INTERMEDIATE CHARGE-BREAKING PHASES IN THE 2-HIGGS-DOUBLET MODEL

Christoph Borschensky

(e-mail: christoph.borschensky@kit.edu)

based on JHEP02(2024)232 (arXiv:2308.04141)

with Mayumi Aoki, Lisa Biermann, Igor P. Ivanov, Margarete Mühlleitner, Hiroto Shibuya

SUSY 2024

THE 31TH INTERNATIONAL CONFERENCE ON SUPERSYMMETRY AND UNIFICATION OF FUNDAMENTAL INTERACTIONS

Theory meets Experiment

Madrid, 14 June 2024

Outline

1 Motivation

Early Universe The CP-conserving 2HDM and its phases

2 Temperature corrections

Scanning for intermediate CB phases using the full V_{eff}(T)
 Setup of scans
 Benchmark points

Scanning for intermediate CB phases using the full $V_{\text{eff}}(T)$

Summary

Evolution of the Universe around the electroweak epoch

How did the hot early Universe evolve around the electroweak epoch?

Scanning for intermediate CB phases using the full $V_{eff}(T)$

Summary

Evolution of the Universe around the electroweak epoch

How did the hot early Universe evolve around the electroweak epoch?

Exotic intermediate phases such as charge-breaking ones (massive photons, ...)?

Scanning for intermediate CB phases using the full $V_{\text{eff}}(T)$

Evolution of the Universe around the electroweak epoch

How did the hot early Universe evolve around the electroweak epoch?

- Exotic intermediate phases such as charge-breaking ones (massive photons, ...)?
- Multi-step phase transitions? E.g.:
 EW-symmetric (high T) → neutral
 → charge-breaking → neutral (T = 0)

Scanning for intermediate CB phases using the full $V_{\text{eff}}(T)$

Summary

Evolution of the Universe around the electroweak epoch

How did the hot early Universe evolve around the electroweak epoch?

- Exotic intermediate phases such as charge-breaking ones (massive photons, ...)?
- Multi-step phase transitions? E.g.:
 EW-symmetric (high T) → neutral
 → charge-breaking → neutral (T = 0)
- First-order phase transitions between charge-breaking and neutral phases?

Evolution of the Universe around the electroweak epoch

How did the hot early Universe evolve around the electroweak epoch?

- Exotic intermediate phases such as charge-breaking ones (massive photons, ...)?
- ► Multi-step phase transitions? E.g.: EW-symmetric (high T) \rightarrow neutral \rightarrow charge-breaking \rightarrow neutral (T = 0)
- First-order phase transitions between charge-breaking and neutral phases?

Excellent testbed for BSM physics with extended scalar sectors

MotivationTemperature correctionsScanning for intermediate CB phases using the full $V_{eff}(T)$ SurThe CP-conserving 2HDM (type I) with softly broken \mathbb{Z}_2 symmetry

$$V_{\text{tree}} = m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - m_{12}^2 (\Phi_1^{\dagger} \Phi_2 + h.c.) + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \frac{\lambda_5}{2} [(\Phi_1^{\dagger} \Phi_2)^2 + h.c.]$$

MotivationTemperature correctionsScanning for intermediate CB phases using the full $V_{eff}(T)$ SuThe CP-conserving 2HDM (type I) with softly broken \mathbb{Z}_2 symmetry

$$V_{\text{tree}} = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - m_{12}^{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) + \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{\lambda_{5}}{2} [(\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.]$$

with

$$\Phi_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_{1} + i\eta_{1} \\ \zeta_{1} + \bar{\omega}_{1} + i\psi_{1} \end{pmatrix}, \qquad \Phi_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_{2} + \bar{\omega}_{CB} + i\eta_{2} \\ \zeta_{2} + \bar{\omega}_{2} + i(\psi_{2} + \bar{\omega}_{CP}) \end{pmatrix}$$

and real fields ρ_i , η_i , ζ_i , ψ_i (*i* = 1, 2), and VEVs $\bar{\omega}_j$ (*j* = 1, 2, CP, CB)

MotivationTemperature correctionsScanning for intermediate CB phases using the full $V_{eff}(T)$ SuThe CP-conserving 2HDM (type I) with softly broken \mathbb{Z}_2 symmetry

$$V_{\text{tree}} = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - m_{12}^{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) + \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \frac{\lambda_{5}}{2} [(\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.]$$

with

$$\Phi_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_{1} + i\eta_{1} \\ \zeta_{1} + \bar{\omega}_{1} + i\psi_{1} \end{pmatrix}, \qquad \Phi_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_{2} + \bar{\omega}_{\mathsf{CB}} + i\eta_{2} \\ \zeta_{2} + \bar{\omega}_{2} + i(\psi_{2} + \bar{\omega}_{\mathsf{CP}}) \end{pmatrix}$$

and real fields ρ_i , η_i , ζ_i , ψ_i (*i* = 1, 2), and VEVs $\bar{\omega}_i$ (*j* = 1, 2, CP, CB)

▶ Present-day EW-breaking vacuum at zero temperature T = 0 (with $v_i \equiv \bar{w}_i|_{T=0}$):

$$v_{CB} = v_{CP} = 0$$
 and $v^2 \equiv v_1^2 + v_2^2 = (246.22 \text{ GeV})^2$ and $\tan \beta \equiv v_2 / v_1$

Summary

Phases in the 2HDM

Type of vacuum	$\sqrt{2}\langle \Phi_1 \rangle$	$\sqrt{2} \langle \Phi_2 \rangle$
Neutral EW-symmetric	$\begin{pmatrix} 0\\ 0 \end{pmatrix}$	$\begin{pmatrix} 0\\ 0 \end{pmatrix}$
Neutral EW-breaking	$\begin{pmatrix} 0\\ \bar{\omega}_1 \end{pmatrix}$	$\begin{pmatrix} 0\\ \bar{\omega}_2 \end{pmatrix}$
CP-breaking	$\begin{pmatrix} 0\\ \bar{\omega}_1 \end{pmatrix}$	$\begin{pmatrix} 0\\ \bar{\omega}_2 + i\bar{\omega}_{\rm CP} \end{pmatrix}$
Charge-breaking (CB)	$\begin{pmatrix} 0\\ \bar{\omega}_1 \end{pmatrix}$	$egin{pmatrix} \bar{\omega}_{CB} \ \bar{\omega}_{2} \end{pmatrix}$

Scanning for intermediate CB phases using the full $V_{eff}(T)$

Summary

Phases in the 2HDM

Motivation

Scanning for intermediate CB phases using the full $V_{eff}(T)$

Summary

Phases in the 2HDM

5

Full one-loop effective potential including thermal corrections:

$$V_{\rm eff}(T) = V_{\rm tree} + V_{\rm CW} + V_{\rm CT} + V_{\rm T}(T)$$

CW: Coleman-Weinberg potential CT: counterterm potential

Full one-loop effective potential including thermal corrections:

$$V_{\text{eff}}(T) = V_{\text{tree}} + V_{\text{CW}} + V_{\text{CT}} + V_{T}(T)$$

CW: Coleman-Weinberg potential CT: counterterm potential

In high-*T* **limit:** *T* dependence in V_{eff} from

$$m_{ii}^2(T) = m_{ii}^2 + c_i T^2$$

for m_{11}^2 and m_{22}^2

Full one-loop effective potential including thermal corrections:

$$V_{\text{eff}}(T) = V_{\text{tree}} + V_{\text{CW}} + V_{\text{CT}} + V_{T}(T)$$

CW: Coleman-Weinberg potential CT: counterterm potential

In high-*T* **limit:** *T* dependence in V_{eff} from

 $m_{ii}^2(T) = \frac{m_{ii}^2}{m_{ii}^2} + c_i T^2$

for m_{11}^2 and m_{22}^2 and with

$$\begin{split} c_{i} &= \frac{1}{12} \left(3\lambda_{i} + 2\lambda_{3} + \lambda_{4} \right) + \frac{1}{16} \left(3g^{2} + g'^{2} \right) \\ &+ \delta_{i2} \frac{1}{12} \left(y_{\tau}^{2} + 3y_{b}^{2} + 3y_{t}^{2} \right) \end{split}$$

including gauge and Yukawa couplings

Full one-loop effective potential including thermal corrections:

$$V_{\rm eff}(T) = V_{\rm tree} + V_{\rm CW} + V_{\rm CT} + V_T(T)$$

CW: Coleman-Weinberg potential CT: counterterm potential

Scanning for intermediate CB phases using the full $V_{\text{eff}}(T)$

Summary

Electroweak symmetry (non-)restoration in the 2HDM

Is the EW symmetry always restored at $T \rightarrow \infty$? \Rightarrow Check for minimum at origin

Scanning for intermediate CB phases using the full $V_{eff}(T)$

Summary

Electroweak symmetry (non-)restoration in the 2HDM

Is the EW symmetry always restored at $T \rightarrow \infty$? \Rightarrow Check for minimum at origin

Extract leading term $\propto T^2$ for $T \rightarrow \infty$:

$$\text{Hessian } H_{ij} \equiv \frac{\partial^2 V_T}{\partial \bar{\omega}_i \partial \bar{\omega}_j} \Big|_{\bar{\omega}_{i,j}=0} \implies \mathcal{H} \equiv \lim_{T \to \infty} \frac{H}{T^2} = \lim_{T \to \infty} \frac{1}{T^2} \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} = \begin{pmatrix} \mathcal{H}_{11} & 0 \\ 0 & \mathcal{H}_{22} \end{pmatrix}$$

Electroweak symmetry (non-)restoration in the 2HDM

Is the EW symmetry always restored at $T \rightarrow \infty$? \Rightarrow Check for minimum at origin

Extract leading term $\propto T^2$ for $T \rightarrow \infty$:

Temperature corrections

$$\text{Hessian } H_{ij} \equiv \frac{\partial^2 V_T}{\partial \bar{\omega}_i \partial \bar{\omega}_j} \bigg|_{\bar{\omega}_{i,j}=0} \implies \mathcal{H} \equiv \lim_{T \to \infty} \frac{H}{T^2} = \lim_{T \to \infty} \frac{1}{T^2} \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} = \begin{pmatrix} \mathcal{H}_{11} & 0 \\ 0 & \mathcal{H}_{22} \end{pmatrix}$$

with

$$\begin{split} \mathcal{H}_{11} &= c_1 - \frac{1}{16\pi} \left[\sqrt{2} \left(3g^3 + g'^3 \right) + 4 \left(3\sqrt{c_1}\lambda_1 + \sqrt{c_2} \left(2\lambda_3 + \lambda_4 \right) \right) \right] \\ \mathcal{H}_{22} &= c_2 - \frac{1}{16\pi} \left[\sqrt{2} \left(3g^3 + g'^3 \right) + 4 \left(3\sqrt{c_2}\lambda_2 + \sqrt{c_1} \left(2\lambda_3 + \lambda_4 \right) \right) \right] \end{split}$$

Electroweak symmetry (non-)restoration in the 2HDM

Is the EW symmetry always restored at $T \rightarrow \infty$? \Rightarrow Check for minimum at origin

Extract leading term $\propto T^2$ for $T \rightarrow \infty$:

Temperature corrections

$$\text{Hessian } H_{ij} \equiv \frac{\partial^2 V_T}{\partial \bar{\omega}_i \partial \bar{\omega}_j} \Big|_{\bar{\omega}_{i,j}=0} \implies \mathcal{H} \equiv \lim_{T \to \infty} \frac{H}{T^2} = \lim_{T \to \infty} \frac{1}{T^2} \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} = \begin{pmatrix} \mathcal{H}_{11} & 0 \\ 0 & \mathcal{H}_{22} \end{pmatrix}$$

with

$$\begin{split} \mathcal{H}_{11} &= c_1 - \frac{1}{16\pi} \left[\sqrt{2} \left(3g^3 + g'^3 \right) + 4 \left(3\sqrt{c_1}\lambda_1 + \sqrt{c_2} \left(2\lambda_3 + \lambda_4 \right) \right) \right] \\ \mathcal{H}_{22} &= c_2 - \frac{1}{16\pi} \left[\sqrt{2} \left(3g^3 + g'^3 \right) + 4 \left(3\sqrt{c_2}\lambda_2 + \sqrt{c_1} \left(2\lambda_3 + \lambda_4 \right) \right) \right] \end{split}$$

 \Rightarrow Condition for a minimum at the origin: $\mathcal{H}_{11} > 0$ and $\mathcal{H}_{22} > 0$

Electroweak symmetry (non-)restoration in the 2HDM

 \Rightarrow Condition for a minimum at the origin: $\mathcal{H}_{11} > 0$ and $\mathcal{H}_{22} > 0$

Scans of the 2HDM parameter space

- (1) Generate seed points at T = 0 and scan over parameter space around them
 - = Points with a suitable trajectory for an intermediate CB phase in high-T limit
 - SM VEV and Higgs mass v = 246.22 GeV and $m_h = 125.09$ GeV fixed at T = 0

Scans of the 2HDM parameter space

- (1) Generate seed points at T = 0 and scan over parameter space around them
 - = Points with a suitable trajectory for an intermediate CB phase in high-T limit
 - SM VEV and Higgs mass v = 246.22 GeV and $m_h = 125.09$ GeV fixed at T = 0
- (2) Locate the minima and evolve the VEVs for T > 0 for full one-loop effective potential including thermal corrections: BSMPT [Basler, Mühlleitner, Müller '18-'21]

Scans of the 2HDM parameter space

- (1) Generate seed points at T = 0 and scan over parameter space around them
 - = Points with a suitable trajectory for an intermediate CB phase in high-T limit
 - SM VEV and Higgs mass v = 246.22 GeV and $m_h = 125.09$ GeV fixed at T = 0
- (2) Locate the minima and evolve the VEVs for T > 0 for full one-loop effective potential including thermal corrections: BSMPT [Basler, Mühlleitner, Müller '18-'21]
- (3) Use ScannerS [Coimbra et al. '13-'20] to apply constraints to selected points:

Theoretical constraints: bounded-from-below, perturbativity, perturbative unitarity [Akeroyd, Arhrib, Naimi '00], absolute stability [Barroso, Ferreira, Ivanov, Santos '13] **Experimental constraints:** flavour physics, Higgs searches at colliders, *STU*-parameters [*Peskin, Takeuchi '92*]

Results of scan

Scanning for intermediate CB phases using the full $V_{eff}(T)$

Results of scan

Intermediate CB phase:

► 100 ≤
$$\frac{m_{H^{\pm}}}{\text{GeV}}$$
 ≤ 210

•
$$m_{H^{\pm}} \approx m_A \text{ or } m_{H^{\pm}} \approx m_H$$

►
$$|\lambda_{max}| \gtrsim 4$$

 $\Rightarrow \text{ Possibility for } H \rightarrow AZ$ and $H \rightarrow H^{\pm}W^{\mp}$ decays

EW symmetry restoration at high *T*:

$$|\lambda_{\max}| < 5$$

Benchmark points

Benchmark points

Benchmark points

Phase transitions including intermediate charge-breaking phases in the 2HDM

- Intermediate CB phases can occur in the CP-conserving 2HDM with full one-loop thermal corrections
- Difficult to satisfy all experimental constraints

Phase transitions including intermediate charge-breaking phases in the 2HDM

- Intermediate CB phases can occur in the CP-conserving 2HDM with full one-loop thermal corrections See JHEP02(2024)232 for more details!
- Difficult to satisfy all experimental constraints
- CB phases occur only for relatively large couplings
- Restoration of EW symmetry at high temperatures requires small couplings

Phase transitions including intermediate charge-breaking phases in the 2HDM

- Intermediate CB phases can occur in the CP-conserving 2HDM with full one-loop thermal corrections See JHEP02(2024)232 for more details!
- Difficult to satisfy all experimental constraints
- CB phases occur only for relatively large couplings
- Restoration of EW symmetry at high temperatures requires small couplings
 - Multi-step and first-order phase transitions
 - Exotic phases (CB phase, intermediate EW-symmetry restoration)

Phase transitions including intermediate charge-breaking phases in the 2HDM

- Intermediate CB phases can occur in the CP-conserving 2HDM with full one-loop thermal corrections See JHEP02(2024)232 for more details!
- Difficult to satisfy all experimental constraints
- CB phases occur only for relatively large couplings
- Restoration of EW symmetry at high temperatures requires small couplings
 - Multi-step and first-order phase transitions
 - Exotic phases (CB phase, intermediate EW-symmetry restoration)

THANK YOU FOR YOUR ATTENTION! 🙂

Backup

Backup
\mathbb{Z}_2 symmetry

To avoid dangerously large flavour-changing neutral currents at tree level:

• Impose discrete \mathbb{Z}_2 symmetry:

$$\Phi_1 \longrightarrow \Phi_1, \quad \Phi_2 \longrightarrow -\Phi_2$$

\mathbb{Z}_2 symmetry

To avoid dangerously large flavour-changing neutral currents at tree level:

• Impose discrete \mathbb{Z}_2 symmetry:

$$\Phi_1 \longrightarrow \Phi_1, \quad \Phi_2 \longrightarrow -\Phi_2$$

▶ Depending on \mathbb{Z}_2 charges of fermion fields, four possible types:

	<i>u</i> -type	d-type	leptons
Type I	Φ ₂	Φ ₂	Φ ₂
Type II	Φ2	Φ ₁	Φ ₁
Lepton-Specific	Φ ₂	Φ ₂	Φ ₁
Flipped	Φ ₂	Φ ₁	Φ ₂

\mathbb{Z}_2 symmetry

To avoid dangerously large flavour-changing neutral currents at tree level:

• Impose discrete \mathbb{Z}_2 symmetry:

$$\Phi_1 \longrightarrow \Phi_1, \quad \Phi_2 \longrightarrow -\Phi_2$$

▶ Depending on \mathbb{Z}_2 charges of fermion fields, four possible types:

	<i>u</i> -type	d-type	leptons
Туре І	Φ ₂	Φ ₂	Φ ₂
Type II	Φ ₂	Φ ₁	Φ ₁
Lepton-Specific	Φ ₂	Φ ₂	Φ ₁
Flipped	Φ ₂	Φ ₁	Φ ₂

• m_{12}^2 term in V breaks \mathbb{Z}_2 symmetry softly

\mathbb{Z}_2 symmetry

To avoid dangerously large flavour-changing neutral currents at tree level:

• Impose discrete \mathbb{Z}_2 symmetry:

$$\Phi_1 \longrightarrow \Phi_1, \quad \Phi_2 \longrightarrow -\Phi_2$$

▶ Depending on \mathbb{Z}_2 charges of fermion fields, four possible types:

	<i>u</i> -type	d-type	leptons
Туре І	Φ ₂	Φ ₂	Φ ₂
Type II	Φ2	Φ ₁	Φ ₁
Lepton-Specific	Φ2	Φ ₂	Φ ₁
Flipped	Φ ₂	Φ ₁	Φ ₂

• m_{12}^2 term in V breaks \mathbb{Z}_2 symmetry softly

Types of vacua in the 2HDM

Types of vacua in the 2HDM

Types of vacua in the 2HDM

Phase diagram in (m_{11}^2, m_{22}^2) plane

Start with toy model with $m_{12}^2 = 0$; derive e.g. with geometric methods [Ivanov '08]:

15

Can we classify the different vacua geometrically?

Backup Tilde basis

Introduce rescaled fields with $k^4 \equiv \sqrt{\lambda_2/\lambda_1}$:

$$\Phi_1 = k\tilde{\Phi}_1, \quad \Phi_2 = k^{-1}\tilde{\Phi}_2 \qquad \Leftrightarrow \qquad \tilde{\Phi}_1 = k^{-1}\Phi_1, \quad \tilde{\Phi}_2 = k\Phi_2$$

Tilde basis

Introduce rescaled fields with $k^4 \equiv \sqrt{\lambda_2/\lambda_1}$:

$$\Phi_1 = k\tilde{\Phi}_1, \quad \Phi_2 = k^{-1}\tilde{\Phi}_2 \qquad \Leftrightarrow \qquad \tilde{\Phi}_1 = k^{-1}\Phi_1, \quad \tilde{\Phi}_2 = k\Phi_2$$

Rescaled terms in V:

$$\begin{split} \lambda_{1} \left(\Phi_{1}^{\dagger} \Phi_{1} \right)^{2} + \lambda_{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right)^{2} &= \lambda_{1} k^{4} \left(\tilde{\Phi}_{1}^{\dagger} \tilde{\Phi}_{1} \right)^{2} + \lambda_{2} k^{-4} \left(\tilde{\Phi}_{2}^{\dagger} \tilde{\Phi}_{2} \right)^{2} &= \tilde{\lambda} \left[\left(\tilde{\Phi}_{1}^{\dagger} \tilde{\Phi}_{1} \right)^{2} + \left(\tilde{\Phi}_{2}^{\dagger} \tilde{\Phi}_{2} \right)^{2} \right] \\ m_{11}^{2} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) + m_{22}^{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right) &= \tilde{m}_{11}^{2} \left(\tilde{\Phi}_{1}^{\dagger} \tilde{\Phi}_{1} \right) + \tilde{m}_{22}^{2} \left(\tilde{\Phi}_{2}^{\dagger} \tilde{\Phi}_{2} \right) \end{split}$$

with

- h $\tilde{\lambda} \equiv \sqrt{\lambda_1 \lambda_2}$, $\tilde{m}_{11}^2 \equiv k^2 m_{11}^2$, $\tilde{m}_{22}^2 \equiv k^{-2} m_{22}^2$
- Other quartic terms and m_{12}^2 term remain unchanged

Potential in the tilde basis

$$V = \tilde{m}_{11}^{2} \tilde{\Phi}_{1}^{\dagger} \tilde{\Phi}_{1} + \tilde{m}_{22}^{2} \tilde{\Phi}_{2}^{\dagger} \tilde{\Phi}_{2} - m_{12}^{2} \left(\tilde{\Phi}_{1}^{\dagger} \tilde{\Phi}_{2} + h.c. \right) + \frac{\tilde{\lambda}}{2} \left[\left(\tilde{\Phi}_{1}^{\dagger} \tilde{\Phi}_{1} \right)^{2} + \left(\tilde{\Phi}_{2}^{\dagger} \tilde{\Phi}_{2} \right)^{2} \right] \\ + \lambda_{3} \left(\tilde{\Phi}_{1}^{\dagger} \tilde{\Phi}_{1} \right) \left(\tilde{\Phi}_{2}^{\dagger} \tilde{\Phi}_{2} \right) + \lambda_{4} \left(\tilde{\Phi}_{1}^{\dagger} \tilde{\Phi}_{2} \right) \left(\tilde{\Phi}_{2}^{\dagger} \tilde{\Phi}_{1} \right) + \frac{\lambda_{5}}{2} \left[\left(\tilde{\Phi}_{1}^{\dagger} \tilde{\Phi}_{2} \right)^{2} + h.c. \right]$$

Bilinear form

Introduce vector $r^{\mu} = \left(\tilde{\Phi}_{1}^{\dagger}\tilde{\Phi}_{1} + \tilde{\Phi}_{2}^{\dagger}\tilde{\Phi}_{2}, 2 \operatorname{Re} \tilde{\Phi}_{1}^{\dagger}\tilde{\Phi}_{2}, 2 \operatorname{Im} \tilde{\Phi}_{1}^{\dagger}\tilde{\Phi}_{2}, \tilde{\Phi}_{1}^{\dagger}\tilde{\Phi}_{1} - \tilde{\Phi}_{2}^{\dagger}\tilde{\Phi}_{2}\right)^{T}$

⇒ 2HDM potential in bilinear form (following [Ivanov '06-'08]):

$$V = -M_{\mu}r^{\mu} + \frac{1}{2}\Lambda_{\mu\nu}r^{\mu}r^{\nu}$$

Bilinear form

Introduce vector $r^{\mu} = (\tilde{\Phi}_{1}^{\dagger}\tilde{\Phi}_{1} + \tilde{\Phi}_{2}^{\dagger}\tilde{\Phi}_{2}, 2 \operatorname{Re} \tilde{\Phi}_{1}^{\dagger}\tilde{\Phi}_{2}, 2 \operatorname{Im} \tilde{\Phi}_{1}^{\dagger}\tilde{\Phi}_{2}, \tilde{\Phi}_{1}^{\dagger}\tilde{\Phi}_{1} - \tilde{\Phi}_{2}^{\dagger}\tilde{\Phi}_{2})^{T}$ \Rightarrow 2HDM potential in bilinear form (following [Ivanov '06-'08]):

$$V = -M_{\mu}r^{\mu} + \frac{1}{2}\Lambda_{\mu\nu}r^{\mu}r^{\nu}$$

where ($\Lambda_{\mu\nu}$ diagonal in tilde basis!)

$$M_{\mu} = (M_0, M_1, M_2, M_3)^{T} = \left(-\frac{\tilde{m}_{11}^2 + \tilde{m}_{22}^2}{2}, -\operatorname{Re} m_{12}^2, \operatorname{Im} m_{12}^2, \frac{\tilde{m}_{11}^2 - \tilde{m}_{22}^2}{2}\right)^{T}$$
$$\Lambda_{\mu\nu} = \operatorname{diag}(\Lambda_0, -\Lambda_1, -\Lambda_2, -\Lambda_3) = \operatorname{diag}\left(\frac{\tilde{\lambda} + \lambda_3}{2}, \frac{-\lambda_4 - \lambda_5}{2}, \frac{-\lambda_4 + \lambda_5}{2}, \frac{-\tilde{\lambda} + \lambda_3}{2}\right)$$

Bilinear form

Introduce vector $r^{\mu} = (\tilde{\Phi}_{1}^{\dagger}\tilde{\Phi}_{1} + \tilde{\Phi}_{2}^{\dagger}\tilde{\Phi}_{2}, 2 \operatorname{Re} \tilde{\Phi}_{1}^{\dagger}\tilde{\Phi}_{2}, 2 \operatorname{Im} \tilde{\Phi}_{1}^{\dagger}\tilde{\Phi}_{2}, \tilde{\Phi}_{1}^{\dagger}\tilde{\Phi}_{1} - \tilde{\Phi}_{2}^{\dagger}\tilde{\Phi}_{2})^{T}$ \Rightarrow 2HDM potential in bilinear form (following [Ivanov '06-'08]):

$$V = -M_{\mu}r^{\mu} + \frac{1}{2}\Lambda_{\mu\nu}r^{\mu}r^{\nu}$$

where ($\Lambda_{\mu\nu}$ diagonal in tilde basis!)

$$M_{\mu} = (M_0, M_1, M_2, M_3)^T = \left(-\frac{\tilde{m}_{11}^2 + \tilde{m}_{22}^2}{2}, -\operatorname{Re} m_{12}^2, \operatorname{Im} m_{12}^2, \frac{\tilde{m}_{11}^2 - \tilde{m}_{22}^2}{2}\right)^T$$
$$\Lambda_{\mu\nu} = \operatorname{diag}(\Lambda_0, -\Lambda_1, -\Lambda_2, -\Lambda_3) = \operatorname{diag}\left(\frac{\tilde{\lambda} + \lambda_3}{2}, \frac{-\lambda_4 - \lambda_5}{2}, \frac{-\lambda_4 + \lambda_5}{2}, \frac{-\tilde{\lambda} + \lambda_3}{2}\right)$$

• 'Bounded-from-below' (BFB): $\Lambda_0 > 0$, $\Lambda_0 > \Lambda_i$ for i = 1, 2, 3 (Λ_i can be < 0)

It follows from the definition of r^{μ} (Schwarz inequality):

$$r_0 \ge 0$$
, $r_\mu r^\mu = r_0^2 - \sum_i r_i^2 \ge 0$

 \Rightarrow Physically realisable configurations inside/on the future lightcone

It follows from the definition of r^{μ} (Schwarz inequality):

$$r_0 \ge 0$$
, $r_\mu r^\mu = r_0^2 - \sum_i r_i^2 \ge 0$

 \Rightarrow Physically realisable configurations inside/on the future lightcone

Classification of vacua

(i) Neutral EW-symmetric: $\langle r_{\mu} \rangle = 0$ (apex of the cone)

It follows from the definition of r^{μ} (Schwarz inequality):

$$r_0 \ge 0$$
, $r_\mu r^\mu = r_0^2 - \sum_i r_i^2 \ge 0$

 \Rightarrow Physically realisable configurations inside/on the future lightcone

Classification of vacua

- (i) Neutral EW-symmetric: $\langle r_{\mu} \rangle = 0$ (apex of the cone)
- (ii) Neutral EW-breaking: $\langle r_{\mu} \rangle \neq 0$ and $\langle r_{\mu} \rangle \langle r^{\mu} \rangle = 0$ (on the surface of the cone)

It follows from the definition of r^{μ} (Schwarz inequality):

$$r_0 \ge 0$$
, $r_\mu r^\mu = r_0^2 - \sum_i r_i^2 \ge 0$

 \Rightarrow Physically realisable configurations inside/on the future lightcone

Classification of vacua

- (i) Neutral EW-symmetric: $\langle r_{\mu} \rangle = 0$ (apex of the cone)
- (ii) Neutral EW-breaking: $\langle r_{\mu} \rangle \neq 0$ and $\langle r_{\mu} \rangle \langle r^{\mu} \rangle = 0$ (on the surface of the cone)
- (iii) Charge-breaking: $\langle r_{\mu} \rangle \langle r^{\mu} \rangle > 0$ (inside the cone)

20

It follows from the definition of r^{μ} (Schwarz inequality):

$$r_0 \ge 0$$
, $r_\mu r^\mu = r_0^2 - \sum_i r_i^2 \ge 0$

 \Rightarrow Physically realisable configurations inside/on the future lightcone

Classification of vacua

- (i) Neutral EW-symmetric: $\langle r_{\mu} \rangle = 0$ (apex of the cone)
- (ii) Neutral EW-breaking: $\langle r_{\mu} \rangle \neq 0$ and $\langle r_{\mu} \rangle \langle r^{\mu} \rangle = 0$ (on the surface of the cone)
- (iii) Charge-breaking: $\langle r_{\mu} \rangle \langle r^{\mu} \rangle > 0$ (inside the cone)

Add constraint to potential (to surface of cone, $r_{\mu}r^{\mu} = r_0^2 - \sum_i r_i^2 = 0$):

 $\hat{V} =$

$$V - \frac{\zeta}{2} r_{\mu} r^{\mu}$$
 (ζ : Lagrangian multiplier)

Add constraint to potential (to surface of cone, $r_{\mu}r^{\mu} = r_0^2 - \sum_i r_i^2 = 0$):

 $\hat{V} = V - \frac{\zeta}{2} r_{\mu} r^{\mu}$

Then,
$$\frac{d\hat{V}}{dr^{\mu}} \stackrel{!}{=} 0$$
 leads to: $(\Lambda_0 - \zeta)r_0 = M_0$, $(\Lambda_i - \zeta)r_i = M_i$

Christoph Borschensky - Intermediate CB phases in the 2HDM

Add constraint to potential (to surface of cone, $r_{\mu}r^{\mu} = r_0^2 - \sum_i r_i^2 = 0$):

(ζ: Lagrangian multiplier)

Then,
$$\frac{d\hat{V}}{dr^{\mu}} \stackrel{!}{=} 0$$
 leads to: $(\Lambda_0 - \zeta)r_0 = M_0, \quad (\Lambda_i - \zeta)r_i = M_i$

▶ Plugging solution for $r^{\mu} = r^{\mu}(\zeta)$ into constraint $r_0^2 - \sum_i r_i^2 = 0$:

$$\frac{M_0^2}{(\Lambda_0-\zeta)^2}=\sum_i\frac{M_i^2}{(\Lambda_i-\zeta)^2}$$

 $\hat{V} = V - \frac{\zeta}{2} r_{\mu} r^{\mu}$

Christoph Borschensky – Intermediate CB phases in the 2HDM

Add constraint to potential (to surface of cone, $r_{\mu}r^{\mu} = r_0^2 - \sum_i r_i^2 = 0$):

(ζ: Lagrangian multiplier)

Then,
$$\frac{d\hat{V}}{dr^{\mu}} \stackrel{!}{=} 0$$
 leads to: $(\Lambda_0 - \zeta)r_0 = M_0$, $(\Lambda_i - \zeta)r_i = M_i$

► Plugging solution for $r^{\mu} = r^{\mu}(\zeta)$ into constraint $r_0^2 - \sum_i r_i^2 = 0$:

$$\frac{M_0^2}{(\Lambda_0-\zeta)^2}=\sum_i\frac{M_i^2}{(\Lambda_i-\zeta)^2}$$

 $\hat{V} = V - \frac{\zeta}{2} r_{\mu} r^{\mu}$

• Equation has up to 6 solutions for ζ /extrema \Rightarrow extract minimum numerically

Christoph Borschensky – Intermediate CB phases in the 2HDM

Evaluation of minima: (iii) charge-breaking vacuum

From
$$\frac{dV}{dr^{\mu}} \stackrel{!}{=} 0$$
, it follows:

$$\Lambda_0 r_0 = M_0, \quad \Lambda_i r_i = M_i$$

(minimum:
$$\Lambda_i < 0$$
)

Evaluation of minima: (iii) charge-breaking vacuum

From
$$\frac{dV}{dr^{\mu}} \stackrel{!}{=} 0$$
, it follows: $\Lambda_0 r_0 = M_0$, $\Lambda_i r_i = M_i$

(minimum:
$$\Lambda_i < 0$$
)

▶ Plugging solution into inequalities $r_0 > 0$ and $r_0^2 - \sum_i r_i^2 > 0$:

$$M_0 > 0$$
 and $\frac{M_0^2}{\Lambda_0^2} > \sum_i \frac{M_i^2}{\Lambda_i^2}$

or, slightly rewritten,

$$\tilde{m}_{11}^2 + \tilde{m}_{22}^2 < 0$$
 and $\frac{\mu_1^2}{a_1^2} + \frac{\mu_2^2}{a_2^2} + \frac{\mu_3^2}{a_3^2} < 1$ with $\mu_i^2 = \frac{M_i^2}{M_0^2}, \ a_i^2 = \frac{\Lambda_i^2}{\Lambda_0^2}$

Evaluation of minima: (iii) charge-breaking vacuum

From
$$\frac{dV}{dr^{\mu}} \stackrel{!}{=} 0$$
, it follows: $\Lambda_0 r_0 = M_0$, $\Lambda_i r_i = M_i$

(minimum:
$$\Lambda_i < 0$$
)

▶ Plugging solution into inequalities $r_0 > 0$ and $r_0^2 - \sum_i r_i^2 > 0$:

$$M_0 > 0$$
 and $\frac{M_0^2}{\Lambda_0^2} > \sum_i \frac{M_i^2}{\Lambda_i^2}$

or, slightly rewritten,

$$\tilde{m}_{11}^2 + \tilde{m}_{22}^2 < 0$$
 and $\frac{\mu_1^2}{a_1^2} + \frac{\mu_2^2}{a_2^2} + \frac{\mu_3^2}{a_3^2} < 1$ with $\mu_i^2 = \frac{M_i^2}{M_0^2}, a_i^2 = \frac{\Lambda_i^2}{\Lambda_0^2}$

22

 \Rightarrow Points that lie inside an ellipsoid with semi-axes $a_{1,2,3}$

Evaluation of minima: (iii) charge-breaking vacuum: ellipsoid

Christoph Borschensky – Intermediate CB phases in the 2HDM

Toy model: \mathbb{Z}_2 -symmetric 2HDM with $m_{12}^2 = 0$

For a simpler graphical representation, discuss **toy model**: \mathbb{Z}_2 -symmetric 2HDM

$$V_{\rm toy} = V |_{m_{12}^2 = 0}$$

Toy model: \mathbb{Z}_2 -symmetric 2HDM with $m_{12}^2 = 0$

For a simpler graphical representation, discuss toy model: \mathbb{Z}_2 -symmetric 2HDM

 $V_{\rm toy} = V |_{m_{12}^2 = 0}$

Constraints

Bounded-from-below:

$$\lambda_{1,2} > 0, \quad \sqrt{\lambda_1 \lambda_2} + \lambda_3 > 0, \quad \sqrt{\lambda_1 \lambda_2} + \lambda_3 + \lambda_4 - \lambda_5 > 0$$

► CB minimum:

Effective potential at finite temperatures

Full one-loop and thermally corrected effective potential:

$$V_{1L} = V + V_{CW} + V_{CT} + V_{T}$$

with

- ► V_{CW}: *T*-independent one-loop Coleman-Weinberg potential
- ► V_{CT}: *T*-independent counterterm potential
- V_{τ} : one-loop thermal corrections at finite T

Effective potential at finite temperatures

Full one-loop and thermally corrected effective potential:

$$V_{1L} = V + V_{\rm CW} + V_{\rm CT} + V_{T}$$

with

- ► V_{CW}: *T*-independent one-loop Coleman-Weinberg potential
- ► V_{CT}: *T*-independent counterterm potential
- V_{τ} : one-loop thermal corrections at finite T

$$T \to \infty - \frac{\pi^2}{90}T^4 + \frac{1}{24}m_k^2T^2 - \frac{1}{12\pi}m_k^3T + \dots$$

Effective potential at finite temperatures

Full one-loop and thermally corrected effective potential:

$$V_{1L} = V + V_{CW} + V_{CT} + V_{T}$$

with

- ► V_{CW}: *T*-independent one-loop Coleman-Weinberg potential
- ► V_{CT}: *T*-independent counterterm potential
- V_{τ} : one-loop thermal corrections at finite T

$$\overset{\tau \to \infty}{\sim} - \frac{\pi^2}{90} T^4 + \frac{1}{24} m_k^2 T^2 - \frac{1}{12\pi} m_k^3 T + \dots$$

Perturbative expansion becomes unreliable at high T

- ▶ Resum 'Daisy' diagrams ('Arnold-Espinosa' method) to recover perturbativity
- ⇒ Certain mass eigenvalues obtain T-dependent contributions

One-loop thermal corrections for $T \rightarrow \infty$

$$V_{T} \stackrel{T \to \infty}{\approx} -\sum_{k} n_{k} \begin{cases} \frac{\pi^{2}}{90}T^{4} - \frac{1}{24}m_{k}^{2}T^{2} + \frac{1}{12\pi}\overline{m}_{k}^{3}T & k = H^{\pm}, h, H, A, W_{L}, Z_{L}, \gamma_{L} \\ \frac{\pi^{2}}{90}T^{4} - \frac{1}{24}m_{k}^{2}T^{2} + \frac{1}{12\pi}m_{k}^{3}T & k = W_{T}, Z_{T} \\ \frac{7\pi^{2}}{720}T^{4} - \frac{1}{48}m_{k}^{2}T^{2} & k = t, b, \tau \end{cases}$$

with

- n_k : number of d.o.f.s of field k
- ▶ $\overline{m}_k(m_k)$: mass eigenvalue for field k including (excluding) thermal Debye corrections from Daisy resummation

Electroweak symmetry (non-)restoration in the 2HDM

Scans of the 2HDM parameter space

Parameter	Scan range
$\lambda_1, \lambda_2, \lambda_3, \lambda_4$	[0, 4 <i>π</i>]
λ ₅	[-4π, 4π]
m ² ₁₁ , m ² ₂₂	[-10 ⁶ ,0] GeV ²
m_{12}^2	[0, 10 ⁶] GeV ²

▶ Random "smart" scan over parameter space → Get VEV v_0 and light CP-even Higgs mass $m_{h,0}$

► Rescale to get v = 246.22 GeV, $m_h = 125.09$ GeV: $m_{ij}^2 \rightarrow m_{ij}^2 \frac{m_h^2}{m_{h,0}^2}, \quad \lambda_k \rightarrow \lambda_k \frac{m_h^2}{m_{h,0}^2} \frac{v_0^2}{v^2}$

Backup Scans of the 2HDM parameter space

			_
Parameter	Scan range	•	F
$\lambda_1, \lambda_2, \lambda_3, \lambda_4$	[0, 4 <i>π</i>]	►	F
λ ₅	$[-4\pi, 4\pi]$		
m_{11}^2, m_{22}^2	[–10 ⁶ ,0] GeV ²		
m_{12}^2	[0, 10 ⁶] GeV ²		

► Random "smart" scan over parameter space → Get VEV v_0 and light CP-even Higgs mass $m_{h,0}$

Rescale to get
$$v = 246.22$$
 GeV, $m_h = 125.09$ GeV:
 $m_{ij}^2 \rightarrow m_{ij}^2 \frac{m_h^2}{m_{h,0}^2}, \quad \lambda_k \rightarrow \lambda_k \frac{m_h^2}{m_{h,0}^2} \frac{v_0^2}{v^2}$

• Discard points with no neutral vacuum at T = 0 (apply only CB constraints to quartic couplings, $\sqrt{\lambda_1 \lambda_2} - \lambda_3 > 0$ and $\lambda_4 > |\lambda_5|$, but not to quadratic ones)

Backup Scans of the 2HDM parameter space

Parameter	Scan range
$\lambda_1, \lambda_2, \lambda_3, \lambda_4$	[0, 4 <i>π</i>]
λ ₅	[-4π, 4π]
m_{11}^2, m_{22}^2	[-10 ⁶ , 0] GeV ²
m_{12}^2	[0, 10 ⁶] GeV ²

.

-

▶ Random "smart" scan over parameter space → Get VEV v_0 and light CP-even Higgs mass $m_{h,0}$

► Rescale to get v = 246.22 GeV, $m_h = 125.09$ GeV: $m_{ij}^2 \rightarrow m_{ij}^2 \frac{m_h^2}{m_{h,0}^2}, \quad \lambda_k \rightarrow \lambda_k \frac{m_h^2}{m_{h,0}^2} \frac{v_0^2}{v^2}$

- Discard points with no neutral vacuum at T = 0 (apply only CB constraints to quartic couplings, $\sqrt{\lambda_1 \lambda_2} \lambda_3 > 0$ and $\lambda_4 > |\lambda_5|$, but not to quadratic ones)
- Apply theoretical constraints:
 - Bounded-from-below
 - Perturbativity ($|\lambda_{1,2,3,4,5}| < 4\pi$)
 - Perturbative unitarity [Akeroyd, Arhrib, Naimi '00]
 - Absolute stability [Barroso, Ferreira, Ivanov, Santos '13]

Backup Scans of the 2HDM parameter space

Parameter	Scan range
$\lambda_1, \lambda_2, \lambda_3, \lambda_4$	[0, 4 <i>π</i>]
λ ₅	[-4π, 4π]
m_{11}^2, m_{22}^2	[-10 ⁶ ,0] GeV ²
m_{12}^2	[0, 10 ⁶] GeV ²

► Random "smart" scan over parameter space → Get VEV v_0 and light CP-even Higgs mass $m_{h,0}$

► Rescale to get v = 246.22 GeV, $m_h = 125.09$ GeV: $m_{ij}^2 \rightarrow m_{ij}^2 \frac{m_h^2}{m_h^2 \rho}, \quad \lambda_k \rightarrow \lambda_k \frac{m_h^2}{m_h^2 \rho} \frac{v_0^2}{v^2}$

- ► Discard points with no neutral vacuum at T = 0 (apply only CB constraints to quartic couplings, $\sqrt{\lambda_1 \lambda_2} \lambda_3 > 0$ and $\lambda_4 > |\lambda_5|$, but not to quadratic ones)
- Apply theoretical constraints:
 - Bounded-from-below
 - Perturbativity ($|\lambda_{1,2,3,4,5}| < 4\pi$)
 - Perturbative unitarity [Akeroyd, Arhrib, Naimi '00]
 - Absolute stability [Barroso, Ferreira, Ivanov, Santos '13]

Christoph Borschensky – Intermediate CB phases in the 2HDM

 \Rightarrow Seed points

