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Evolution of the Universe around the electroweak epoch

How did the hot early Universe evolve around the electroweak epoch?

▶ Exotic intermediate phases such as
charge-breaking ones (massive photons, …)?

▶ Multi-step phase transitions? E.g.:

EW-symmetric (high 𝑇)⟶ neutral
⟶ charge-breaking⟶ neutral (𝑇 = 0)

▶ First-order phase transitions between
charge-breaking and neutral phases?

Christoph Borschensky – Intermediate CB phases in the 2HDM 3
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Evolution of the Universe around the electroweak epoch

How did the hot early Universe evolve around the electroweak epoch?

▶ Exotic intermediate phases such as
charge-breaking ones (massive photons, …)?

▶ Multi-step phase transitions? E.g.:

EW-symmetric (high 𝑇)⟶ neutral
⟶ charge-breaking⟶ neutral (𝑇 = 0)

▶ First-order phase transitions between
charge-breaking and neutral phases?

Excellent testbed for BSM physics with extended scalar sectors
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The CP-conserving 2HDM (type I) with softly broken ℤ2 symmetry
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and real fields 𝜌𝑖, 𝜂𝑖, 𝜁𝑖, 𝜓𝑖 (𝑖 = 1, 2), and VEVs 𝜔̄𝑗 (𝑗 = 1, 2, CP, CB)
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▶ Present-day EW-breaking vacuum at zero temperature 𝑇 = 0 (with 𝑣𝑗 ≡ 𝜔̄𝑗|𝑇=0):

𝑣CB = 𝑣CP = 0 and 𝑣2 ≡ 𝑣21 + 𝑣
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2 and tan𝛽 ≡ 𝑣2/𝑣1
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Phases in the 2HDM

Type of vacuum √2 ⟨Φ1⟩ √2 ⟨Φ2⟩
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𝜆3 > 0

(derive e.g. with geometric methods [Ivanov ’08])
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𝜆3 > 0

(derive e.g. with geometric methods [Ivanov ’08])

▶ Bounded-from-below conditions:
𝜆1,2 > 0 , √𝜆1𝜆2 + 𝜆3 > 0 ,

√𝜆1𝜆2 + 𝜆3 + 𝜆4 − 𝜆5 > 0

▶ Conditions for a CB vacuum:
√𝜆1𝜆2 − 𝜆3 > 0 , 𝜆4 > |𝜆5|

and
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Thermal evolution of the effective potential

Full one-loop effective potential including thermal corrections:

𝑉eff(𝑇) = 𝑉tree + 𝑉CW + 𝑉CT + 𝑉𝑇(𝑇)

In high-𝑇 limit: 𝑇 dependence in 𝑉eff from
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2
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including gauge and Yukawa couplings (blue hyperbola: 𝑚2
12 ≠ 0)
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CW: Coleman-Weinberg potential
CT: counterterm potential
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Follow-up
questions

So far alre
ady known

[Ivanov ’08
; Ginzburg

, Ivanov, K
anishev ’0

9], but:

▶ Existence
of CB phas

es using fu
ll one-loo

p-correcte
d effective

2HDM

potential (
beyond hi

gh-𝑇 limit)
?

▶ Intermedi
ate CB pha

ses vs. col
lider cons

traints?

▶ Sequence
s of phase

transitions
? EW-symm

etry restor
ation at hi

gh 𝑇?
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Electroweak symmetry (non-)restoration in the 2HDM

Is the EW symmetry always restored at 𝑇 → ∞? ⇒ Check for minimum at origin

Extract leading term ∝ 𝑇2 for 𝑇 → ∞:

Hessian 𝐻𝑖𝑗 ≡
𝜕2𝑉𝑇
𝜕𝜔̄𝑖𝜕𝜔̄𝑗

|
𝜔̄𝑖,𝑗=0

⇒ H ≡ lim
𝑇→∞

𝐻
𝑇2

= lim
𝑇→∞

1
𝑇2
(
𝐻11 𝐻12
𝐻21 𝐻22

) = (
H11 0
0 H22

)

with
H11 = 𝑐1 −

1
16𝜋

[√2 (3𝑔3 + 𝑔′3) + 4 (3√𝑐1𝜆1 + √𝑐2 (2𝜆3 + 𝜆4))]

H22 = 𝑐2 −
1
16𝜋

[√2 (3𝑔3 + 𝑔′3) + 4 (3√𝑐2𝜆2 + √𝑐1 (2𝜆3 + 𝜆4))]

⇒ Condition for a minimum at the origin: H11 > 0 and H22 > 0
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Electroweak symmetry (non-)restoration in the 2HDM
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Scans of the 2HDM parameter space

(1) Generate seed points at 𝑇 = 0 and scan over parameter space around them
= Points with a suitable trajectory for an intermediate CB phase in high-𝑇 limit
▶ SM VEV and Higgs mass 𝑣 = 246.22 GeV and 𝑚ℎ = 125.09 GeV fixed at 𝑇 = 0

(2) Locate the minima and evolve the VEVs for 𝑇 > 0 for full one-loop effective
potential including thermal corrections: BSMPT [Basler, Mühlleitner, Müller ’18–’21]

(3) Use ScannerS [Coimbra et al. ’13–’20] to apply constraints to selected points:
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Scans of the 2HDM parameter space

(1) Generate seed points at 𝑇 = 0 and scan over parameter space around them
= Points with a suitable trajectory for an intermediate CB phase in high-𝑇 limit
▶ SM VEV and Higgs mass 𝑣 = 246.22 GeV and 𝑚ℎ = 125.09 GeV fixed at 𝑇 = 0

(2) Locate the minima and evolve the VEVs for 𝑇 > 0 for full one-loop effective
potential including thermal corrections: BSMPT [Basler, Mühlleitner, Müller ’18–’21]

(3) Use ScannerS [Coimbra et al. ’13–’20] to apply constraints to selected points:

Theoretical constraints:
bounded-from-below, perturbativity,
perturbative unitarity [Akeroyd, Arhrib, Naimi ’00],
absolute stability [Barroso, Ferreira, Ivanov, Santos ’13]

Experimental constraints:
flavour physics, Higgs searches at collid-
ers, 𝑆𝑇𝑈-parameters [Peskin, Takeuchi ’92]
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Results of scan
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Intermediate CB phase:

▶ 100 ≲
𝑚𝐻±

GeV
≲ 210

▶ 𝑚𝐻± ≈ 𝑚𝐴 or 𝑚𝐻± ≈ 𝑚𝐻

▶ |𝜆max| ≳ 4

⇒ Possibility for 𝐻 → 𝐴𝑍
and 𝐻 → 𝐻±𝑊∓ decays

EW symmetry restoration
at high 𝑇:
▶ |𝜆max| < 5

E CB phase + constraints
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Benchmark points
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Intermediate EW-symmetry restoration
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Summary and conclusions

Phase transitions including intermediate charge-breaking phases in the 2HDM

▶ Intermediate CB phases can occur in the CP-conserving 2HDM with full
one-loop thermal corrections

▶ Difficult to satisfy all experimental constraints

→ CB phases occur only for relatively large couplings

← Restoration of EW symmetry at high temperatures requires small couplings
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one-loop thermal corrections
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→ CB phases occur only for relatively large couplings
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▶ Exotic phases (CB phase, intermediate EW-symmetry restoration)
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Backup

ℤ2 symmetry

To avoid dangerously large flavour-changing neutral currents at tree level:
▶ Impose discrete ℤ2 symmetry:

Φ1 ⟶Φ1, Φ2 ⟶−Φ2

▶ Depending on ℤ2 charges of fermion fields, four possible types:

𝑢-type 𝑑-type leptons

Type I Φ2 Φ2 Φ2
Type II Φ2 Φ1 Φ1

Lepton-Specific Φ2 Φ2 Φ1
Flipped Φ2 Φ1 Φ2

▶ 𝑚2
12 term in 𝑉 breaks ℤ2 symmetry softly
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Backup

Types of vacua in the 2HDM

Type of vacuum √2 ⟨Φ1⟩ √2 ⟨Φ2⟩

Neutral EW-symmetric (
0
0
) (

0
0
)

Neutral EW-breaking (
0
𝑣1
) (

0
𝑣2
)

CP-breaking (
0
𝑣̄1
) (

0
𝑣̄2 𝑒

𝑖𝜃)

Charge-breaking (CB) (
0
𝑣′1
) (

𝛼
𝑣′2
)
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Backup

Phase diagram in (𝑚2
11, 𝑚

2
22) plane

Start with toy model with 𝑚2
12 = 0; derive e.g. with geometric methods [Ivanov ’08]:

▶ Bounded-from-below conditions:
𝜆1,2 > 0 , √𝜆1𝜆2 + 𝜆3 > 0 ,

√𝜆1𝜆2 + 𝜆3 + 𝜆4 − 𝜆5 > 0

▶ Conditions for a CB vacuum:
√𝜆1𝜆2 − 𝜆3 > 0 , 𝜆4 > |𝜆5|

and

𝑚2
11√𝜆2 + 𝑚

2
22√𝜆1 < 0 ,

𝑚2
11 < 𝑚

2
22
𝜆3
𝜆2
, 𝑚2

22 < 𝑚
2
11
𝜆3
𝜆1

EW symmetric

CB

m2
11

m2
22

v1 = 0

v2 6= 0

v1 6= 0

v2 = 0

λ2
λ3

λ3
λ1
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Backup

Can we classify the different vacua geometrically?
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Backup

Tilde basis

Introduce rescaled fields with 𝑘4 ≡ √𝜆2/𝜆1:

Φ1 = 𝑘Φ̃1, Φ2 = 𝑘
−1Φ̃2 ⇔ Φ̃1 = 𝑘

−1Φ1, Φ̃2 = 𝑘Φ2
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Φ1 = 𝑘Φ̃1, Φ2 = 𝑘
−1Φ̃2 ⇔ Φ̃1 = 𝑘

−1Φ1, Φ̃2 = 𝑘Φ2

Rescaled terms in 𝑉:

𝜆1 (Φ
†
1Φ1)

2 + 𝜆2 (Φ
†
2Φ2)

2 = 𝜆1𝑘
4 (Φ̃†

1Φ̃1)
2 + 𝜆2𝑘

−4 (Φ̃†
2Φ̃2)

2 = 𝜆̃ [(Φ̃†
1Φ̃1)

2 + (Φ̃†
2Φ̃2)

2]

𝑚2
11 (Φ

†
1Φ1) + 𝑚

2
22 (Φ

†
2Φ2) = 𝑚̃

2
11 (Φ̃

†
1Φ̃1) + 𝑚̃

2
22 (Φ̃

†
2Φ̃2)

with 𝜆̃ ≡ √𝜆1𝜆2 , 𝑚̃2
11 ≡ 𝑘

2𝑚2
11, 𝑚̃2

22 ≡ 𝑘
−2𝑚2

22

▶ Other quartic terms and 𝑚2
12 term remain unchanged
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Backup

Potential in the tilde basis

𝑉 = 𝑚̃2
11Φ̃

†
1Φ̃1 + 𝑚̃

2
22Φ̃

†
2Φ̃2 − 𝑚

2
12 (Φ̃

†
1Φ̃2 + ℎ.𝑐.) +

𝜆̃
2
[(Φ̃†

1Φ̃1)
2 + (Φ̃†

2Φ̃2)
2]

+ 𝜆3 (Φ̃
†
1Φ̃1) (Φ̃

†
2Φ̃2) + 𝜆4 (Φ̃

†
1Φ̃2) (Φ̃

†
2Φ̃1) +

𝜆5
2
[(Φ̃†

1Φ̃2)
2 + h.c.]
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Backup

Bilinear form

Introduce vector 𝑟𝜇 = (Φ̃†
1Φ̃1 + Φ̃

†
2Φ̃2, 2 Re Φ̃

†
1Φ̃2, 2 Im Φ̃†

1Φ̃2, Φ̃
†
1Φ̃1 − Φ̃

†
2Φ̃2)

𝑇

⇒ 2HDM potential in bilinear form (following [Ivanov ’06-’08]):

𝑉 = −𝑀𝜇𝑟
𝜇 + 1

2
Λ𝜇𝜈𝑟

𝜇𝑟𝜈

where (Λ𝜇𝜈 diagonal in tilde basis!)

𝑀𝜇 = (𝑀0, 𝑀1, 𝑀2, 𝑀3)
𝑇 = (−

𝑚̃2
11 + 𝑚̃

2
22

2
, − Re𝑚2

12, Im𝑚2
12,

𝑚̃2
11 − 𝑚̃

2
22

2
)
𝑇

Λ𝜇𝜈 = diag (Λ0, −Λ1, −Λ2, −Λ3) = diag (
𝜆̃ + 𝜆3
2

,
−𝜆4 − 𝜆5

2
,
−𝜆4 + 𝜆5

2
,
−𝜆̃ + 𝜆3
2

)

▶ ‘Bounded-from-below’ (BFB): Λ0 > 0 , Λ0 > Λ𝑖 for 𝑖 = 1, 2, 3 (Λ𝑖 can be < 0)
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Backup

Physical configurations

It follows from the definition of 𝑟𝜇 (Schwarz inequality):

𝑟0 ≥ 0, 𝑟𝜇𝑟
𝜇 = 𝑟20 −∑

𝑖
𝑟2𝑖 ≥ 0

⇒ Physically realisable configurations inside/on the future lightcone
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𝑟0 ≥ 0, 𝑟𝜇𝑟
𝜇 = 𝑟20 −∑

𝑖
𝑟2𝑖 ≥ 0

⇒ Physically realisable configurations inside/on the future lightcone

Classification of vacua

(i) Neutral EW-symmetric: ⟨𝑟𝜇⟩ = 0 (apex of the cone)

(ii) Neutral EW-breaking: ⟨𝑟𝜇⟩ ≠ 0 and ⟨𝑟𝜇⟩⟨𝑟
𝜇⟩ = 0 (on the surface of the cone)

(iii) Charge-breaking: ⟨𝑟𝜇⟩⟨𝑟
𝜇⟩ > 0 (inside the cone)

Christoph Borschensky – Intermediate CB phases in the 2HDM 20



Backup

Physical configurations

It follows from the definition of 𝑟𝜇 (Schwarz inequality):

𝑟0 ≥ 0, 𝑟𝜇𝑟
𝜇 = 𝑟20 −∑

𝑖
𝑟2𝑖 ≥ 0

⇒ Physically realisable configurations inside/on the future lightcone

Classification of vacua

(i) Neutral EW-symmetric: ⟨𝑟𝜇⟩ = 0 (apex of the cone)
(ii) Neutral EW-breaking: ⟨𝑟𝜇⟩ ≠ 0 and ⟨𝑟𝜇⟩⟨𝑟

𝜇⟩ = 0 (on the surface of the cone)

(iii) Charge-breaking: ⟨𝑟𝜇⟩⟨𝑟
𝜇⟩ > 0 (inside the cone)

Christoph Borschensky – Intermediate CB phases in the 2HDM 20



Backup

Physical configurations

It follows from the definition of 𝑟𝜇 (Schwarz inequality):

𝑟0 ≥ 0, 𝑟𝜇𝑟
𝜇 = 𝑟20 −∑

𝑖
𝑟2𝑖 ≥ 0

⇒ Physically realisable configurations inside/on the future lightcone

Classification of vacua

(i) Neutral EW-symmetric: ⟨𝑟𝜇⟩ = 0 (apex of the cone)
(ii) Neutral EW-breaking: ⟨𝑟𝜇⟩ ≠ 0 and ⟨𝑟𝜇⟩⟨𝑟

𝜇⟩ = 0 (on the surface of the cone)
(iii) Charge-breaking: ⟨𝑟𝜇⟩⟨𝑟

𝜇⟩ > 0 (inside the cone)

Christoph Borschensky – Intermediate CB phases in the 2HDM 20



Backup

Physical configurations

It follows from the definition of 𝑟𝜇 (Schwarz inequality):

𝑟0 ≥ 0, 𝑟𝜇𝑟
𝜇 = 𝑟20 −∑

𝑖
𝑟2𝑖 ≥ 0

⇒ Physically realisable configurations inside/on the future lightcone

Classification of vacua

(i) Neutral EW-symmetric: ⟨𝑟𝜇⟩ = 0 (apex of the cone)
(ii) Neutral EW-breaking: ⟨𝑟𝜇⟩ ≠ 0 and ⟨𝑟𝜇⟩⟨𝑟

𝜇⟩ = 0 (on the surface of the cone)
(iii) Charge-breaking: ⟨𝑟𝜇⟩⟨𝑟

𝜇⟩ > 0 (inside the cone)

Christoph Borschensky – Intermediate CB phases in the 2HDM 20



Backup

Evaluation of minima: (ii) neutral EW-breaking vacuum

Add constraint to potential (𝑡𝑜 surface of cone, 𝑟𝜇𝑟
𝜇 = 𝑟20 − ∑𝑖 𝑟

2
𝑖 = 0):

𝑉̂ = 𝑉 −
𝜁
2
𝑟𝜇𝑟

𝜇 (𝜁: Lagrangian multiplier)
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= ∑

𝑖

𝑀2
𝑖

(Λ𝑖 − 𝜁)2

▶ Equation has up to 6 solutions for 𝜁/extrema⇒ extract minimum numerically
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Backup

Evaluation of minima: (iii) charge-breaking vacuum

From 𝑑𝑉
𝑑𝑟𝜇

!= 0, it follows: Λ0𝑟0 = 𝑀0 , Λ𝑖𝑟𝑖 = 𝑀𝑖 (minimum: Λ𝑖 < 0)

▶ Plugging solution into inequalities 𝑟0 > 0 and 𝑟
2
0 − ∑𝑖 𝑟

2
𝑖 > 0:

𝑀0 > 0 and
𝑀2
0

Λ20
> ∑

𝑖

𝑀2
𝑖

Λ2𝑖

or, slightly rewritten,

𝑚̃2
11 + 𝑚̃

2
22 < 0 and

𝜇21
𝑎21
+
𝜇22
𝑎22
+
𝜇23
𝑎23

< 1 with 𝜇2𝑖 =
𝑀2
𝑖

𝑀2
0
, 𝑎2𝑖 =

Λ2𝑖
Λ20

⇒ Points that lie inside an ellipsoid with semi-axes 𝑎1,2,3
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Backup

Evaluation of minima: (iii) charge-breaking vacuum: ellipsoid

m
1

m
3

m
2

[Ivanov ’08]
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Backup

Toy model: ℤ2-symmetric 2HDM with 𝑚2
12 = 0

For a simpler graphical representation, discuss toy model: ℤ2-symmetric 2HDM

𝑉toy = 𝑉|𝑚2
12=0

Constraints
▶ Bounded-from-below:

𝜆1,2 > 0 , √𝜆1𝜆2 + 𝜆3 > 0 , √𝜆1𝜆2 + 𝜆3 + 𝜆4 − 𝜆5 > 0
▶ CB minimum:

√𝜆1𝜆2 − 𝜆3 > 0 , 𝜆4 > |𝜆5|
and

𝑚2
11√𝜆2 + 𝑚

2
22√𝜆1 < 0 , 𝑚2

11 < 𝑚
2
22
𝜆3
𝜆2
, 𝑚2

22 < 𝑚
2
11
𝜆3
𝜆1
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Backup

Effective potential at finite temperatures

Full one-loop and thermally corrected effective potential:

𝑉1𝐿 = 𝑉 + 𝑉CW + 𝑉CT + 𝑉𝑇

with
▶ 𝑉CW: 𝑇-independent one-loop Coleman-Weinberg potential
▶ 𝑉CT: 𝑇-independent counterterm potential
▶ 𝑉𝑇: one-loop thermal corrections at finite 𝑇

Perturbative expansion becomes unreliable at high 𝑇

▶ Resum ‘Daisy‘ diagrams (‘Arnold-Espinosa‘ method) to recover perturbativity
⇒ Certain mass eigenvalues obtain 𝑇-dependent contributions
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Backup

One-loop thermal corrections for 𝑇 → ∞

𝑉𝑇
𝑇→∞≈ −∑

𝑘
𝑛𝑘

⎧⎪⎪⎪

⎨⎪⎪⎪
⎩

𝜋2
90
𝑇4 − 1

24
𝑚2
𝑘𝑇

2 + 1
12𝜋

𝑚3
𝑘𝑇 𝑘 = 𝐻±, ℎ, 𝐻, 𝐴,𝑊𝐿, 𝑍𝐿, 𝛾𝐿

𝜋2
90
𝑇4 − 1

24
𝑚2
𝑘𝑇

2 + 1
12𝜋

𝑚3
𝑘𝑇 𝑘 = 𝑊𝑇, 𝑍𝑇

7𝜋2
720

𝑇4 − 1
48
𝑚2
𝑘𝑇

2 𝑘 = 𝑡, 𝑏, 𝜏

with
▶ 𝑛𝑘: number of d.o.f.s of field 𝑘
▶ 𝑚𝑘 (𝑚𝑘): mass eigenvalue for field 𝑘 including (excluding) thermal Debye
corrections from Daisy resummation
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Backup

Electroweak symmetry (non-)restoration in the 2HDM

0 1 2 3 4
λ

−0.75

−0.50

−0.25

0.00

0.25

λ ≡ λ1 = λ2 = λ3 = λ4 = λ5

H11
H22

1

0 1 2 3 4
λ

−0.2

0.0

0.2

0.4

λ ≡ λ1, λ2 = λ3 = λ4 = λ5 = λ

2

H11
H22

1⇒ Condition for a minimum at the origin: H11 > 0 and H22 > 0
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Backup

Scans of the 2HDM parameter space

Parameter Scan range

𝜆1, 𝜆2, 𝜆3, 𝜆4 [0, 4𝜋]
𝜆5 [−4𝜋, 4𝜋]

𝑚2
11, 𝑚

2
22 [−106, 0] GeV2

𝑚2
12 [0, 106] GeV2

▶ Random “smart” scan over parameter space
→ Get VEV 𝑣0 and light CP-even Higgs mass 𝑚ℎ,0

▶ Rescale to get 𝑣 = 246.22 GeV,𝑚ℎ = 125.09 GeV:

𝑚2
𝑖𝑗 → 𝑚2

𝑖𝑗
𝑚2
ℎ

𝑚2
ℎ,0
, 𝜆𝑘 → 𝜆𝑘

𝑚2
ℎ

𝑚2
ℎ,0

𝑣20
𝑣2

▶ Discard points with no neutral vacuum at 𝑇 = 0 (apply only CB constraints to
quartic couplings, √𝜆1𝜆2 − 𝜆3 > 0 and 𝜆4 > |𝜆5|, but not to quadratic ones)

▶ Apply theoretical constraints:
▶ Bounded-from-below
▶ Perturbativity (|𝜆1,2,3,4,5| < 4𝜋)
▶ Perturbative unitarity [Akeroyd, Arhrib, Naimi ’00]
▶ Absolute stability [Barroso, Ferreira, Ivanov, Santos ’13]
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