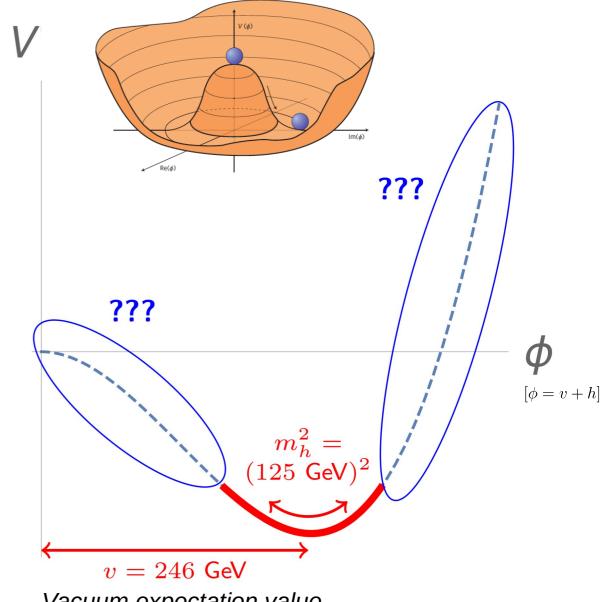

Precise predictions for the trilinear Higgs coupling in arbitrary models with anyH3

Based mainly on Eur.Phys.J.C 83 (2023) 12, 1156 [arXiv:2305.03015] and work in progress in collaboration with Henning Bahl, Martin Gabelmann, Kateryna Radchenko Serdula

Johannes Braathen

and Georg Weiglein

SUSY 2024 IFT, Madrid, Spain | 13 June 2024

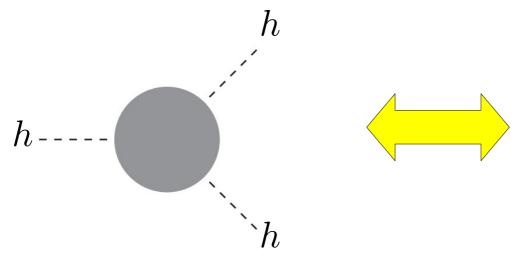


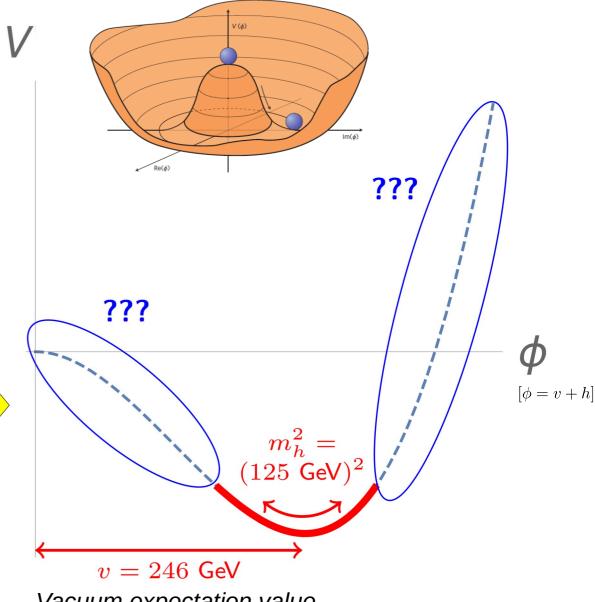
Why investigate λ_{hhh} ?

DESY. Page 2/24

Form of the Higgs potential and trilinear Higgs coupling

Brout-Englert-Higgs mechanism = origin of electroweak symmetry breaking but very little known about the Higgs potential causing the phase transition

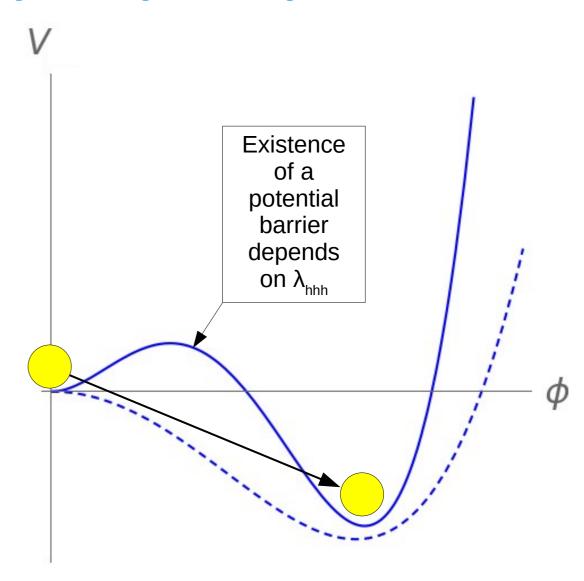

Vacuum expectation value


Form of the Higgs potential and trilinear Higgs coupling

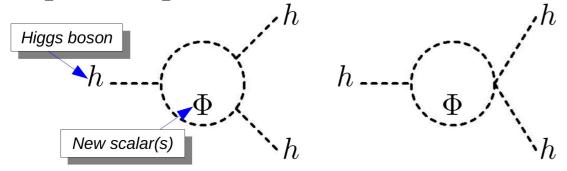
➤ Brout-Englert-Higgs mechanism = origin of electroweak symmetry breaking ...

... but very little known about the **Higgs potential** causing the phase transition

Shape of the potential determined by trilinear Higgs coupling λ_{hhh}



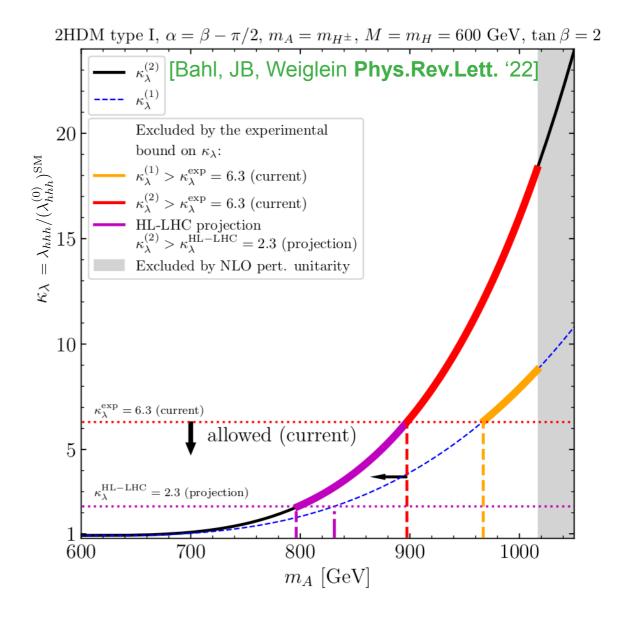
Vacuum expectation value


Form of the Higgs potential and baryon asymmetry

- ➤ Brout-Englert-Higgs mechanism = origin of electroweak symmetry breaking ...
 - ... but very little known about the **Higgs potential** causing the phase transition
- Shape of the potential determined by trilinear Higgs coupling λ_{hhh}
- Among Sakharov conditions necessary to explain baryon asymmetry via electroweak phase transition (EWPT):
 - Strong first-order EWPT
 - → barrier in Higgs potential
 - \rightarrow typically significant deviation in λ_{hhh} from SM

Probing New Physics with the trilinear Higgs coupling

 \succ Large effects from New Physics possible in $λ_{hhh}$, due to radiative corrections from extra scalars, e.g. at leading order


Comparing latest exp. bounds

$$-0.4 < \kappa_{\lambda} = \frac{\lambda_{hhh}}{(\lambda_{hhh}^{(0)})^{SM}} < 6.3$$

[ATLAS PLB 2023]

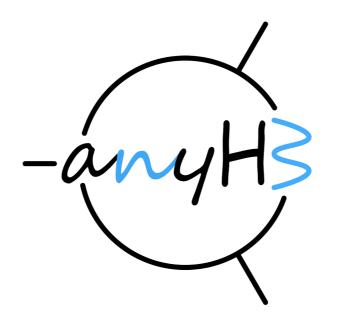
(NB: inclusion of top mass uncertainty degrades the bounds \rightarrow -1.2 < κ_{λ} < 7.2 [ATLAS-CONF-2024-006])

with precise theory predictions for λ_{hhh} provides a powerful new tool to constrain BSM models

Computing λ_{hhh} in BSM theories

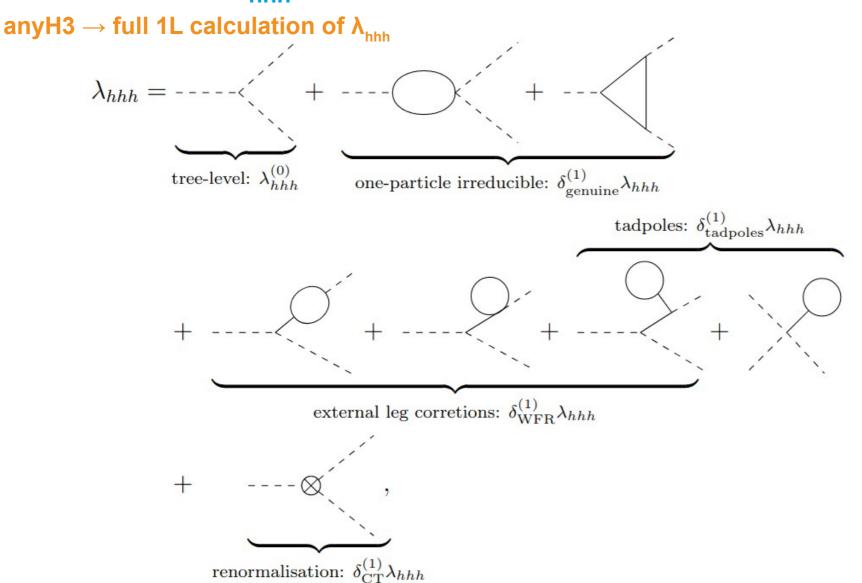
- Calculations of λ_{hhh} are important, and receive increasing attention
 - More and more model specific results at 1L

SM + singlet [Kanemura et al. '16]; 2HDMs [Kanemura et al. '04], [Basler et al. '17]; N2HDM (2HDM + singlet) [Basler et al. '19]; triplet extensions [Aoki et al. '12], [Chiang et al. '18]; MSSM [Hollik, Penaranda '04]; NMSSM [Dao et al. '13]; models with classical scale invariance [Hashino, Kanemura, Orikasa '16], etc.


... and at 2L

SM + **singlet** [JB, Kanemura '19]; **2HDMs** [Senaha '18], [JB, Kanemura '19]; **MSSM** [Brucherseifer et al. '13]; **NMSSM** [Dao et al. '15], [Borschensky et al '22]; **models with classical scale invariance** [JB, Kanemura, Shimoda '20], etc.

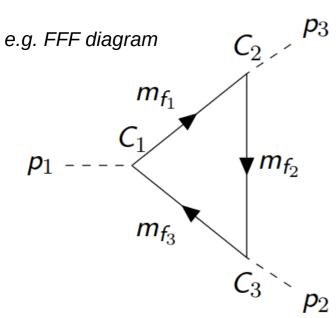
but many more models to investigate!


- For many (pseudo-)observables, automated tools exist
 (e.g. SARAH/SPheno or FlexibleSUSY for mass spectra, micrOMEGAs for DM observables, etc.)
- What about for the trilinear Higgs coupling?
 - → none so far
 - → anyH3 [Bahl, JB, Gabelmann, Weiglein 2305.03015]

Generic predictions for λ_{hhh}

DESY. Page 8/24

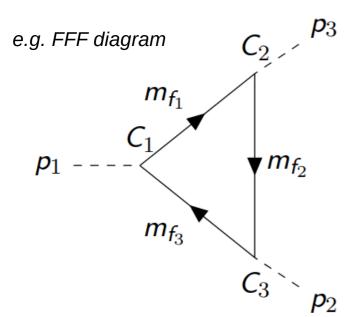
Computing λ_{hhh} in general renormalisable theories: ingredients



- Solid lines:
 - scalars,
 - fermions,
 - gauge/vector bosons,
 - ghosts

Restrictions on particles and/or topologies possible

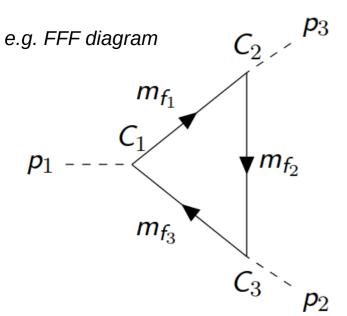
Computing λ_{hhh} in general renormalisable theories: method


Our method: we derive and implement analytic results for **generic diagrams**, i.e. assuming generic

- > Couplings $C_i = C_i^L P_L + C_i^R P_R$, where $P_{L,R} \equiv \frac{1}{2}(1 \mp \gamma_5)$
- \rightarrow Masses on the internal lines m_{fi}, i=1,2,3
- External momenta p_i, i=1,2,3

Computing λ_{hhh} in general renormalisable theories: method

Our method: we derive and implement analytic results for **generic diagrams**, i.e. assuming generic


- > Couplings $C_i = C_i^L P_L + C_i^R P_R$, where $P_{L,R} \equiv \frac{1}{2}(1 \mp \gamma_5)$
- \rightarrow Masses on the internal lines m_{fi}, i=1,2,3
- External momenta p_i, i=1,2,3

$$=2\mathbf{B0}(p_{3}^{2},m_{2}^{2},m_{3}^{2})(C_{1}^{L}(C_{2}^{L}C_{3}^{R}m_{f_{1}}+C_{2}^{R}C_{3}^{R}m_{f_{2}}+C_{2}^{R}C_{3}^{L}m_{f_{3}})+C_{1}^{R}(C_{2}^{R}C_{3}^{L}m_{f_{1}}+C_{2}^{L}C_{3}^{R}m_{f_{1}}+C_{2}^{R}C_{3}^{R}m_{f_{2}}+C_{2}^{L}C_{3}^{R}m_{f_{3}}))+m_{f_{1}}\mathbf{C0}(p_{2}^{2},p_{3}^{2},p_{1}^{2},m_{1}^{2},m_{3}^{2},m_{2}^{2})((C_{1}^{L}C_{2}^{L}C_{3}^{R}+C_{3}^{R}C_{2}^{R}C_{3}^{R}))+m_{f_{1}}\mathbf{C0}(p_{2}^{2},p_{3}^{2},p_{1}^{2},m_{1}^{2},m_{3}^{2},m_{2}^{2})((C_{1}^{L}C_{2}^{L}C_{3}^{R}+C_{3}^{R}C_{3}^{R}))+m_{f_{1}}\mathbf{C0}(p_{2}^{2},p_{3}^{2},p_{1}^{2},m_{1}^{2},m_{3}^{2},m_{1}^{2}))+C_{1}^{R}C_{2}^{R}C_{3}^{R}m_{f_{1}}+C_{2}^{R}C_{3}^{R}m_{f_{2}}+C_{2}^{R}C_{3}^{R}m_{f_{3}})+C_{1}^{R}(C_{2}^{R}C_{3}^{R}m_{f_{1}}+C_{2}^{L}C_{3}^{R}m_{f_{2}}+C_{2}^{L}C_{3}^{R}m_{f_{3}}))+\mathbf{C1}(p_{2}^{2},p_{3}^{2},p_{1}^{2},m_{1}^{2},m_{3}^{2},m_{2}^{2})(2p_{2}^{2}(C_{1}^{L}C_{3}^{R}(C_{2}^{L}m_{f_{1}}+C_{2}^{R}m_{f_{2}})+C_{1}^{R}C_{2}^{R}C_{3}^{R}m_{f_{3}}))+\mathbf{C1}(p_{2}^{2},p_{3}^{2},p_{1}^{2},m_{1}^{2},m_{3}^{2},m_{2}^{2})((C_{1}^{L}C_{2}^{L}C_{3}^{R}+C_{1}^{R}C_{2}^{R}C_{3}^{L})m_{f_{1}}+C_{2}^{R}m_{f_{2}}))+(p_{1}^{2}+p_{2}^{2}-p_{3}^{2})((C_{1}^{L}C_{2}^{L}C_{3}^{R}+C_{1}^{R}C_{2}^{R}C_{3}^{L})m_{f_{1}}+C_{2}^{R}m_{f_{2}})+\mathbf{C1}^{R}C_{2}^{R}C_{3}^{R}(C_{2}^{R}m_{f_{1}}+C_{2}^{R}C_{3}^{R})m_{f_{3}}))+\mathbf{C2}(p_{2}^{2},p_{3}^{2},p_{1}^{2},m_{1}^{2},m_{3}^{2},m_{2}^{2})((p_{1}^{2}+p_{2}^{2}-p_{3}^{2})((C_{1}^{L}C_{2}^{R}C_{3}^{R}+C_{1}^{R}C_{2}^{L}C_{3}^{R})m_{f_{1}}+C_{2}^{R}m_{f_{2}}))+2p_{1}^{2}((C_{1}^{L}C_{2}^{L}C_{3}^{R}+C_{1}^{R}C_{2}^{R}C_{3}^{R})m_{f_{3}}))$$

(B0, C0, C1, C2: loop functions)

Computing λ_{hhh} in general renormalisable theories: method

Our method: we derive and implement analytic results for generic diagrams, i.e. assuming generic

For evaluation:

- Apply to concrete (B)SM model, using inputs in UFO format [Degrande et al., '11], [Darmé et al. '23]
- Evaluate loop functions via COLLIER
 [Denner et al '16] interface,
 pyCollier
- All included in public tool anyH3
 [Bahl, JB, Gabelmann, Weiglein '23]

- > Couplings $C_i = C_i^L P_L + C_i^R P_R$, where $P_{L,R} \equiv \frac{1}{2}(1 \mp \gamma_5)$
- \rightarrow Masses on the internal lines m_{fi}, i=1,2,3
- External momenta p_i, i=1,2,3

$$= 2\mathbf{B0}(p_{3}^{2}, m_{2}^{2}, m_{3}^{2})(C_{1}^{L}(C_{2}^{L}C_{3}^{R}m_{f_{1}} + C_{2}^{R}C_{3}^{R}m_{f_{2}} + C_{2}^{R}C_{3}^{L}m_{f_{3}}) + C_{1}^{R}(C_{2}^{R}C_{3}^{L}m_{f_{1}} + C_{2}^{L}C_{3}^{R}m_{f_{2}} + C_{2}^{L}C_{3}^{R}m_{f_{3}})) + m_{f_{1}}\mathbf{C0}(p_{2}^{2}, p_{3}^{2}, p_{1}^{2}, m_{1}^{2}, m_{3}^{2}, m_{2}^{2})((C_{1}^{L}C_{2}^{L}C_{3}^{R} + C_{1}^{R}C_{2}^{R}C_{3}^{L})(p_{1}^{2} + p_{2}^{2} - p_{3}^{2}) + 2(C_{1}^{L}C_{2}^{L}C_{3}^{L} + C_{1}^{R}C_{2}^{R}C_{3}^{R})m_{f_{2}}m_{f_{3}} + C_{1}^{R}(C_{2}^{L}C_{3}^{R}m_{f_{1}} + C_{2}^{L}C_{3}^{R}m_{f_{1}} + C_{2}^{L}C_{3}^{R}m_{f_{3}}) + C_{1}^{R}(C_{2}^{R}C_{3}^{L}m_{f_{1}} + C_{2}^{L}C_{3}^{L}m_{f_{2}} + C_{2}^{R}C_{3}^{L}m_{f_{3}}) + C_{1}^{R}(C_{2}^{R}C_{3}^{L}m_{f_{1}} + C_{2}^{L}C_{3}^{L}m_{f_{2}} + C_{2}^{L}C_{3}^{R}m_{f_{3}}))) + \mathbf{C1}(p_{2}^{2}, p_{3}^{2}, p_{1}^{2}, m_{1}^{2}, m_{3}^{2}, m_{2}^{2})(2p_{2}^{2}(C_{1}^{L}C_{3}^{R}(C_{2}^{L}m_{f_{1}} + C_{2}^{R}m_{f_{2}}) + C_{1}^{R}C_{3}^{L}(C_{2}^{R}m_{f_{1}} + C_{2}^{L}m_{f_{2}})) + (p_{1}^{2} + p_{2}^{2} - p_{3}^{2})((C_{1}^{L}C_{2}^{L}C_{3}^{R} + C_{1}^{R}C_{2}^{R}C_{3}^{L})m_{f_{1}} + (C_{1}^{L}C_{2}^{R}C_{3}^{L})m_{f_{3}})) + \mathbf{C2}(p_{2}^{2}, p_{3}^{2}, p_{1}^{2}, m_{1}^{2}, m_{3}^{2}, m_{2}^{2})((p_{1}^{2} + p_{2}^{2} - p_{3}^{2})((C_{1}^{L}C_{3}^{R}(C_{2}^{L}m_{f_{1}} + C_{2}^{L}m_{f_{2}})) + 2p_{1}^{2}((C_{1}^{L}C_{2}^{L}C_{3}^{R} + C_{1}^{R}C_{2}^{L}C_{3}^{R})))$$

(B0, C0, C1, C2: loop functions)

Flexible choice of renormalisation schemes

$$\delta_{\mathrm{CT}}^{(1)} \lambda_{hhh} = - - - \otimes ($$

- > **1L calculation** \rightarrow renormalisation of all parameters entering λ_{hhh} at tree-level
- In general:

$$(\lambda_{hhh}^{(0)})^{\text{BSM}} = (\lambda_{hhh}^{(0)})^{\text{BSM}} (\underline{m_h \simeq 125 \text{ GeV}}, v \simeq 246 \text{ GeV}, \underline{m_{\Phi_i}}, \underline{\alpha_i}, \underline{v_i}, \underline{g_i}, \underline{g_i})$$
SM sector

BSM BSM indep.

Most automated codes: MS/DR only

masses mixing angles VEVs BSM coups.

- anyH3: much more flexibility, following user choice:
 - **SM sector** (m_h , v): fully OS or $\overline{MS}/\overline{DR}$
 - **BSM masses**: OS or MS/DR
 - Additional couplings/vevs/mixings: by default $\overline{\text{MS}}$, but user-defined ren. conditions also possible!

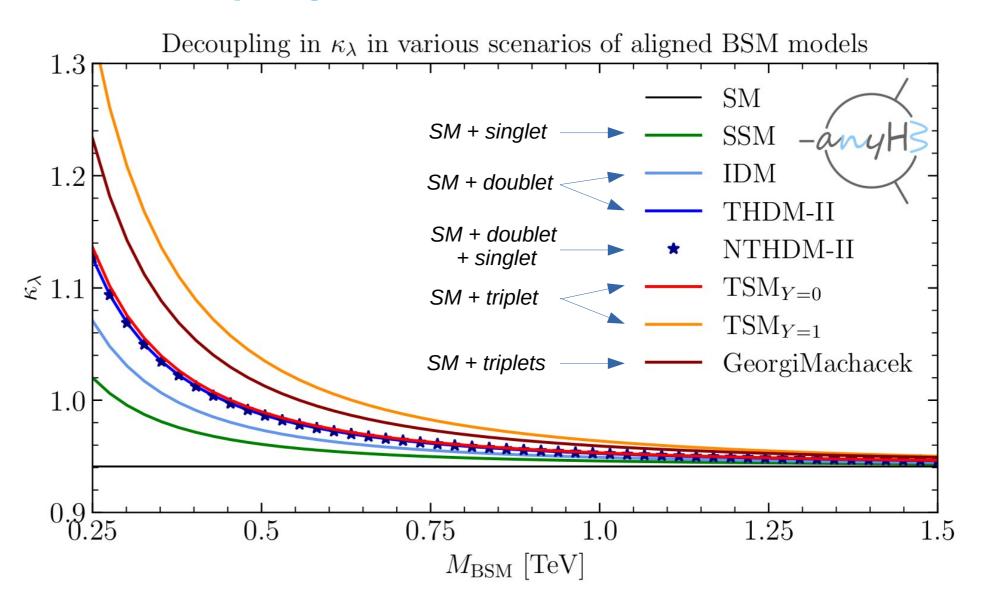
$$\delta_{\mathrm{CT}}^{(1)} \lambda_{hhh} = \sum_{x} \left(\frac{\partial}{\partial x} (\lambda_{hhh}^{(0)})^{\mathrm{BSM}} \right) \delta^{\mathrm{CT}} x \,, \qquad \text{with } x \in \{m_h, v, m_{\Phi_i}, v_i, \alpha_i, g_i, \mathrm{etc.}\}$$
Renormalised in $\overline{\mathrm{MS}}$, OS, in custom schemes, etc.

Example results from anyH3

DESY. Page 14/24

A cross-check: the decoupling limit

 Consider the decoupling limit in several BSM models

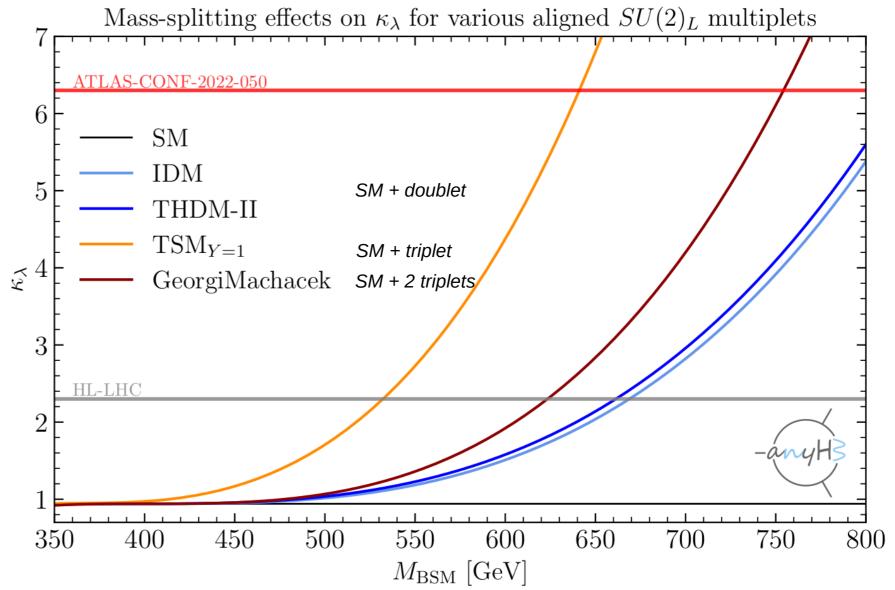

$$M_{\rm BSM}^2 = \mathcal{M}^2 + \tilde{\lambda}v^2$$

 \mathcal{M} : BSM mass scale $\tilde{\lambda}$: Quartic couplings

Increase BSM mass scale

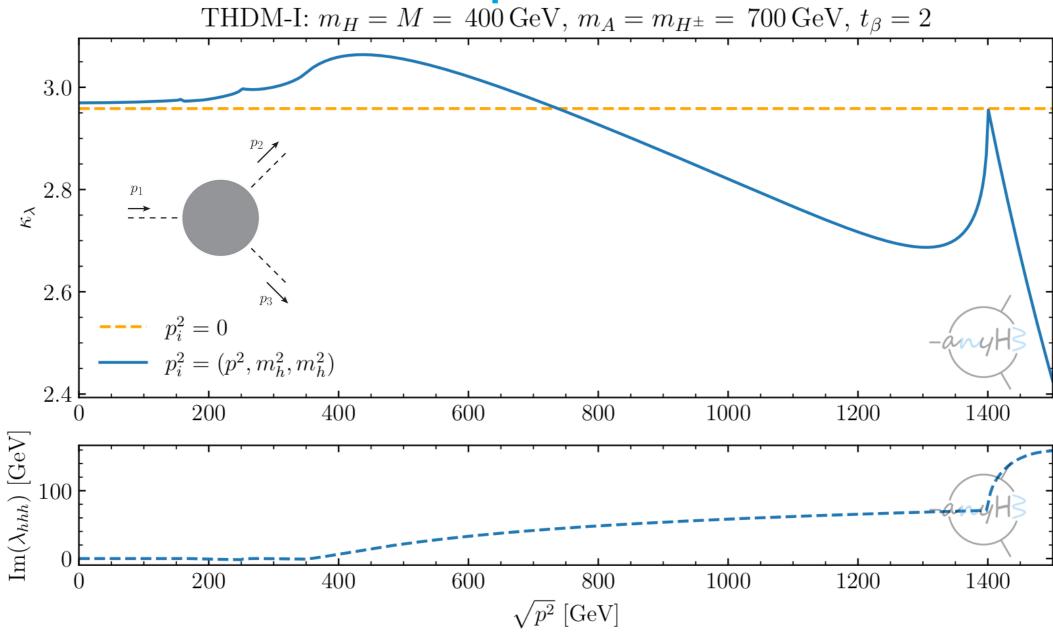
$$\mathcal{M} \to \infty$$

 BSM corrections to should vanish (c.f. decoupling theorem [Appelquist, Carrazone '75])

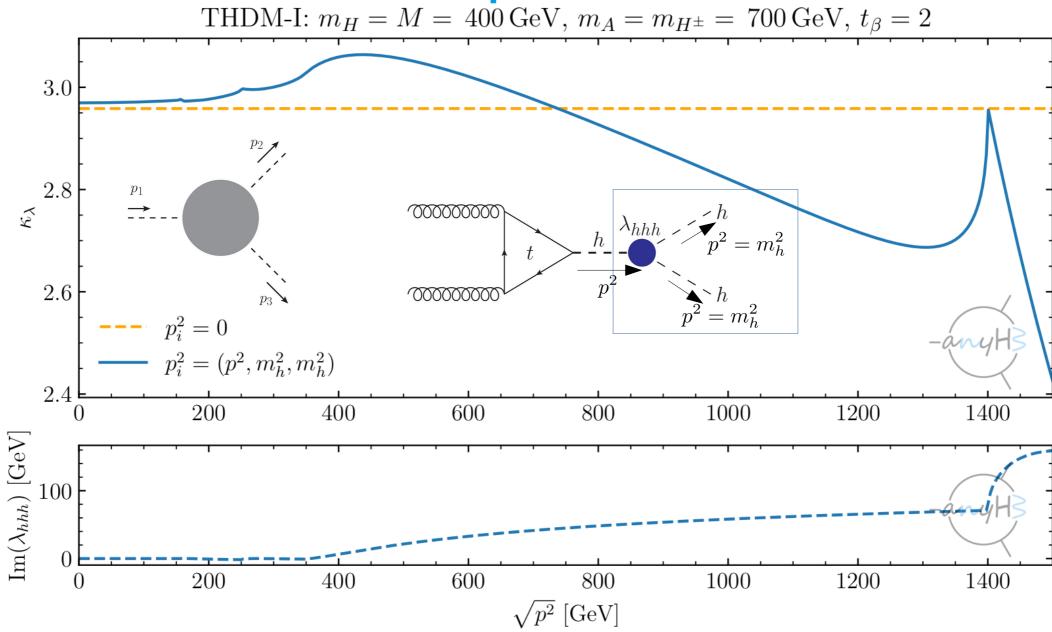


New results I: mass-splitting effects in various BSM models

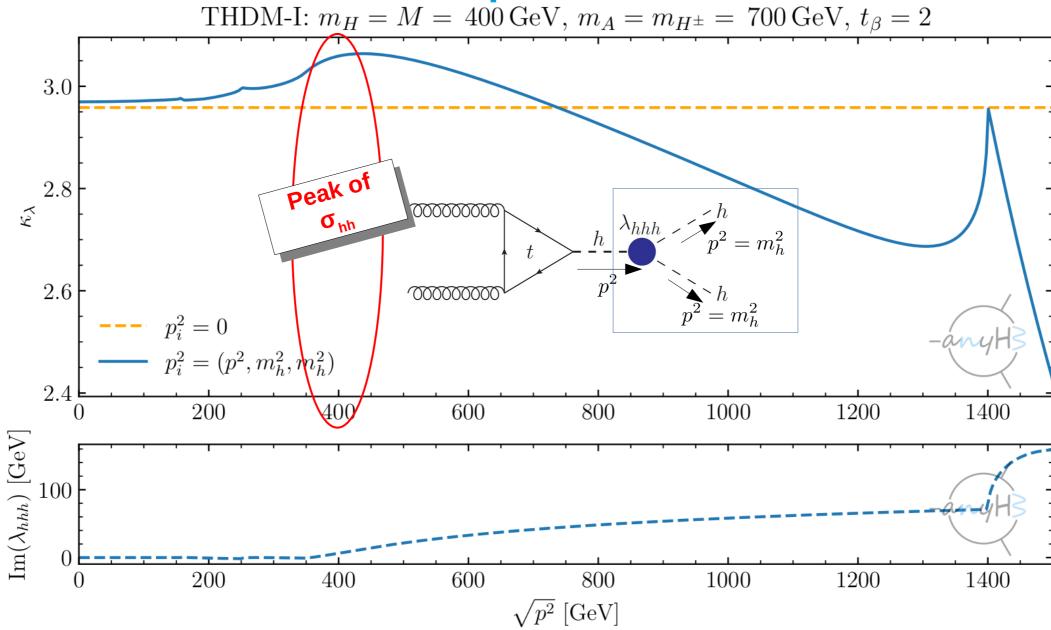
 Consider the non-decoupling limit in several BSM models

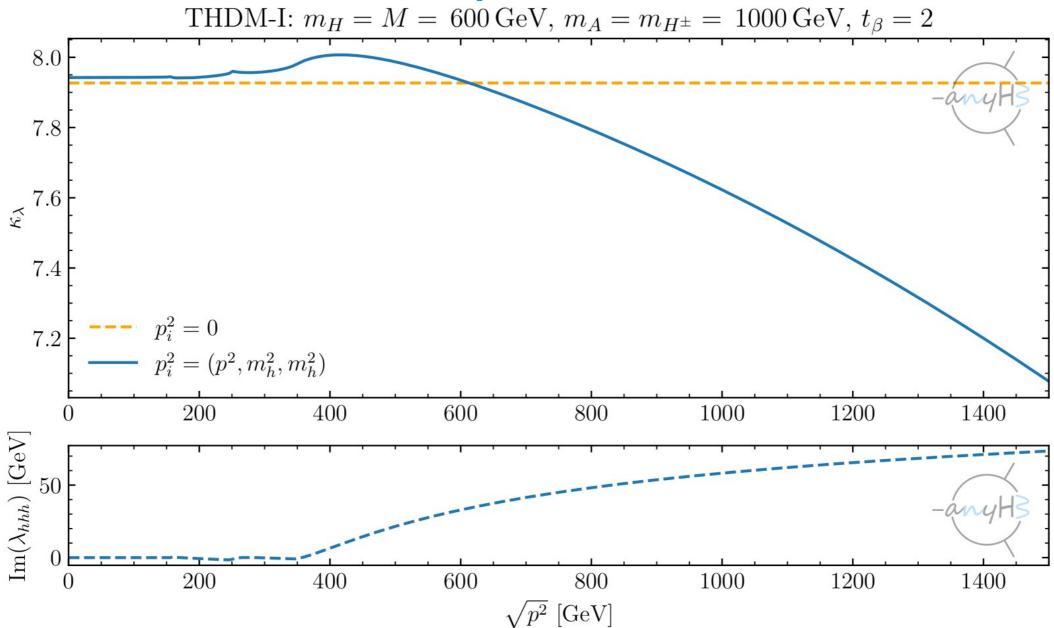

$$M_{\rm BSM}^2 = \mathcal{M}^2 + \tilde{\lambda}v^2$$

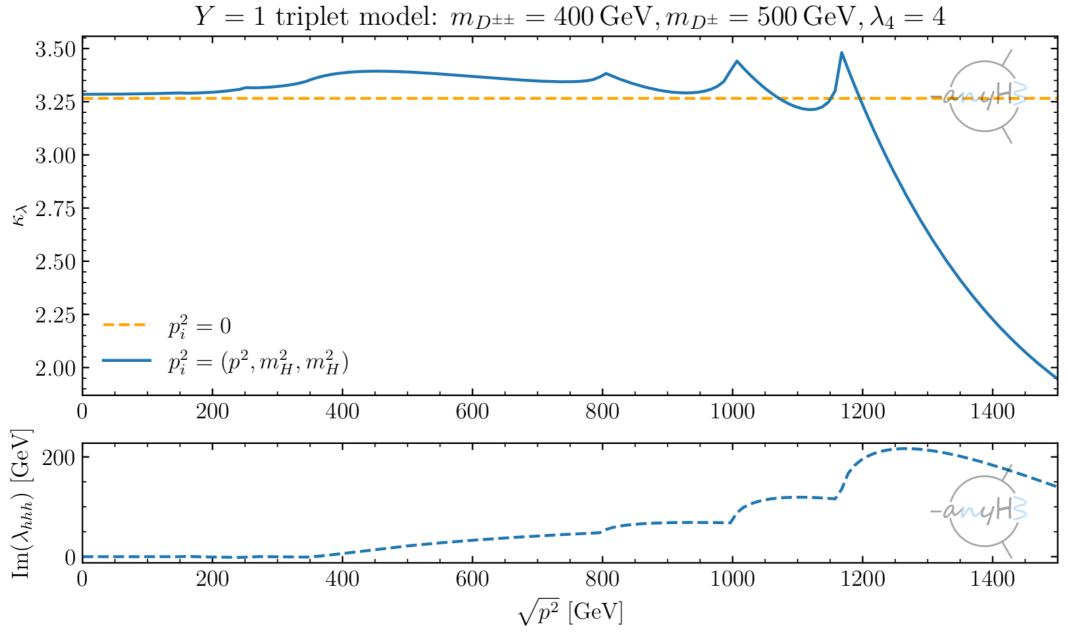
- > Increase M_{BSM} , keeping \mathcal{M} fixed
 - → large mass splittings
 - → large BSM effects!
- Perturbative unitarity checked with anyPerturbativeUnitarity
- Constraints on BSM parameter space!



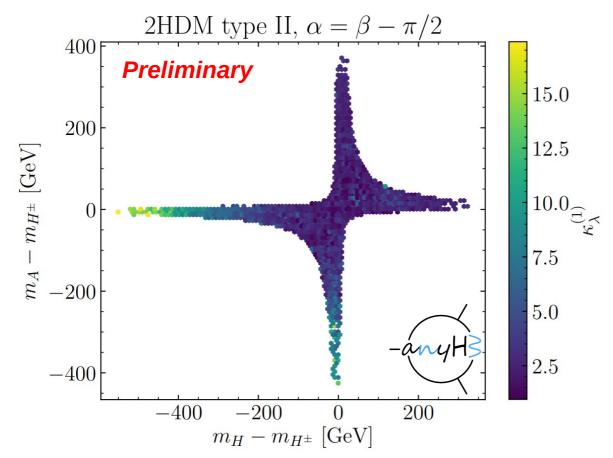
Here: scenarios with lightest BSM scalar mass + BSM mass param. at 400 GeV; other BSM scalar masses = M_{RSM} Pag

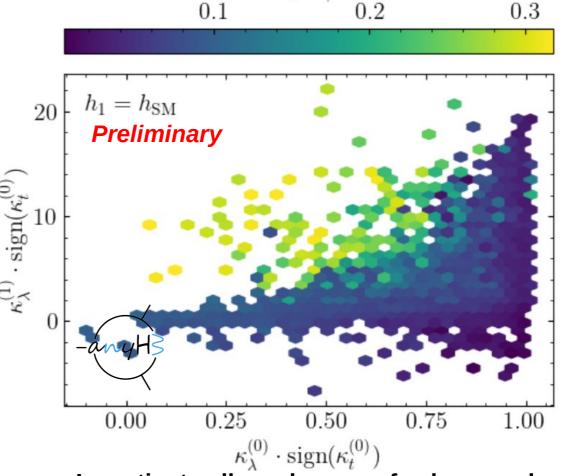

New results II: momentum dependence in the 2HDM


New results II: momentum dependence in the 2HDM


New results II: momentum dependence in the 2HDM

New results II': momentum dependence in the 2HDM

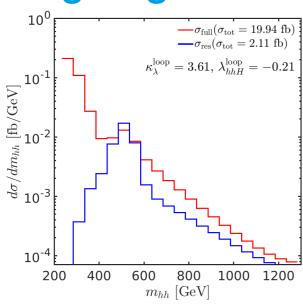

New results III: momentum dependence in a Y=1 triplet extension


New results IV: parameter scans including λ_{hhh}

Scans with anyH3, linked to scanning tool BSMArt [Goodsell, Joury '23]

→ [Bosse, JB, Gabelmann, Hannig, Weiglein WIP]

ightharpoonup Average values of $κ_λ$ in 2HDM, allowed under theoretical and experimental constraints (including perturbative unitarity, flavour and Higgs constraints, etc.), using active learning

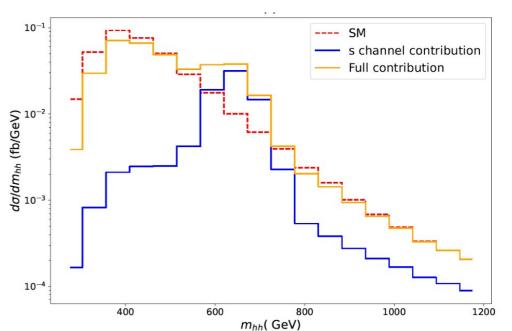


 $\alpha_1 - \beta$

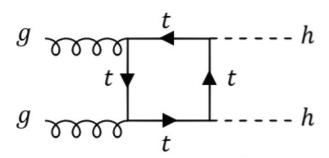
Investigate allowed range of values, and sign, of κ_{λ} in N2HDM

NB: only sign(κ_{λ} : κ_{λ}) is a physical observable

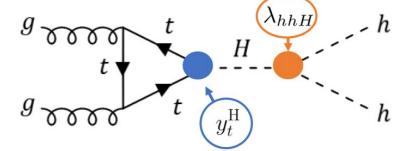
Ongoing developments in anyBSM


Left: 2HDM

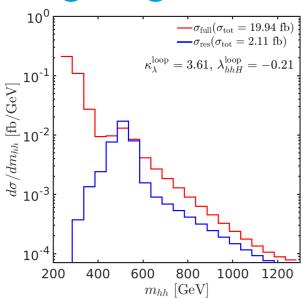
[Heinemeyer, Mühlleitner, Radchenko Serdula, Weiglein '24]


→ c.f talk by Kateryna Radchenko Serdula


Right: singlet extension


[Arco, Heinemeyer, Mühlleitner, Rivero, Verduras *WIP*], [JB, Heinemeyer, Verduras *WIP*] → **c.f talk by Alain Verduras**

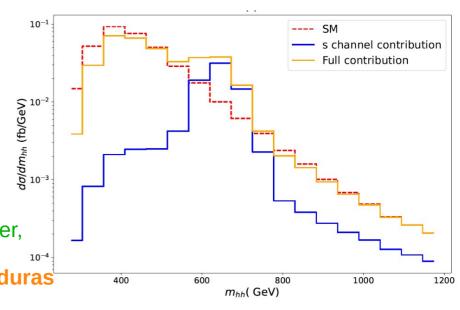
Example leading-order contributions:



[Figure by A. Verduras]

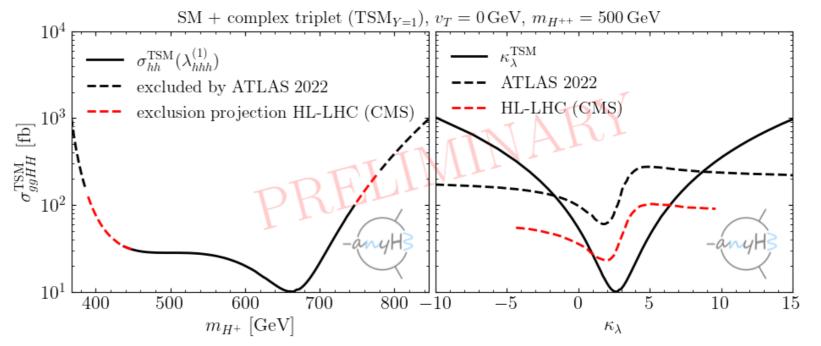
Ongoing developments in anyBSM

Left: 2HDM

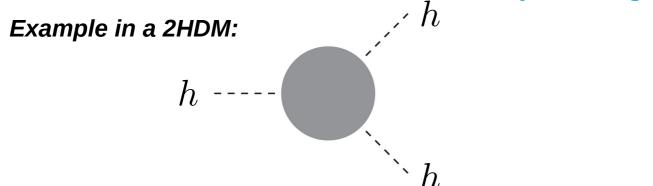

[Heinemeyer, Mühlleitner, Radchenko Serdula, Weiglein '24]

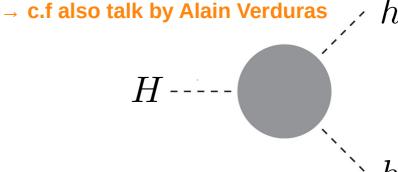
→ c.f talk by Kateryna Radchenko Serdula

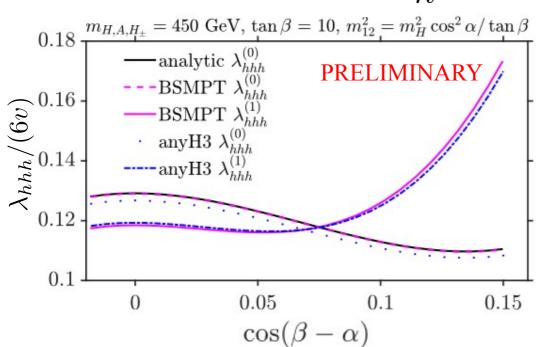
Right: singlet extension

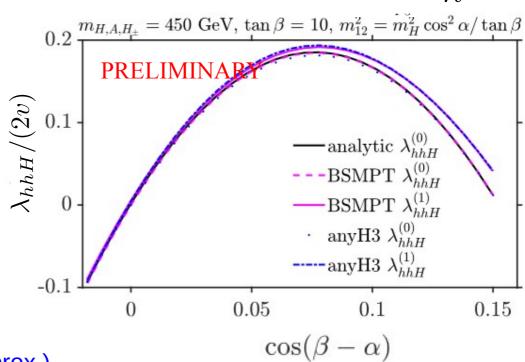

[Arco, Heinemeyer, Mühlleitner, Rivero, Verduras *WIP*]

→ c.f also talk by Alain Verduras


Having predictions for di-Higgs production, including all (i.e. resonant + non-resonant) contributions + 1L corrections to trilinear scalar couplings in arbitrary models would be highly desirable


 → new module in anyBSM
 [Bahl, JB, Gabelmann, Radchenko Serdula, Weiglein WIP]




Ongoing developments: anyLamijk

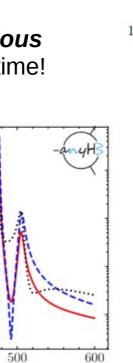
[Bahl, JB, Gabelmann, Radchenko Serdula, Weiglein *WIP*]

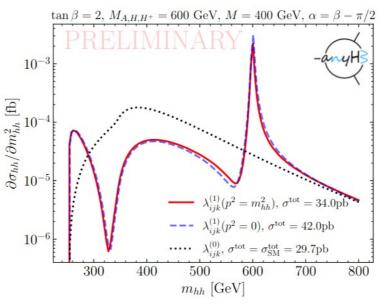
→ excellent agreement with BSMPT results (in eff. pot. approx.)

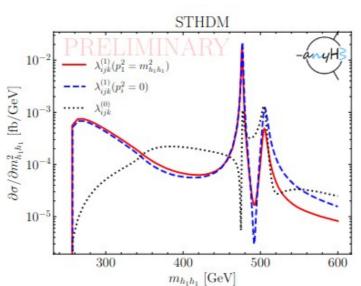
 \rightarrow full OS schemes for λ_{hhh} and λ_{hhH} couplings worked out in 2HDM [Bahl, JB, Gabelmann, Radchenko Serdula, Weiglein], RxSM [JB, Heinemeyer, Verduras], and more [Bosse, JB, Gabelmann, Hannig, Weiglein]!

Page 25/24

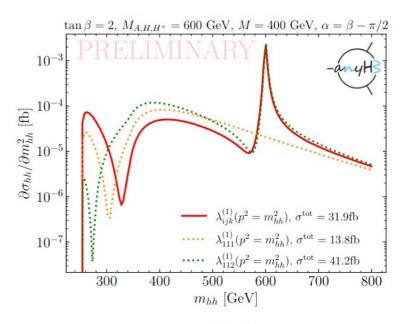
Page 25/24

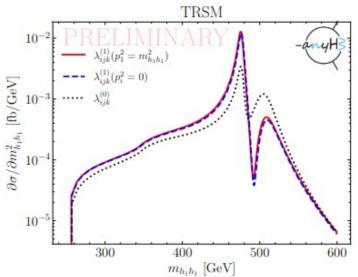

Ongoing developments: anyHH


- Total and differential crosssections for gg → hh including
 1L corrections to λ_{ijk} and BSM contributions in s-channel
- Good agreement with existing results (e.g. HPair)
- Results available in various new models for the 1st time!


 $[V_{\rm a}]_{10}^{2}$ $V_{\rm bh}^{2}$ $V_{\rm bh}^{2}$ $V_{\rm bh}^{2}$ $V_{\rm bh}^{2}$ $V_{\rm bh}^{2}$

10-


NTHDM



[Bahl, JB, Gabelmann, Radchenko Serdula, Weiglein *WIP*]

300

400

 $m_{h_1h_1}$ [GeV]

Summary

- λ_{hhh} plays a crucial role to understand the **shape of the Higgs potential**, and probe indirectly **signs of New Physics**
- \rightarrow Python package anyH3 allows calculation of λ_{hhh} for arbitrary renormalisable theories with
 - Full 1L effects including p² dependence
 - → Highly flexible choices of renormalisation schemes → predefined or by user
- Uses UFO model inputs (generated with SARAH, FeynRules or using custom ones)
- Analytical results (Python, Mathematica)
- Fast numerical results (with caching): SM \rightarrow O(0.2s); MSSM \rightarrow O(0.5s)
- Part of wider anyBSM framework, under development
- Currently 14 models included (publicly), easy inclusion of further models → new ideas/requests welcome!

Get started at https://anybsm.gitlab.io/ or directly in terminal with

pip install anyBSM & anyBSM --help!

Thank you very much for your attention!

Contact

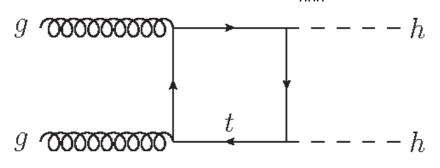
DESY. Deutsches

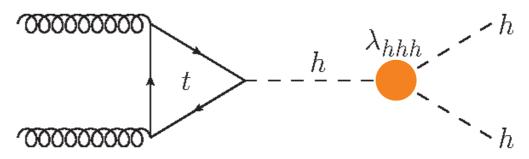
Elektronen-Synchrotron

www.desy.de

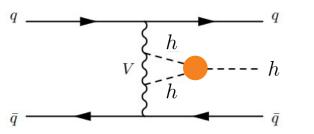
Johannes Braathen

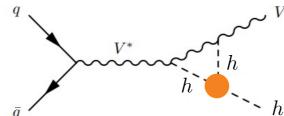
DESY Theory group

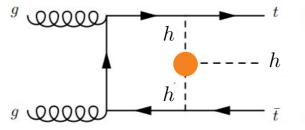

johannes.braathen@desy.de

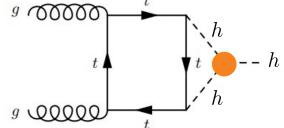

Backup

DESY. Page 29/24

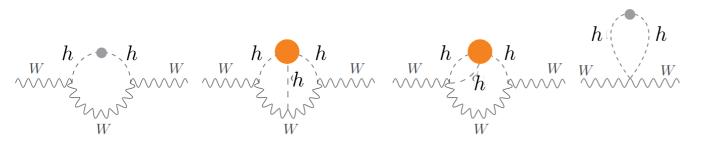

Experimental probes of λ_{hhh}


▶ Double-Higgs production $\rightarrow \lambda_{hhh}$ enters at <u>leading order (LO)</u> \rightarrow most direct probe!

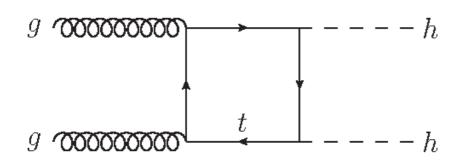


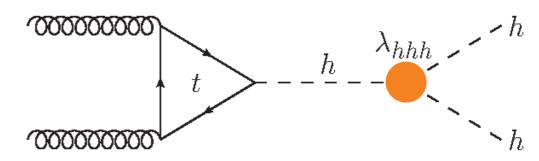


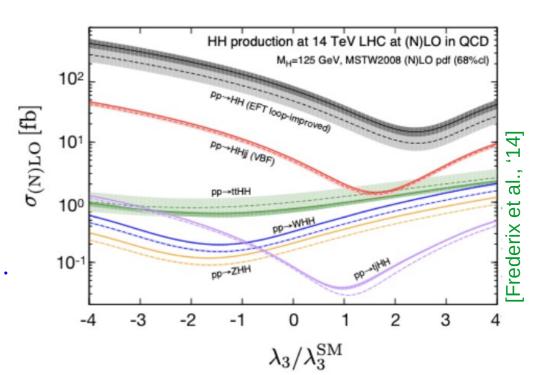
→ Single-Higgs production → $λ_{hhh}$ enters at NLO



[Degrassi, Giardino, Maltoni, Pagani '16] [ATLAS-CONF-2019-049]


> Electroweak Precision Observables (EWPOs) $\rightarrow \lambda_{hhh}$ enters at NNLO



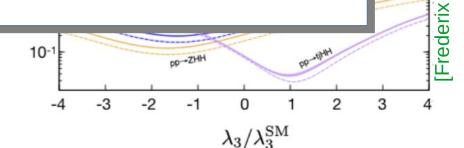

Accessing λ_{hhh} experimentally

> Double-Higgs production → λ_{hhh} enters at LO → most direct probe of λ_{hhh}

- Box and triangle diagrams interfere destructively
 - → small prediction in SM
 - ightarrow BSM deviation in λ_{hhh} can significantly alter double-Higgs production!
- → Upper limit on double-Higgs production cross-section → limits on $\kappa_{\lambda} \equiv \lambda_{hhh} / (\lambda_{hhh}^{(0)})^{SM}$
- » κ_λ as an effective coupling $o \mathcal{L} \supset -\kappa_\lambda imes rac{3m_h^2}{v^2} \cdot h^3 + \cdots$

Accessing λ_{hhh} via double-Higgs production

▶ Double-Higgs production $\rightarrow \lambda_{hhh}$ enters at LO \rightarrow most direct probe of λ_{hhh}


Recent results from ATLAS hh-searches [ATLAS-CONF-2022-050] yield the limits:

$$-0.4 < \kappa_{\lambda} < 6.3$$
 at 95% C.L.

→ factor ~2 improvement compared to pre-2021 best ATLAS limits (from single-h prod.)
 -3.2 < κ_λ < 11.9 at 95% C.L. [ATLAS-PHYS-PUB-2019-009]

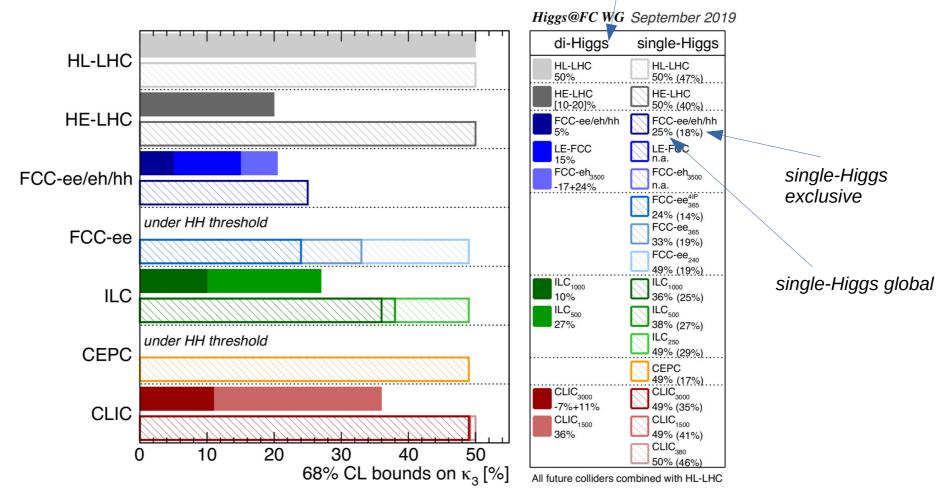
(CMS recently gave -1.2 < κ_{λ} < 6.5 at 95% C.L. [CMS '22])

- \rightarrow Can κ_{λ} now be used to constrain the parameter space of BSM models?
- ightarrow κ_{λ} as an effective coupling ightarrow $\mathcal{L} \supset -\kappa_{\lambda} imes rac{sm_h}{v^2} \cdot h^3 + \cdots$

in QCD

Uppeκ_λ≡λ

> Box

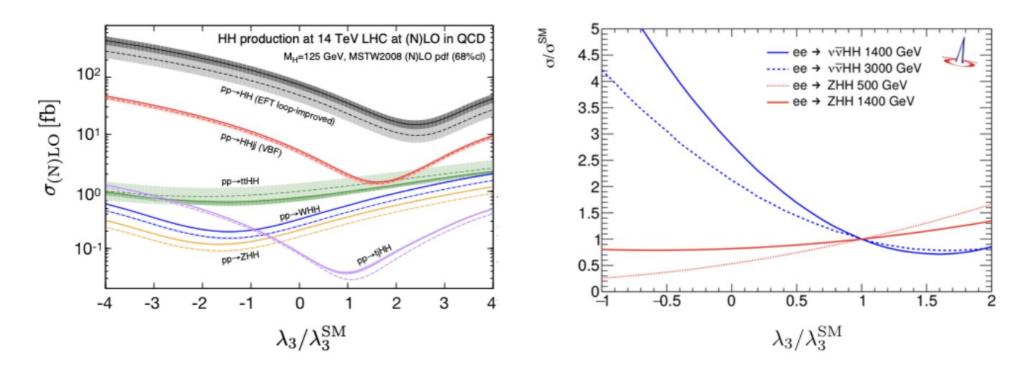

 $\rightarrow B$

hh-p

Future determination of λ_{hhh}

Expected sensitivities in literature, assuming $\lambda_{hhh} = (\lambda_{hhh})^{SM}$

Plot taken from [de Blas et al., 1905.03764]

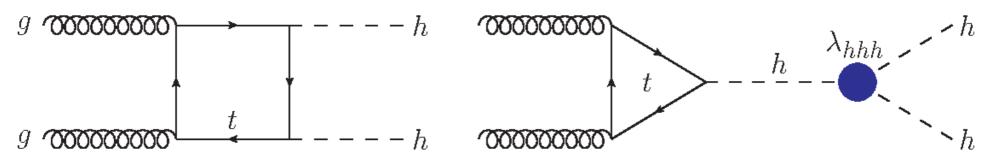


di-Higgs exclusive result

see also [Cepeda et al., 1902.00134], [Di Vita et al.1711.03978], [Fujii et al. 1506.05992, 1710.07621, 1908.11299], [Roloff et al., 1901.05897], [Chang et al. 1804.07130,1908.00753], etc.

Future determination of λ_{hhh}

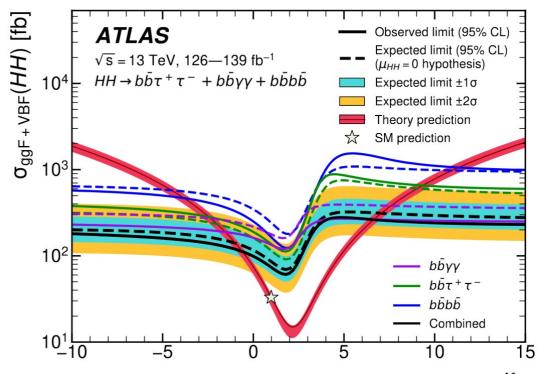
Higgs production cross-sections (here double Higgs production) depend on $\lambda_{\mbox{\tiny hhh}}$

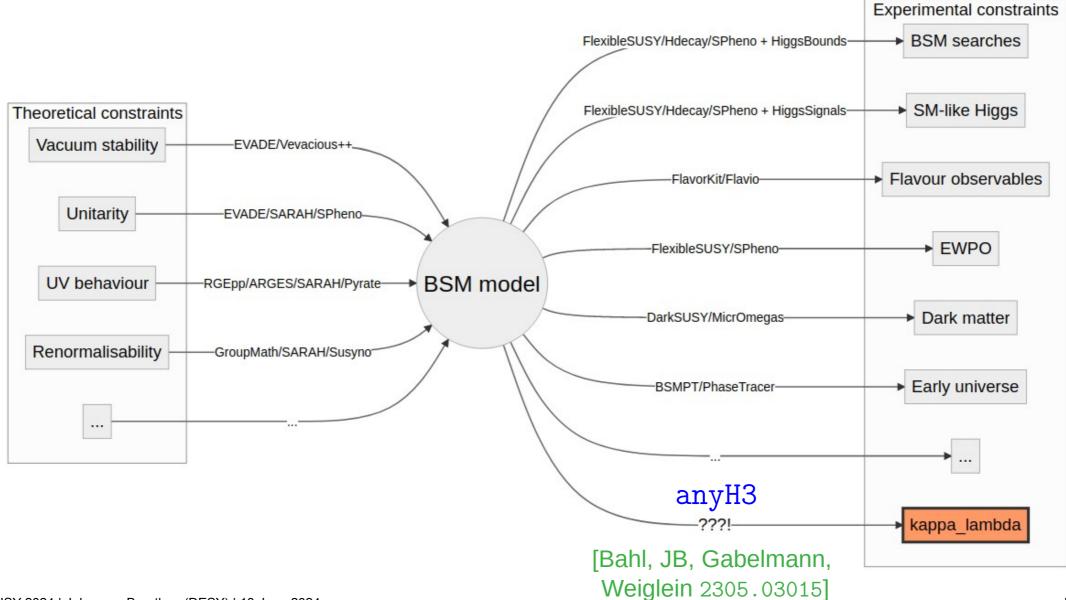

Figure 10. Double Higgs production at hadron (left) [65] and lepton (right) [66] colliders as a function of the modified Higgs cubic self-coupling. See Table 18 for the SM rates. At lepton colliders, the production cross sections do depend on the polarisation but this dependence drops out in the ratios to the SM rates (beam spectrum and QED ISR effects have been included).

Plots taken from [de Blas et al., 1905.03764]

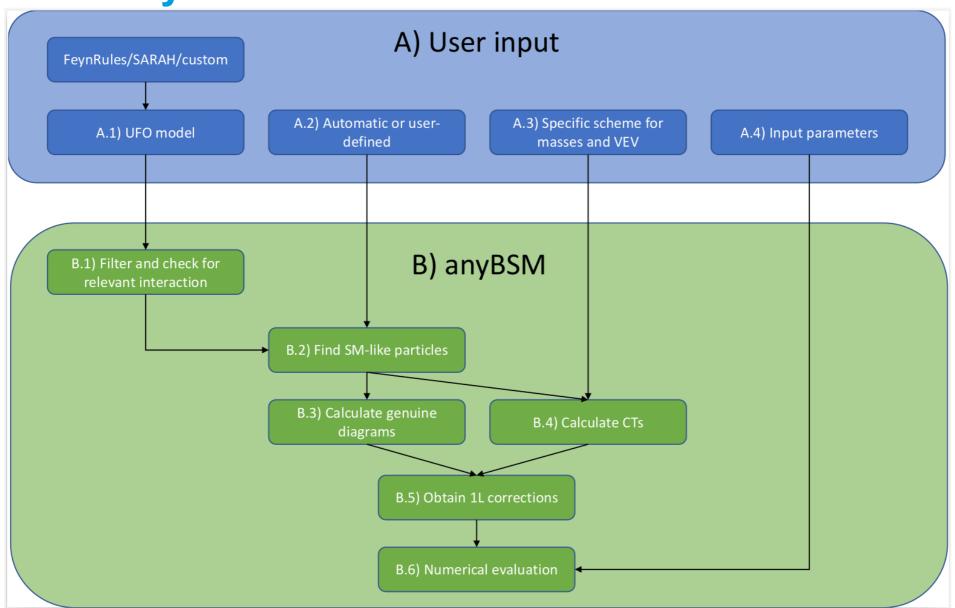
[Frederix et al., 1401.7340]

Experimental situation for λ_{hhh}


▶ Double-Higgs production $\rightarrow \lambda_{hhh}$ enters at LO \rightarrow most direct probe of λ_{hhh}


[Note: Single-Higgs production (EW precision observables) $\rightarrow \lambda_{hhh}$ enters at NLO (NNLO)]

- > Box and triangle diagrams interfere destructively
 - → small prediction in SM
 - \rightarrow BSM deviation in λ_{hhh} can significantly enhance double-Higgs production!
- Search limits on double-Higgs production
 - \rightarrow limits on effective coupling $\kappa_{\lambda} \equiv \lambda_{hhh} / (\lambda_{hhh}^{(0)})^{SM}$


$$-0.4 < \kappa_{\lambda} < 6.3$$
 [ATLAS PLB '23]

λ_{hhh} within the landscape of automated tools

Workflow of anyH3

(Default) Renormalization choice of $(v^{SM})^{OS}$ and $(m_i^2)^{OS}$

>
$$v^{\text{OS}} \equiv \frac{2M_W^{\text{OS}}}{e} \sqrt{1 - \frac{M_W^{2 \, \text{OS}}}{M_Z^{2 \, \text{OS}}}}$$
 with
$$\cdot \delta^{(1)} M_V^{2 \, \text{OS}} = \frac{\Pi_V^{(1), T}}{M_V^{2 \, \text{OS}}} (p^2 = M_V^{2 \, \text{OS}}), V = W, Z$$

$$\cdot \delta^{(1)} e^{\text{OS}} = \frac{1}{2} \dot{\Pi}_{\gamma} (p^2 = 0) + \text{sign} (\sin \theta_W) \frac{\sin \theta_W}{M_Z^2 \cos \theta_W} \Pi_{\gamma Z} (p^2 = 0)$$

- > attention (i): $\rho^{\text{tree-level}} \neq 1 \rightarrow \text{further CTs needed (depends on the model)}$ \rightarrow ability to define *custom* renormalisation conditions
- > scalar masses: $m_i^{OS} = m_i^{pole}$

$$\delta^{\mathsf{OS}} m_i^2 = -\widetilde{\mathsf{Re}} \Sigma_{h_i}^{(1)}|_{p^2 = m_i^2}$$

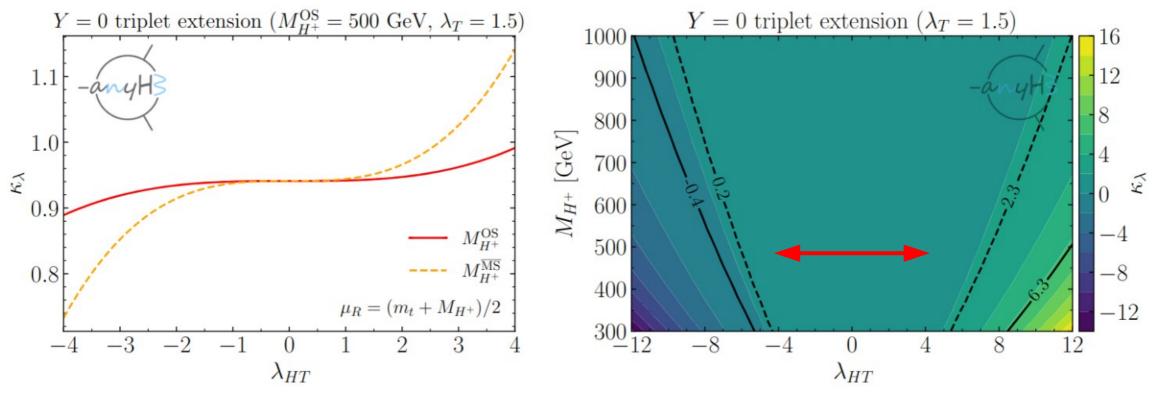
$$\delta^{\text{OS}} Z_i = \widetilde{\text{Re}} \frac{\partial}{\partial p^2} \Sigma_{h_i}^{(1)} |_{p^2 = m_i^2}$$

> attention (ii): scalar mixing may also require further CTs/tree-level relations

All bosonic one- & two-point functions and their derivatives for general QFTs are required for flexible OS renormalisation.

Features of anyH3, so far

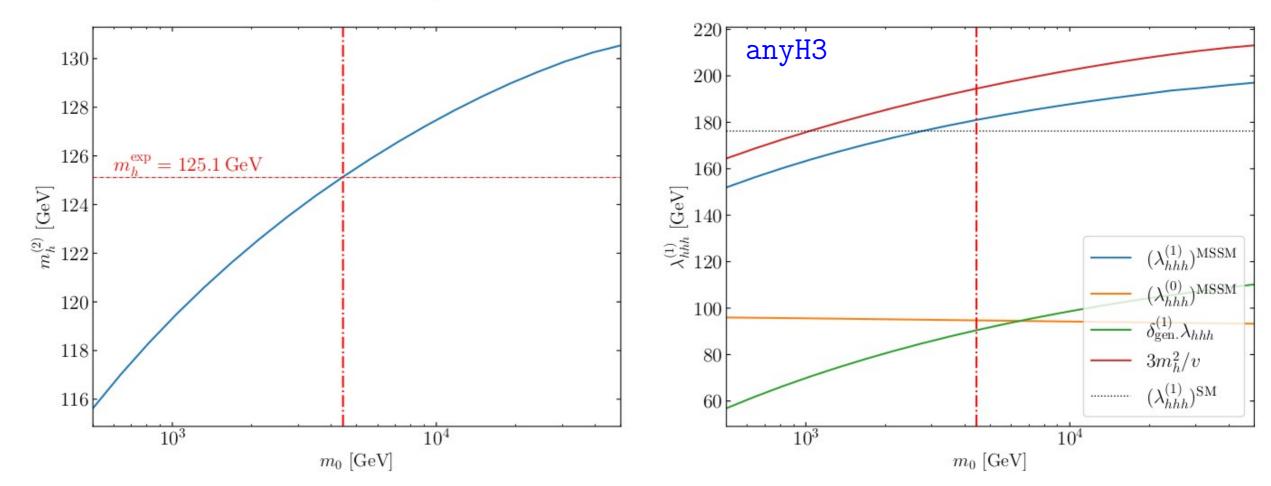
- Import/conversion of any UFO model
- Definition of renormalisation schemes


```
schemes.yml:
  default scheme: OSalignment
                                            Example for 2HDM
  renormalization_schemes:
   MS:
      description: all (B)SM parameters MS
      SM names:
        Higgs-Boson: h1
      VEV counterterm: MS
      mass counterterms:
        h1: MS
        h2: MS
    OSalignment:
      description: $\overline{\mathrm{MS}}$ mixing angles
  and OS masses i.e. fully on-shell $\lambda {hhh}$ for $
  \sin {\beta-\alpha}=1$
      SM names:
        Higgs-Boson: h1
      VEV counterterm: OS
      mass counterterms:
        h1: 0S
        h2: 0S
    05:
      description: OS conditions for scalar masses as well
DESY. | SUSY 2024 | Johannes Braathen (DESY) | 13 June 2024
```

- Analytical / numerical / LaTeX outputs
- Restrictions on topologies or on considered particles possible
- 3 user interfaces:
 - Python library
 - Command line
 - Mathematica interface
- **Perturbative unitarity checks** available (at tree level and in high-energy limit for now)
- Can be used together with a spectrum generator and handles SLHA format
- Efficient **caching** available
- Etc.

New results IV: renormalisation scheme comparisons

Real (VEV-less) triplet model:


$$V(\Phi,T) = \mu^2 |\Phi|^2 + \frac{\lambda}{2} |\Phi|^4 + \frac{M_T^2}{2} |T|^2 + \frac{\lambda_T}{2} |T|^4 + \frac{\lambda_{HT}}{2} |T|^2 |\Phi|^2, \quad \langle T \rangle = 0, \ \langle \Phi \rangle = v_{\text{SM}}$$

- → *Left*: scheme variation of charged triplet mass $M_{H\pm}$ (enters λ_{hhh} from 1L) → estimate of theoretical uncertainty from missing 2L corrections
- > Right: κ_{λ} @ 1L in plane of $M_{H\pm}$ and $\lambda_{H\mp}$ (portal coupling)

New results VI: full one-loop calculation of λ_{hhh} in the MSSM

CMSSM, $m_0 = m_{1/2} = -A_0$, $\tan \beta = 10$, $\operatorname{sgn}(\mu) = 1$, with m_h computed at 2L in SPheno

- ► Example for a very simple version of the constrained MSSM \rightarrow BSM parameters m_0 , $m_{1/2}$, A_0 , sgn(μ), tanβ
- For each point, M, computed at 2L with SPheno, and SLHA output of SPheno used as input of anyH3