Automatizing the path from Lagrangian to Higgs physics constraints

Wojciech Kotlarski, Alexander Voigt

work supported by the National Science Centre (Poland) grant 2022/47/D/ST2/03087

Motivation

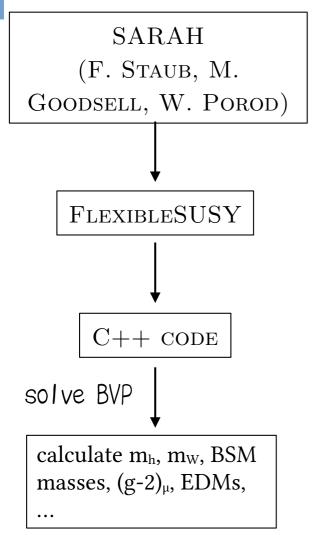
- Many BSM models predict existence of new scalars, especially "Higgses"
- Realistic models must also contain a SM-like Higgs boson
- In lack of direct BSM signatures Higgs boson(s) might become our only handle on BSM physics
 - strong constraints on BSM models
 - requirement for an accurate prediction of Higgs boson properties in BSM models
 - and an easy way to compare them with experimental data

$ATLA$ $\sqrt{s} = 13$ $m_{H} = 125$ $p_{SM} = 71$	「eV, 24.5 - 7 5.09 GeV, ∣y	79.8 fb⁻¹	Total 🗔 S	tat. 🛑 S	∂yst. 🔳 SM
' SM				Tota	al Stat. Syst
	γγ			0.96 ± 0.14	+ 0.09
_	ZZ*	÷.		1.04 + 0.16	
ggF	WW*	÷		1.08 ± 0.1	
	ττ 🛏	ŧ⇒-I		0.96 + 0.52	
	comb.	ģ.		1.04 ± 0.0	9 (± 0.07 , $^{+0.07}_{-0.06}$
	γγ	heed in the second seco		1.39 + 0.40	0 (+0.31 +0.26
	ZZ*		■	2.68 + 0.98	
VBF	WW* +🚥	H		0.59 + 0.36	
VDF	π Η			1.16 + 0.58	
	bb			3.01 ^{+ 1.67} - 1.61	1 <u>1.57</u> , <u>-0.36</u>
	comb.	. .		1.21 + 0.24	2 (- 0.17 , - 0.13
	γγ 🛏			1.09 + 0.58	4 (- 0.49 , - 0.22
VH	ZZ*			0.68 + 1.20	3 (- 0.77 , - 0.11
•••	bb			1.19 + 0.27	5 - 0.17 , - 0.18
	comb.			1.15 + 0.24 - 0.22	$2 (\pm 0.16, -0.16)$
	γγ Η			- 0.35	5 (- 0.33 , - 0.14
tī H+tH	VV*			1.50 _ 0.57	7 (- 0.42 , - 0.38
		I		1.30 - 0.96	6 (- 0.76 , - 0.59
	<i>b</i> b ⊨ comb.			0.79 + 0.60 - 0.59 1.21 + 0.26 - 0.24	$\frac{1}{2} \left(\pm 0.29 + 0.20 \right)$
		• ·		- 0.24	, , , , , , , , , , , , , , , , , , ,
-2	0	2	4	6	8

 $\sigma \times BR$ normalized to SM

Predicting Higgs boson properties

Mass


- fixed order
- effective field theory
- hybrid (fixed order + EFT)
- Decays
- Production
- Many tools (see for example a great overview by H. Rzehak from the "TOOLS" workshop)
 - model specific
 - generic (SAHAH+SPheno, FlexibleSUSY)

FlexibleSUSY in a nutshell

- There are codes like 2HDMC, SPHENO, SOFTSUSY or SUSPECT that calculate mass spectra and various observables for a predefined model (THDM in case of 2HDMC and MSSM/NMSSM in remaining cases).
- FLEXIBLESUSY is a spectrumgenerator generator - creates a code analogue to abovementioned programs but for an arbitrary BSM model.
- Use known results for a generic QFT. Don't recalculate what you don't have to from the ground.
- Streamlining study of BSM phenomenology, reducing time needed to study a new model from years to weeks.
 No hand written code, less place for errors.

Program flow

Analytic calculation: particle content + Lagrangian \Rightarrow tadpole equations, self-energies, mass matrices, RGEs, vertices etc.

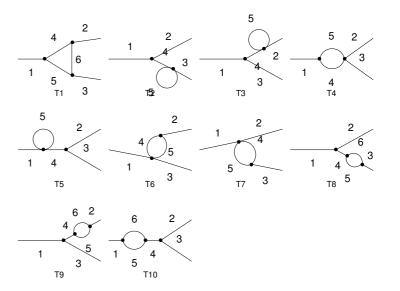
- Creates code for numerical evaluation of various observables
 - 1-loop pole masses and mixing matrices (in specific models higher corrections are available)
 - − observables: muon $(g-2)_{\mu}$, lepton's EDMs, l→l'y, b→sy, scalar decays
 - soon: $l \rightarrow l'$ conversion in nuclei, $l \rightarrow 3l$

FLEXIBLEDECAY overview

- Fully automated scalar decays evaluation in an almost arbitrary BSM model. Tested on SM, real singlet extended SM, type II THDM, MSSM/CMSSM, MRSSM and many more.
- Works as an add-on to FLEXIBLESUSY spectrum-generator generator. Almost no extra configuration needed by a user.

```
FSCalculateDecays = True;
DecayParticles = {hh, Ah, Hpm, Su, Sd, Se, Sv};
turning on decays
for the MSSM
```

You run FS as before.


- Generic decays are handled at the leading order (**both** tree-level and loop-induced processes are handled)
- Special treatment of scalar and pseudoscalar Higgs decays
 - higher order SM corrections from literature
 - precision comparable with state of the art codes like HDECAY

Tree-level decays

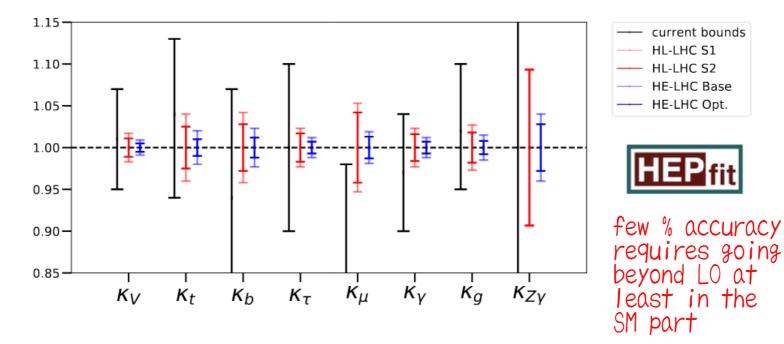
- Automatically generated $1 \rightarrow 2$ amplitudes
- All final state types (and their combinations) are handled: scalar, fermion, vector (both massive and massless)
- Most colour representation are handled
- $\overline{\text{MS}}/\overline{\text{DR}}$ vertices with pole masses on external lines
- Example application of generic routines:
 - sfermion decays in SUSY
 - Higgs decays to non-SM particles
- Special treatment of Higgs decays into SM particles, including hand-coded single and double off-shell partial width for $h \rightarrow VV$

Loop-induced decays

10 1-loop topologies

- Generic Analytical expression at the level of particle types like S, F, V, etc... created with **FeynArts/FormCalc** (4000+ lines of generated code)
- Strategy:
 - generate appropriate insertions at classes level during mathematica stage
 - map them to amplitudes at the C++ level
 - introduce colour factors using modified version of ColorMath package from Malin Sjödahl

Renormalization scheme


- Need for a dedicated renormalization scheme since BSM is (probably) heavy
 - On-shell scheme most natural but it's not how spectrum generators work
 - MS/DR features non-decoupling effects
- Dedicated scheme with explicit decoupling properties
 - BSM equivalents of SM parameters are set to SM $\overline{\text{MS}}$ values by definition
 - actual BSM parameters are defined in the $\overline{MS}/\overline{DR}$ scheme
- Decay module is agnostic of the scheme. It can be selected at run time though higher order corrections are not applicable if one is not using the decoupling scheme.
- Side remark: using MS/DR scheme for BSM parameters allows for an easy connection between Higgs branching ratios and observables like vacuum stability

Expected experimental precision

Kappa framework

$$\kappa_X^2 = \frac{\sigma(X_i \to h + X_f)}{\sigma(X_i \to h + X_f)_{\rm SM}}, \qquad \kappa_Y^2 = \frac{\Gamma(h \to Y)}{\Gamma(h \to Y)_{\rm SM}}$$

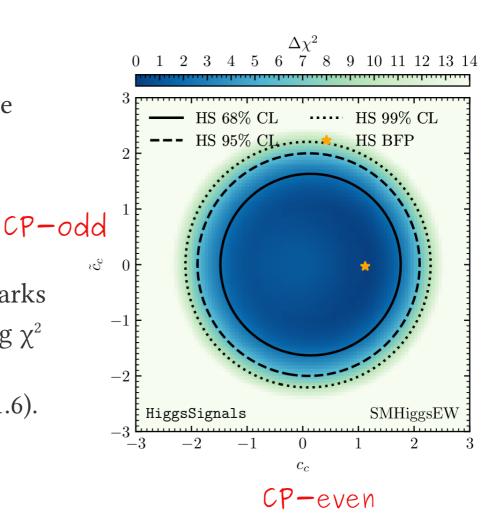
Current and expected precision in measurement of Higgs (effective) couplings

Higher order SM corrections in FD

- H→VV
 - single/double off-shell decays into gauge bosons
- $\Phi \rightarrow gg$
 - − 2,3 and 4-loop SM QCD corrections to top triangle for $m_{\rm H}/(2m_t) \le 0.84$ with m_t dependence
 - 2 and 3-loop QCD, leading m_t corrections for A
- $\Phi \rightarrow \gamma \gamma$
 - 2-loop QCD corrections to fermion loop for almost arbitrary m_Φ
 - 2-loop QCD corrections to scalar loops for $m_s/m_{\Phi}{\ll}1$ and ${\gg}1$
- $\Phi \rightarrow q\overline{q}$
 - interpolation between an $\overline{\text{MS}}$ and an on-shell calculation (accurate for arbitrary ratios of m_q/m_Φ (HDECAY approach)
 - 4-loop QCD, 1-loop QED, 2-loop mixed QED&QCD

What you get (singlet+SM example)

• • •

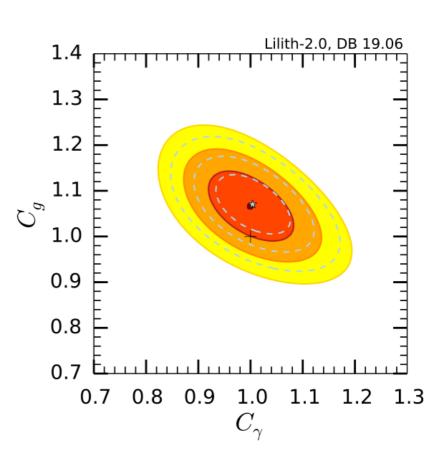

•••								
Block DCINFO								
1	FlexibleSU	SY						
2	2.6.1							
5	SSMMhInput							
9	4.14.3							
DECAY	25	3.208	46016E-03	# hh(1) d	eca	ays		
5.	82089643E-01	2	-5	5	#	BR(hh(1)	->	<pre>barFd(3) Fd(3))</pre>
2.	10479150E-01	2	-24	24	#	BR(hh(1)	->	conjVWp VWp)
8.	56684916E-02	2	21	21	#	BR(hh(1)	->	VG VG)
6.	19432803E-02	2	-15	15	#	BR(hh(1)	->	<pre>barFe(3) Fe(3))</pre>
2.	87673651E-02	2	-4	4	#	BR(hh(1)	->	barFu(2) Fu(2))
2.	67950080E-02	2	23	23	#	BR(hh(1)	->	VZ VZ)
2.	29059815E-03	2	22	22	#	BR(hh(1)	->	VP VP)
1.	48172847E-03	2	22	23	#	BR(hh(1)	->	VP VZ)
2.	64726402E-04	2	-3	3	#	BR(hh(1)	->	<pre>barFd(2) Fd(2))</pre>
2.	19292886E-04	2	-13	13	#	BR(hh(1)	->	<pre>barFe(2) Fe(2))</pre>
DECAY	35	8.566	17420E-01	# hh(2) d	eca	ays		

12 / 21

HiggsTools

- Succesor of HiggsBounds and HiggsSignals
- Consists of two parts:
 - HiggsSignals: checks SM-like Higgs
 - HiggsBounds: checks BSM Higgses
- Example: SM-like Higgs with perturbed coupling to charm quarks
- Some care needed in interpreting χ² from HiggSignals
- Latest detabases (HS v1.1, HB v1.6). Latest HS has 159 dof

Bahl, Biekötter, Heinemeyer, Li, Paasch, Weiglein, Wittbrod



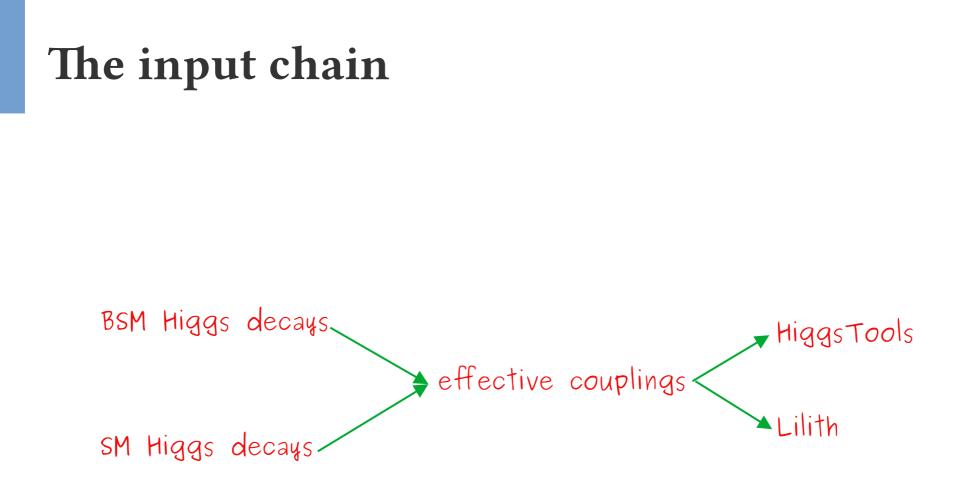
Barh et al. [arXiv:2210.09332]

Lilith

- A Python library for constraining new physics from Higgs signal strength measurements.
- It is similar in spirit to HiggsTools (even allows for the same input).
- There's a difference in implemented analysis. The latest database (called latestRun2 contains analysis from 36 and 137 fb⁻¹ data samples).

LatestRun2 has 53 dof.

Construction of effective couplings


Effective couplings (normalised to SM) are constructed from partial widths

$$\kappa^2 \equiv \frac{\Gamma(H \to AB)_{\rm BSM}}{\Gamma(h \to AB)_{\rm SM, m_h = m_H}}$$

meaning we lose information about the sign. The CP properties are correctly tracked. Limited to masses between ~1 and ~650 GeV.

New output block

Block NORMALIZEDEFFHIGGSCOUPLINGS						
PDG 0 0	▶ 25	0	0	2.33429130E-03		
	25	-1	1	2.60004739E-01		
contains a	25	-2	2	3.60808433E-01		
partial width	25	-3	3	2.58715570E-01		
for a SM-	25	-4	4	3.60805762E-01		
like Higgs	25	-5	5	2.57589220E-01		
~ ~	25	-6	6	3.60800617E-01		
with a given	25	-11	11	2.57231012E-01		
BSM mass	• • •					

HiggsTools/Lilith interface

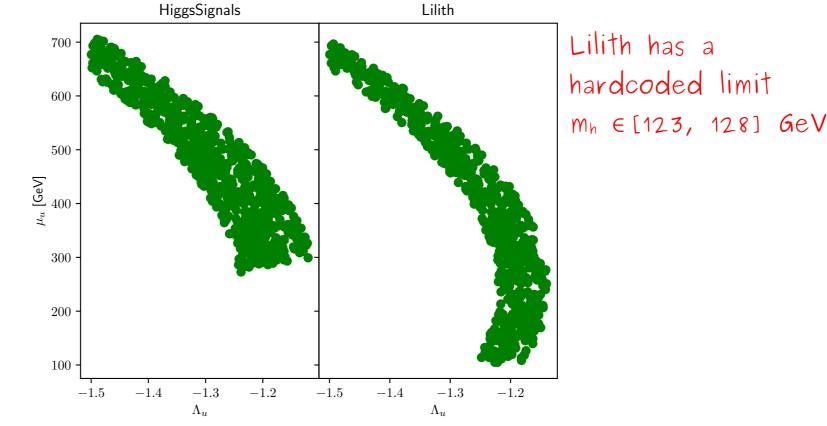
- Using HiggsTools or Limith from FlexibleSUSY is totally transparent to the userHowto:
 - install HiggsTools and/or Lilith
 - point FlexibleSUSY to their location during configuration
 - you're good to go

models/MRSSM2/run_MRSSM2.x --slha-input-file=BMP1.in \
--higgsbounds-dataset=hbdataset-master \
--higgssignals-dataset=hsdataset-main \
--lilith-db=Lilith/data/latestRun2.list

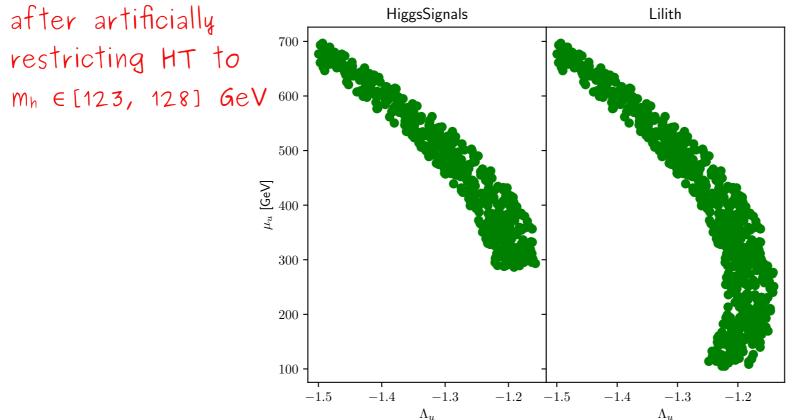
HiggsTools/Lilith output

Block HIGGSSIGNALS

	1	1.5900000E+02	<pre># number of degrees of freedom</pre>
	2	1.57662766E+02	# χ^2
	3	1.51551655E+02	# SM χ^2 for mh = 125.250000 GeV
	4	4.70965484E-02	# p-value
Bloc	k HIGG	SBOUNDS	
25	1	2.38307377E-01	<pre># LHC13 [vbfH,HW,Htt,H,HZ]>[gamgam] from 1811.0845</pre>
25	2	5.84526557E-01	# expRatio
35	1	7.11468251E-01	<pre># LHC8 [vbfH,HW,Htt,H,HZ]>[bb,tautau,WW,ZZ,gamgam]</pre>
35	2	3.57914871E+00	# expRatio


Lilith output

Block LILITH


- 15.3000000E+01# number of degrees of freedom26.06908417E+01 $\# \chi^2$ 35.47825089E+01 $\# SM \chi^2$ for mh = 125.090000 GeV
- 4 5.21220908E-02 # p-value

HiggsTools vs. Lilith

We set 3% mass uncertainty for HT

HiggsTools vs. Lilith

a genuine effect from differnce in implemented experimental analyses

Conclusions and outlook

- Streamlining comparison of Higgs sector of **your** favourite model with experimental data
- The publication documenting the code will appear this month. In the meantime, you can grab the code from here.
- We are happy to assist you in setting the code up for your particular model.
- **Further improvements:**
 - constaining charged (singly and doubly) Higgses (only HiggsBounds)
 - higher order BSM corrections to SM-like Higgs decays are under implementation
 - 2-loop corrections in the 0-momentum approximation to Higgs boson mass (from SARAH)