HIGGS MASS PREDICTIONS IN THE CP-VIOLATING HIGH-SCALE NMSSM

Christoph Borschensky

(e-mail: christoph.borschensky@kit.edu)

Institute for Theoretical Physics

in preparation (2406.xxxx), together with:

Thi Nhung Dao, Martin Gabelmann, Margarete Mühlleitner, Heidi Rzehak

SUSY 2024

THE 31TH INTERNATIONAL CONFERENCE ON SUPERSYMMETRY AND UNIFICATION OF FUNDAMENTAL INTERACTIONS

Theory meets Experiment

Madrid, 11 June 2024

Outline

1 Next-to-Minimal Supersymmetric Standard Model

2 Higgs mass calculations in the EFT approach

3 Numerical results

Summary

The Next-to-Minimal Supersymmetric Standard Model

Complex Next-to-Minimal Supersymmetric Standard Model

Superpotential of the \mathbb{Z}_3 -symmetric NMSSM

$$\mathcal{W}_{\mathsf{NMSSM}} = \left[y_e \hat{H}_d \cdot \hat{L} \hat{E}^c + y_d \hat{H}_d \cdot \hat{Q} \hat{D}^c - y_u \hat{H}_u \cdot \hat{Q} \hat{U}^c \right] - \lambda \hat{S} \hat{H}_d \cdot \hat{H}_u + \frac{1}{3} \kappa \hat{S}^3$$

• Complex scalar singlet extension of the MSSM (λ , κ complex, e.g. $\lambda = |\lambda|e^{i\varphi_{\lambda}}$)

Complex Next-to-Minimal Supersymmetric Standard Model

Superpotential of the \mathbb{Z}_3 -symmetric NMSSM

$$\mathcal{W}_{\mathsf{NMSSM}} = \left[y_e \hat{H}_d \cdot \hat{L} \hat{E}^c + y_d \hat{H}_d \cdot \hat{Q} \hat{D}^c - y_u \hat{H}_u \cdot \hat{Q} \hat{U}^c \right] - \lambda \hat{S} \hat{H}_d \cdot \hat{H}_u + \frac{1}{3} \kappa \hat{S}^3$$

- Complex scalar singlet extension of the MSSM (λ , κ complex, e.g. $\lambda = |\lambda|e^{i\varphi_{\lambda}}$)
- $\blacktriangleright \ \mathbb{Z}_3$ symmetry forbids linear and bilinear terms
- \Rightarrow Solves the μ problem (no dimensionful couplings in the superpotential)

Complex Next-to-Minimal Supersymmetric Standard Model

Superpotential of the \mathbb{Z}_3 -symmetric NMSSM

$$\mathcal{W}_{\mathsf{NMSSM}} = \left[y_e \hat{H}_d \cdot \hat{L} \hat{E}^c + y_d \hat{H}_d \cdot \hat{Q} \hat{D}^c - y_u \hat{H}_u \cdot \hat{Q} \hat{U}^c \right] - \lambda \hat{S} \hat{H}_d \cdot \hat{H}_u + \frac{1}{3} \kappa \hat{S}^3$$

- Complex scalar singlet extension of the MSSM (λ , κ complex, e.g. $\lambda = |\lambda|e^{i\varphi_{\lambda}}$)
- $\blacktriangleright \ \mathbb{Z}_3$ symmetry forbids linear and bilinear terms
- \Rightarrow Solves the μ problem (no dimensionful couplings in the superpotential)
- μ parameter is generated dynamically:

$$\mu_{\rm eff} = \frac{e^{i\boldsymbol{\varphi}_{\rm S}} v_{\rm S} \lambda}{\sqrt{2}}$$

Complex Next-to-Minimal Supersymmetric Standard Model

Superpotential of the \mathbb{Z}_3 -symmetric NMSSM

$$\mathcal{W}_{\text{NMSSM}} = \left[y_e \hat{H}_d \cdot \hat{L} \hat{E}^c + y_d \hat{H}_d \cdot \hat{Q} \hat{D}^c - y_u \hat{H}_u \cdot \hat{Q} \hat{U}^c \right] - \lambda \hat{S} \hat{H}_d \cdot \hat{H}_u + \frac{1}{3} \kappa \hat{S}^3$$

• Complex scalar singlet extension of the MSSM (λ , κ complex, e.g. $\lambda = |\lambda|e^{i\varphi_{\lambda}}$)

Higgs sector

Higgs mass calculations in the EFT approach

Supersymmetry – out of reach?

Higgs mass calculations in the NMSSM

Constraining the NMSSM parameter space with the m_h^{SM} measurement

Higgs mass calculations in the NMSSM

Constraining the NMSSM parameter space with the m_h^{SM} measurement

Fixed-order status:

Full 1L, 2L, in different renormalisation schemes (DR, mixed OS-DR) [Ellwanger et al. '93, '05][Elliot et al. '93][Pandita '93][King, White '95][Degrassi, Slavich '10][Staub et al. '10][Drechsel et al. '17][Ham et al. '01-'07][Funakubo, Tao '04][Cheung et al. '10][Goodsell, Staub '17][Domingo et al. '17][Goodsell et al. '15][Ender et al. '12][Graf et al. '12][Mühlleitner et al. '14][Dao et al. '19-'21]

Tools: FlexibleSUSY [Athron et al.], NMSSMCALC [Baglio et al.], NMSSMTools [Ellwanger et al.], SOFTSUSY [Allanach et al.], SARAH/Spheno [Porod, Staub]

Higgs mass calculations in the NMSSM

Constraining the NMSSM parameter space with the m_h^{SM} measurement

Fixed-order status:

- Full 1L, 2L, in different renormalisation schemes (DR, mixed OS-DR) [Ellwanger et al. '93, '05][Elliot et al. '93][Pandita '93][King, White '95][Degrassi, Slavich '10][Staub et al. '10][Drechsel et al. '17][Ham et al. '01-'07][Funakubo, Tao '04][Cheung et al. '10][Goodsell, Staub '17][Domingo et al. '17][Goodsell et al. '15][Ender et al. '12][Graf et al. '12][Mühlleitner et al. '14][Dao et al. '19-'21]
- Tools: FlexibleSUSY [Athron et al.], NMSSMCALC [Baglio et al.], NMSSMTools [Ellwanger et al.], SOFTSUSY [Allanach et al.], SARAH/Spheno [Porod, Staub]

Status of effective field theory (EFT) approach:

- ▶ Pole-mass matching in FlexibleEFTHiggs [Athron et al. '17], SARAH/Spheno [Staub, Porod '17]
- ► Automated full 1L EFT matching in SARAH [Gabelmann et al. '18-'19]
- ► Full 1L + (NMSSM-specific) 2L EFT matching in the real NMSSM [Bagnaschi, Goodsell, Slavich '22]

Higgs mass calculations at higher orders

Fixed-order calculations for the Higgs mass:

- Full perturbative series truncated at fixed order
- Reliable for not too high SUSY masses
- ► Dominant corrections from top/stop sector, e.g. at 1-loop: $\Delta M_h^2 \sim Y_t \ln \frac{m_t^2}{m_t^2}$

Higgs mass calculations at higher orders

Fixed-order calculations for the Higgs mass:

- Full perturbative series truncated at fixed order
- Reliable for not too high SUSY masses
- ► Dominant corrections from top/stop sector, e.g. at 1-loop: $\Delta M_h^2 \sim Y_t \ln \frac{m_t^2}{m_s^2}$

If SUSY masses (e.g. stops) are heavy: large separation of scales

EW scale: $m_t \sim v \ll$ SUSY scale: $m_{\tilde{t}} \sim M_{SUSY} \Rightarrow \ln$

$$n \frac{M_{SUSY}^2}{v^2} \gg 1$$

Large logs $\ln \frac{M_{SUSY}^2}{v^2}$ from higher orders are relevant and **need to be resummed**!

Assuming **all** SUSY particles are heavy:

Consider the SM as a (renormalisable) effective field theory (EFT) valid at the EW scale ~ m_t ~ v, and the NMSSM as its UV completion at the high scale ~ M_{SUSY}

Assuming **all** SUSY particles are heavy:

Consider the SM as a (renormalisable) effective field theory (EFT) valid at the EW scale ~ m_t ~ v, and the NMSSM as its UV completion at the high scale ~ M_{SUSY}

Effective field theory (EFT) calculations:

► Full SUSY theory matched to low-energy EFT at high matching scale Q_{match}

Assuming **all** SUSY particles are heavy:

Consider the SM as a (renormalisable) effective field theory (EFT) valid at the EW scale ~ m_t ~ v, and the NMSSM as its UV completion at the high scale ~ M_{SUSY}

Effective field theory (EFT) calculations:

- ► Full SUSY theory matched to low-energy EFT at high matching scale Q_{match}
- ► RGE running from high down to EFT scale: resummation of large logarithms

$$\ln(M_{SUSY}^2/v^2) = \ln(\mu_R^2/v^2) + \ln(M_{SUSY}^2/\mu_R^2)$$
resummed by RGEs part of matching conditions at $\mu_R \sim Q_{match} \sim M_{SUSY}$

Assuming **all** SUSY particles are heavy:

Consider the SM as a (renormalisable) effective field theory (EFT) valid at the EW scale ~ m_t ~ v, and the NMSSM as its UV completion at the high scale ~ M_{SUSY}

Effective field theory (EFT) calculations:

- ► Full SUSY theory matched to low-energy EFT at high matching scale Q_{match}
- RGE running from high down to EFT scale: resummation of large logarithms

$$\ln(M_{SUSY}^2/v^2) = \ln(\mu_R^2/v^2) + \ln(M_{SUSY}^2/\mu_R^2)$$
resummed by RGEs
$$+ \ln(M_{SUSY}^2/\mu_R^2)$$
part of matching condition
at $\mu_R \sim Q_{match} \sim M_{SUSY}$

→ Non-log terms $O(v/M_{SUSY})$ only included partially: EFT valid for $v/M_{SUSY} \ll 1!$

8

Matching the NMSSM parameters to the SM

Matching conditions relate the SM and NMSSM couplings such that both theories describe the same physics at the high scale $Q = Q_{match}$

 $\underbrace{V^{\text{SM}} \supset \lambda^{\text{SM}}[H]^4}_{\lambda^{\text{SM}}(Q) \stackrel{!}{=} \lambda^{\text{NMSSM}}(Q), \quad Y_i^{\text{SM}}(Q) \stackrel{!}{=} Y_i^{\text{NMSSM}}(Q), \quad g_j^{\text{SM}}(Q) \stackrel{!}{=} g_j^{\text{NMSSM}}(Q), \quad \dots$

Matching conditions relate the SM and NMSSM couplings such that both theories describe the same physics at the high scale $Q = Q_{match}$

$$\frac{V^{\text{SM}} \supset \lambda^{\text{SM}}[H]^4}{\lambda^{\text{SM}}(Q)} \stackrel{!}{=} \lambda^{\text{NMSSM}}(Q), \quad Y_i^{\text{SM}}(Q) \stackrel{!}{=} Y_i^{\text{NMSSM}}(Q), \quad g_j^{\text{SM}}(Q) \stackrel{!}{=} g_j^{\text{NMSSM}}(Q), \quad \dots$$

Matching conditions relate the SM and NMSSM couplings such that both theories describe the same physics at the high scale $Q = Q_{match}$ $V^{SM} \supset \lambda^{SM} |H|^4$ $\overset{|H|^{4}}{\longrightarrow} \lambda^{\text{SM}}(Q) \stackrel{!}{=} \lambda^{\text{NMSSM}}(Q), \quad Y_{i}^{\text{SM}}(Q) \stackrel{!}{=} Y_{i}^{\text{NMSSM}}(Q), \quad g_{j}^{\text{SM}}(Q) \stackrel{!}{=} g_{j}^{\text{NMSSM}}(Q), \quad \dots$ In general (at the scale Q_{match}): NMSSN \mathbf{SM} n-loop m-point amplitudes with the same external (light) states should yield the same results

8

Matching conditions relate the SM and NMSSM couplings such that both theories describe the same physics at the high scale $Q = Q_{match}$

 $\underbrace{V^{\text{SM}} \supset \lambda^{\text{SM}}[H]^4}_{\lambda^{\text{SM}}(Q)} \stackrel{!}{=} \lambda^{\text{NMSSM}}(Q), \quad Y_i^{\text{SM}}(Q) \stackrel{!}{=} Y_i^{\text{NMSSM}}(Q), \quad g_j^{\text{SM}}(Q) \stackrel{!}{=} g_j^{\text{NMSSM}}(Q), \quad \dots$

Quartic-coupling matching

" $\lambda^{\text{SM}} = \lambda^{\text{NMSSM}}$ "

- Matching of 4-point functions
- Evaluate directly in $\mathbf{v} \rightarrow 0$ limit
- → Analytical expressions

Matching conditions relate the SM and NMSSM couplings such that both theories describe the same physics at the high scale $Q = Q_{match}$

 $\underbrace{V^{\text{SM}} \supset \lambda^{\text{SM}}[H]^4}_{\lambda^{\text{SM}}(Q)} \stackrel{!}{=} \lambda^{\text{NMSSM}}(Q), \quad Y_i^{\text{SM}}(Q) \stackrel{!}{=} Y_i^{\text{NMSSM}}(Q), \quad g_j^{\text{SM}}(Q) \stackrel{!}{=} g_j^{\text{NMSSM}}(Q), \quad \dots$

Quartic-coupling matching	Pole-mass matching						
" $\lambda^{SM} = \lambda^{NMSSM}$ "	$"M_h^{SM} = M_h^{NMSSM"}$						
 Matching of 4-point functions 	Matching of 2-point functions						
• Evaluate directly in $v \rightarrow 0$ limit	 Partial O(v/M_{SUSY}) terms included 						
→ Analytical expressions	\rightarrow Numerical expressions						

Matching conditions relate the SM and NMSSM couplings such that both theories describe the same physics at the high scale $Q = Q_{match}$

 $\underbrace{V^{\text{SM}} \supset \lambda^{\text{SM}}[H]^4}_{\lambda^{\text{SM}}(Q)} \stackrel{!}{=} \lambda^{\text{NMSSM}}(Q), \quad Y_i^{\text{SM}}(Q) \stackrel{!}{=} Y_i^{\text{NMSSM}}(Q), \quad g_j^{\text{SM}}(Q) \stackrel{!}{=} g_j^{\text{NMSSM}}(Q), \quad \dots$

Quartic-coupling matching	Pole-mass matching						
" $\lambda^{\text{SM}} = \lambda^{\text{NMSSM}}$ "	$"M_h^{\rm SM} = M_h^{\rm NMSSM"}$						
Matching of 4-point functions	Matching of 2-point functions						
• Evaluate directly in $v \rightarrow 0$ limit	Partial O(v/M _{SUSY}) terms included						
→ Analytical expressions	\rightarrow Numerical expressions						

 \Rightarrow Compare both approaches, estimate size of $O(v/M_{SUSY})$ terms

Evaluated for $v_u, v_d \rightarrow 0$ (tan β = const., $v_s \neq 0$) and vanishing ext. momentum

$$\lambda^{\text{SM}}(Q_{\text{match}}) = \lambda^{\text{NMSSM}}(Q_{\text{match}})$$

 $\lambda^{\text{NMSSM}}(Q_{\text{match}}) = \lambda_h^{\text{NMSSM,tree}} + \Delta \lambda_h^{\text{NMSSM,1L}} + \Delta \lambda_h^{\text{MSSM,2L}}$

with

Cł

Evaluated for $v_u, v_d \rightarrow 0$ (tan β = const., $v_s \neq 0$) and vanishing ext. momentum

Summary

Quartic-coupling matching

Summary

Quartic-coupling matching

Demand that the pole masses of the SM-like Higgs states are the same:

 $(M_h^{\rm SM})^2 = (M_h^{\rm NMSSM})^2$

e.g. [Athron et al. '16][Braathen et al. '18]

with $(M_h^X)^2 = (m_h^X)^2 - \hat{\Sigma}_h^{SM}((M_h^X)^2)$ $(m_h^X: SM(-like) \overline{MS} (\overline{DR})$ Higgs mass in the SM (NMSSM); $\hat{\Sigma}_h^X$: renormalised self energies)

Demand that the pole masses of the SM-like Higgs states are the same:

 $(M_h^{\rm SM})^2 = (M_h^{\rm NMSSM})^2$

e.g. [Athron et al. '16][Braathen et al. '18]

with $(M_h^X)^2 = (m_h^X)^2 - \hat{\Sigma}_h^{SM}((M_h^X)^2)$ $(m_h^X: SM(-like) \overline{MS} (\overline{DR})$ Higgs mass in the SM (NMSSM); $\hat{\Sigma}_h^X$: renormalised self energies)

Use $\overline{\text{MS}}$ relation $(m_h^{\text{SM}})^2 = 2(v^{\text{SM}})^2 \lambda_h^{\text{SM}}$ and solve for λ_h^{SM} :

$$\lambda_{h}^{\text{SM}} = \frac{1}{2(v^{\text{NMSSM}})^{2}} \left[(m_{h}^{\text{NMSSM}})^{2} \left(1 - 2\Delta \hat{\Sigma}_{h}^{\prime} \right) - \Delta \hat{\Sigma}_{h} \right] \qquad \text{with} \\ \Delta \hat{\Sigma}_{h}^{(\prime)} \equiv \hat{\Sigma}_{h}^{\text{NMSSM}(\prime)}(0) - \hat{\Sigma}_{h}^{\text{SM}(\prime)}(0)$$

 \Rightarrow Consistent expansion at 1L, captures leading terms when expanding in v/M_{SUSY}

Demand that the pole masses of the SM-like Higgs states are the same:

 $(M_h^{\rm SM})^2 = (M_h^{\rm NMSSM})^2$

e.g. [Athron et al. '16][Braathen et al. '18]

with $(M_h^X)^2 = (m_h^X)^2 - \hat{\Sigma}_h^{SM}((M_h^X)^2)$ $(m_h^X: SM(-like) \overline{MS} (\overline{DR})$ Higgs mass in the SM (NMSSM); $\hat{\Sigma}_h^X$: renormalised self energies)

Use $\overline{\text{MS}}$ relation $(m_h^{\text{SM}})^2 = 2(v^{\text{SM}})^2 \lambda_h^{\text{SM}}$ and solve for λ_h^{SM} :

$$\lambda_{h}^{\text{SM}} = \frac{1}{2(v^{\text{NMSSM}})^{2}} \left[(m_{h}^{\text{NMSSM}})^{2} \left(1 - 2\Delta \hat{\Sigma}_{h}^{\prime} \right) - \Delta \hat{\Sigma}_{h} \right] \qquad \text{with} \\ \Delta \hat{\Sigma}_{h}^{(\prime)} \equiv \hat{\Sigma}_{h}^{\text{NMSSM}(\prime)}(0) - \hat{\Sigma}_{h}^{\text{SM}(\prime)}(0)$$

 \Rightarrow Consistent expansion at 1L, captures leading terms when expanding in v/M_{SUSY}

$$(v^{SM})^2 = (v^{NMSSM})^2 + \delta v^2$$

Demand that the pole masses of the SM-like Higgs states are the same:

 $(M_h^{\text{SM}})^2 = (M_h^{\text{NMSSM}})^2$ e.g. [Athron et al. '16][Braathen et al. '18] with $(M_{h}^{X})^{2} = (m_{h}^{X})^{2} - \hat{\Sigma}_{h}^{SM}((M_{h}^{X})^{2})$: renormalised self energies) (**Numerical limit of** $v \rightarrow 0$: excellent agreement with λ_{b}^{SM} from quartic-coupling matching! for λ_{L}^{SM} : $\lambda_{h}^{\text{SM}} = \frac{1}{2(\nu^{\text{NMSSM}})^{2}} \left[(m_{h}^{\text{NMSSM}})^{2} \left(1 - 2\Delta \hat{\Sigma}_{h}^{\prime} \right) - \Delta \hat{\Sigma}_{h} \right] \qquad \text{with} \\ \Delta \hat{\Sigma}_{h}^{(\prime)} \equiv \hat{\Sigma}_{h}^{\text{NMSSM}(\prime)}(0) - \hat{\Sigma}_{h}^{\text{SM}(\prime)}(0)$ ⇒ Consistent expansion at 1L, captures leading terms when expanding in v/M_{SUSY} $(v^{SM})^2 = (v^{NMSSM})^2 + \delta v^2$

Higgs mass calculations in the EFT approach

Numerical results

Summary

Renormalisation-group running of λ^{SM}

Higgs mass calculations in the EFT approach

Numerical results

Summary

Renormalisation-group running of λ^{SM}

Higgs mass calculations in the EFT approach

Numerical results

Summary

Renormalisation-group running of λ^{SM}

Higgs mass calculations in the EFT approach

Numerical results

Summary

Renormalisation-group running of λ^{SM}

Higgs mass calculations in the EFT approach

Numerical results

Summary

Renormalisation-group running of λ^{SM}

Christoph Borschensky – Higgs Mass Predictions in the CPV High-Scale NMSSM

Mh

Higgs mass calculations in the EFT approach

Numerical results

Summary

Renormalisation-group running of λ^{SM}

Higgs mass calculations in the EFT approach

Numerical results

Summary

Renormalisation-group running of λ^{SM}

Summary

Comparison with previous works

Comparison with previous works

The case of a light singlet

The case of a light singlet

Effects of CP-violating phases

Christoph Borschensky – Higgs Mass Predictions in the CPV High-Scale NMSSM

14

Effects of CP-violating phases

Effects of CP-violating phases

Christoph Borschensky – Higgs Mass Predictions in the CPV High-Scale NMSSM

14

15

Summary

Calculation of the SM-like Higgs mass in the EFT approach for the CPV NMSSM

- Applicable for heavy SUSY masses ($v/M_{SUSY} \ll 1$), resums large logarithms
- Implementation at full 1L (+2L MSSM) via quartic-coupling & pole-mass matching
 - \rightarrow Excellent agreement found for CPC and CPV case in v \rightarrow 0 limit \checkmark
 - \rightarrow Estimate of partial v/M_{SUSY} contributions for EFT uncertainty

Summarv

Calculation of the SM-like Higgs mass in the EFT approach for the CPV NMSSM

- Applicable for heavy SUSY masses ($v/M_{susy} \ll 1$), resums large logarithms
- ► Implementation at full 1L (+2L MSSM) via quartic-coupling & pole-mass matching
 - \rightarrow Excellent agreement found for CPC and CPV case in v \rightarrow 0 limit \checkmark
 - \rightarrow Estimate of partial v/M_{SUSY} contributions for EFT uncertainty

Implementation in our code NMSSMCALC (https://itp.kit.edu/~maggie/NMSSMCALC)

[Baalio, CB, Dao, Gabelmann, Gröber, Krause, Mühlleitner, Le, Rzehak, Spira, Streicher, Walz]

- Spectrum calculator of 1L & 2L Higgs masses, self couplings, decay widths EFT implementation to appear soon!
- For the CP-conserving and CP-violating NMSSM
- ...and more: electron eDMs, muon q 2, ρ parameter, W mass

Summary

Calculation of the SM-like Higgs mass in the EFT approach for the CPV NMSSM

- Applicable for heavy SUSY masses $(v/M_{susy} \ll 1)$, resums large logarithms
- ► Implementation at full 1L (+2L MSSM) via quartic-coupling & pole-mass matching
 - \rightarrow Excellent agreement found for CPC and CPV case in $v \rightarrow 0$ limit $\sqrt{}$
 - \rightarrow Estimate of partial v/M_{SUSY} contributions for EFT uncertainty

Implementation in our code NMSSMCALC (https://itp.kit.edu/~maggie/NMSSMCALC)

[Baalio, CB, Dao, Gabelmann, Gröber, Krause, Mühlleitner, Le, Rzehak, Spira, Streicher, Walz]

- Spectrum calculator of 1L & 2L Higgs masses, self couplings, decay widths EFT implementation to appear soon!
- For the CP-conserving and CP-violating NMSSM
- ...and more: electron eDMs, muon g 2, ρ parameter, W mass

THANK YOU FOR YOUR ATTENTION! 🙂

Christoph Borschensky - Higgs Mass Predictions in the CPV High-Scale NMSSM

15

Backup

Backup

Christoph Borschensky – Higgs Mass Predictions in the CPV High-Scale NMSSM

15

Backup

Quartic-coupling matching: tree-level contribution

$$\lambda_{h}^{\text{NMSSM,tree}} = \underbrace{\frac{1}{8}(g_{1}^{2} + g_{2}^{2})\cos^{2}2\beta}_{\text{MSSM D-terms}} + \underbrace{\frac{1}{4}|\lambda|^{2}\sin^{2}2\beta}_{\text{NMSSM F-terms}} - \frac{1}{48|\kappa|^{2}M_{5}^{2}(3M_{5}^{2} + M_{A_{5}}^{2})} \left(3|\kappa|^{2}M_{H^{\pm}}^{2}(1 - \cos 4\beta) + (3M_{5}^{2} + M_{A_{5}}^{2})(|\kappa||\lambda|\cos\varphi_{y}\sin 2\beta - 2|\lambda|^{2})\right)^{2}}_{s/t/u\text{-channel }s} - \underbrace{\frac{3}{16M_{A_{5}}^{2}}|\lambda|^{2}(3M_{5}^{2} + M_{A_{5}}^{2})\sin^{2}2\beta\sin^{2}\varphi_{y}}_{s/t/u\text{-channel }A_{5}}$$

Benchmark points

BP1: [Bagnaschi et al. '22] BP2: [Slavich et al. '20]

	tanβ	λ	к	<i>M</i> ₁	M ₂	М ₃	A _t	A _λ		A _κ	μ_{ej}	ff.	$m_{\tilde{Q}_{L_3}}$	$m_{\tilde{t}_{R_3}}$]	
BP1	3.0	0.6	0.6	1.0	2.0	2.5	12.75	0.3		-2.0	1.5		5.0	5.0		
BP2	20.0	0.05	0.05	3.0	3.0	3.0	-7.20	-2.8	5	-1.0	3.	0	3.0	3.0		
BP3	1.27	0.73	0.62	0.24	1.18	2.3	-0.39	0.0	6	-1.44	0.4	.49 1.79		1.51		
	M _h ^{II}		M_h^{IV}		<i>m</i> _{h2}		m _{h3}			m _{A1}		<i>m</i> _{A2}		n	m _{H*}	
BP1	124.29 (<i>h</i> _u) 124		124.31 ((h_u)	2407.6 (h _s)		2971.8 (h _d)		2	2905.7 (a)		3000.2 (a _s)) 29	67.1	
BP2	125.26 (h _u)		125.28 ((h _u)	2996.4 (h _d)		5744.4 (h _s)		2985.3 (a _s)		s)	3010.5 (a)		29	97.8	
BP3	127.18 (h _u) 129.47 (h _a		h _u)	305.5 ((h _s)	659.5 (5 (h _d)		663.8 (a)		1308.7 (a _s)) 658.4			

