious

Ar=Ap=A; [TeV]

_2 4
short-lived
—4 390 <B <440 m short-lived
= long-lived = long-lived
_g{ ®m stable m stable
—50 -25 00 25 50 50 -25 00 25 50

u[TeVv]

u[Tev]

[W. Hollik, G. Weiglein, J. Wittbrodt, 1812.04644]

Ain GeV
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EVADE v.2
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[TB. F. Campello, G. Weiglein, tbp]

EVADE v.2: attempts to find bounce with path-deformation algorithm (CosmoTransitions)

if this fails switch to neural-network approach

Thomas Biekétter
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Conclusions A\KIT

Analysis of vacuum is difficult but worth the effort
— constrains the way in which BSM theories might manifest themselves at colliders

Meta-stable EW vacua are in most cases sufficiently long-lived
— demanding a global EW minimum is too restrictive, especially in the NMSSM

New method for computing bounce solutions using neural networks

— Reliable determination of tunneling path for O(10 — 100) fields

— Can find the bounce solution in cases where the path-deformation algorithm fails
— Drawback: longer runtime of about 10 s for 10 fields and about 100 s for 50 fields

CPU and GPU implementation of neural-network method
in new version of EVADE
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A logo for EVADE

ChatGPT-4: “graphic design is my passion”

Thomas Biekotter

Her imple conceptual sketch of the logo for "EVADE"
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Benchmark scenarios A\KIT

BP | tans i Ma  miye X A A

M2 [0, 6O] 1000 [0,2000] 2000 2800 A=A A(X,, p tan j)
M2 (7) || [0,60] 1000 [0,2000] 350 2800 800  A(X, p,tan 3)
M (A) 20 [=5000,5000] 1500 2000 Xi(A,p,tanf3)  A-=A  [=6000,6000]

Table 2: Parameter values for the M} and M}*(7) scenarios as defined in Ref. [65] and the M}>(A)
scenario defined in Ref. [33]. The remaining MSSM parameters are set equally in all scenarios: mg, ;45 =
1500, M2 = 1000, M3 = 2500. In the first row, we also set A=A, = 4, = A, and A = X, + p/tan 3.
In the second row we use the same relations with the exception of A, = 800. In the third row, A is
varied and X is derived from the relation given above. In the NMSSM we additionally set A, = —100,
tee = pt and A = & = 0.1, such that the singlet vev vg varies according the relation shown in Eq. (35).
All dimensionful parameters are given in GeV.

Ref. [65]: [E. Bagnaschi et al., 1808.07542]
Ref. [33]: [W. Hollik, G. Weiglein, J. Wittbrodt, 1812.04644]
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