

Karlsruhe Institute of Technology

Institute for Theoretical Physics

Impact of One-Loop Triple Higgs Couplings on Double Higgs Production at e^+e^- Colliders

Francisco Arco (he/him)

SUSY 2024 – Higgs Parallel Session Madrid (IFT) – June 13, 2024

Ongoing work with S. Heinemeyer and M. Mühlleitner

Motivation: BSM in the Higgs Sector

- The Higgs boson potential is essentially untested
- Extended Higgs sectors can solve (at least some) of the SM problems
 - Dark matter, baryon asymmetry...
- Framework: Two Higgs doublet model (2HDM)
 - 5 Higgs bosons h, H, A, H^{\pm} + new scalar interactions

Sketch of the current uncertainty in the (SM) Higgs potential, by Nathaniel Craig

Large 1-loop corrections in BSM!

- Large couplings of SM-like Higgs to other Higgs bosons still allowed! [FA, Heinemeyer, Herrero, 21, 22]
- The 1-loop Higgs self-coupling $\lambda_{hhh}^{(1)}$ can receive corrections well above 100% w.r.t. the tree-level prediction [Kanemura, Kiyoura, Okada, Senaha, Yuan, 02]
- Main contributions from large scalar couplings:

 Important contributions could happen in other triple Higgs couplings (THCs)

Effective potential for λ⁽¹⁾_{hhh} and λ⁽¹⁾_{hhH} Diagramatic calculation for λ⁽¹⁾_{hhh} e⁻ Tree-level THCs @ e⁺e⁻ colliders [FA, Heinemeyer, Herrero, 21] and @(HL-)LHC [FA, Heinemeyer, Radchenko, Mühlleitner, 22] 1 and 2L THCs @(HL-)LHC [Bahl, Braathen, Weiglein, 22] [Heinemeyer, Mühlleitner, Radchenko, Wieglein, 23] 13/06/2024 Francisco Arco - Impact of One-Loop Triple Higgs Couplings on di-Higgs Production at e⁺e⁻ Colliders SUSY 2024 – IFT, Madrid

 e^+

Where to look? At e^+e^- colliders! • Our computation:

Tree level $e^+e^- \rightarrow hhZ$

1L corrected $\lambda_{hhh}^{(1)}$ and $\lambda_{hhH}^{(1)}$

Computation of 1L THCs:

Includes the main corrections:

 $\mathcal{O}\left(\lambda_{3\mathrm{Higgs}}\lambda_{4\mathrm{Higgs}}\right), \ \mathcal{O}\left(\lambda_{3\mathrm{Higgs}}\right)^3$

Two Higgs Doublet Model (2HDM)

SM + second Higgs doublet

$$\begin{split} V_{2\text{HDM}}^{(0)} &= m_{11}^2 \left(\Phi_1^{\dagger} \Phi_1 \right) + m_{22}^2 \left(\Phi_2^{\dagger} \Phi_2 \right) - \left[m_{12}^2 \left(\Phi_1^{\dagger} \Phi_2 \right) + \text{h.c.} \right] + \frac{\lambda_1}{2} \left(\Phi_1^{\dagger} \Phi_1 \right)^2 + \frac{\lambda_2}{2} \left(\Phi_2^{\dagger} \Phi_2 \right)^2 \\ &+ \lambda_3 \left(\Phi_1^{\dagger} \Phi_1 \right) \left(\Phi_2^{\dagger} \Phi_2 \right) + \lambda_4 \left(\Phi_1^{\dagger} \Phi_2 \right) \left(\Phi_2^{\dagger} \Phi_1 \right) + \left[\frac{\lambda_5}{2} \left(\Phi_1^{\dagger} \Phi_2 \right)^2 + \text{h.c.} \right] \end{split}$$

5 physical Higgs bosons: h, H: (CP-even) A: (CP-odd) and H^{\pm}

- Z_2 symmetry to avoid FCNC (sofly broken by m_{12}^2) \Rightarrow Four 2HDM types!
- Input parameters:

$$m_h \ (\sim 125 \text{ GeV}), \ m_H, m_A, m_{H^{\pm}}, \ \tan\beta, \cos\left(\beta - \alpha\right) \equiv c_{\beta - \alpha}, \ m_{12}^2 \equiv \bar{m}^2 s_\beta c_\beta$$

• <u>Alignment limit</u>: for $c_{\beta-\alpha} = 0$ the SM interactions for *h* are recovered

Triple Higgs Couplings at tree level

Ratio to the SM tree-level coupling:

 $\kappa_{\lambda}^{(0,1)} \equiv \frac{\lambda_{hhh}^{(0,1)}}{\kappa_{\lambda}^{(0,1)}}$

 $h_{i} \neq \frac{h_{i}}{\lambda} = -ivn!\lambda_{hh_{i}h_{j}}^{(0)}$

with
$$\lambda_{
m SM}^{(0)}=\frac{m_h^2}{2v^2}\simeq 0.13$$

(n = # identical bosons)

- Scalar (triple and quartic) couplings enter at the one-loop (1L) predictions for $\lambda_{hhh}^{(1)}, \lambda_{hhH}^{(1)}$
- Can be very large for large Higgs masses! [FA, Heinemeyer, Herrero, 21, 22]

For instance:
$$\lambda_{hH^+H^-} = \lambda_{hhH^+H^-} \lesssim 15$$

One-Loop Effective Potential

Add the 1L Coleman-Weinberg (CW) + counterterm (CT) to the potential

$$V_{2\text{HDM}}^{\text{Eff.}(1)} = V_{2\text{HDM}}^{(0)} + V_{2\text{HDM}}^{(1),\text{CW}} + V_{2\text{HDM}}^{(1),\text{CT}}$$

• **On-shell**' renormalization scheme:

Loop corrected masses and mixing angles are equal to the tree-level values
 1L THCs \(\lambda_{h_ih_jh_k}^{(1)}\) given by:

$$\left. \lambda_{h_ih_jh_k}^{(1)} = \left. rac{1}{n!v} \left. rac{\partial^3 V_{2\mathrm{HDM}}^{\mathrm{Eff.(1)}}}{\partial h_i \partial h_j \partial h_k}
ight|_{\mathrm{min}}
ight|_{\mathrm{min}}$$
 (n = # identical bosons)

BSMPT [Basler, Biermann, Mühlleitner, Müller, Santos, 24]

Diagramatic Computation for κ_{λ}

All 1L contibutions: WFR + 1PI + tadpoles + counterterms

$$\lambda_{hhh}^{(1)} = \lambda_{hhh}^{(0)} + \delta_{1\text{PI}}^{(1)}\lambda_{hhh} + \delta_{\text{tadpoles}}^{(1)}\lambda_{hhh} + \delta_{\text{WFR}}^{(1)}\lambda_{hhh} + \delta_{\text{CT}}^{(1)}\lambda_{hhh}$$

- On-shell renormalization for masses and the angles α and β [Kanemura, Okada, Senaha, Yuan, 04]
- m_{12}^2 in the MS bar (small μ dependence)
- Three external legs corrections (WFRs) evaluated at $p_{ext}^2 = m_h^2$ (OS condition)
- All contributions considered: full momentum dependence $\lambda_{hhh}^{(1)} \left(p^2 = m_{hh}^2 \right)$
- **anyBSM** [Bahl, Braathen, Gabelmann, Weiglein, 23]

THCs: tree vs 1loop

Type	$\kappa_\lambda^{(0)}$	$\kappa^{(1)}_\lambda$	$\lambda^{(0)}_{hhH}$	$\lambda^{(1)}_{hhH}$
Ι	[-0.2, 1.2]	[0.2, 6.8]	[-1.6, 1.5]	[-2.1, 1.9]
II	[0.6, 1.0]	[0.7, 5.6]	[-1.5, 1.6]	[-1.7, 2.0]
LS	[0.5,1.0]	[0.6, 5.6]	[-1.7, 1.7]	[-2.0, 2.1]
FL	[0.7,1.0]	[0.8, 5.6]	[-1.6, 1.3]	[-1.9, 1.5]

- Scan of the parameter space
- Applied constraints to the 2HDM
 - EWPO

9

- Tree-level unitarity + potential stability
- BSM Higgs boson searches

- Properties of the SM-like Higgs boson
 - Close to the alignment!
- Flavor Observables

[ScannerS + HiggsTools + HDECAY]

κ_{λ} : tree level vs 1 loop

λ_{Γ} h						
φ, hφ	Type	$\kappa^{(0)}_{\lambda}$	$\kappa^{(1)}_\lambda$	$\lambda^{(0)}_{hhH}$	$\lambda^{(1)}_{hhH}$	
ϕ	Ι	[-0.2, 1.2]	[0.2, 6.8]	[-1.6, 1.5]	[-2.1, 1.9]	
ϕ h	II	[0.6, 1.0]	[0.7, 5.6]	[-1.5, 1.6]	[-1.7, 2.0]	
h	LS	[0.5, 1.0]	[0.6, 5.6]	[-1.7, 1.7]	[-2.0, 2.1]	
ϕ	FL	[0.7, 1.0]	[0.8, 5.6]	[-1.6, 1.3]	[-1.9, 1.5]	
$\phi = H, A, H^{\pm}^{h}$		(results from the effective potential)				

- Very large corrections are possible! $\lambda_{hhh}^{(1)} >> \lambda_{hhh}^{(0)}$
- h couplings to heavy Higgs bosons can be large ($\lambda_{h\phi\phi} \sim 15$)
 - Even at the *alignment limit* !!!

(In the SM, top-loops are \sim -8%)

λ_{hhH} : tree level vs 1 loop

ф,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Type	$\kappa_\lambda^{(0)}$	$\kappa^{(1)}_\lambda$	$\lambda^{(0)}_{hhH}$	$\lambda_{hhH}^{(1)}$	
ϕ	Ι	[-0.2, 1.2]	[0.2, 6.8]	[-1.6, 1.5]	[-2.1, 1.9]	
h	II	[0.6, 1.0]	[0.7, 5.6]	[-1.5, 1.6]	[-1.7, 2.0]	
φ h	LS	[0.5,1.0]	[0.6, 5.6]	[-1.7, 1.7]	[-2.0, 2.1]	
a	FL	[0.7, 1.0]	[0.8, 5.6]	[-1.6, 1.3]	[-1.9, 1.5]	
$\phi=H,A,H^{\pm}\overset{h}{}$	(results from the effective potential)					

1L corrections are *not* as significant as for \(\lambda_{hhh}\)
Still interesting results: \(\lambda_{hhH}^{(1)} \ge \lambda_{hhh}^{(0)} \circ 0\) or change of sign in \(\lambda_{hhH}\)

What can we learn from $e^+e^- \rightarrow hhZ$?

- Effect of the 1L THCs, with all pure-scalar contributions (expected to be the larger ones)
- In the case of $\kappa_{\lambda}^{(1)}$:
 - Very different from the SM even in the alignment! Potential access to BSM physics!
 - Is momentum dependence important?
 - Effective potential has zero external momentum, but $p = m_{hh} \gg 0$
- In the case of $\lambda_{hhH}^{(1)}$:
 - \blacksquare How does the 1L effects affect the $H\,$ resonant peak?
 - Can we see something at the ILC?

Effects from THCs at $e^+e^- \rightarrow hhZ$

In the alignment limit ($c_{\beta-\alpha}=0$)

Large 1L κ_{λ} @ILC500GeV

BPal, all types! $m_H = \bar{m} = 400 \text{ GeV},$ $m_A = m_{H^{\pm}} = 800 \text{ GeV},$ $\tan \beta = 3, \cos(\beta - \alpha) = 0$

Cross section 6 times larger than the treelevel prediction !!!

• Momentum effects on $\kappa_{\lambda} (m_{hh})$ not larger than 1-2%

Large 1L λ_{hhH} @ILC500GeV

$\begin{aligned} \kappa_{\lambda}^{(0)} &= 1.00, \ \lambda_{hhH}^{(0)} = -0.08\\ \kappa_{\lambda}^{(1)} &= 5.47, \ \lambda_{hhH}^{(1)} = 0.16 \end{aligned}$ $m_{H} = \bar{m} = 350 \text{ GeV},$ $\sigma_{p^2=m^2}^{\rm NLO} = 0.9026 ~{\rm fb}$ 10^{1} $\sigma_{2\text{HDM}}^{\text{tree}} = 0.1762 \text{ fb}$ ••••• $\sigma_{\rm SM}^{\rm tree} = 0.1568 \; {\rm fb}$

 10^{2}

 $\sigma_{\rm Eff Pot}^{\rm NLO} = 0.8903 ~\rm fb$

300

350

 m_{hh} [GeV]

1L λ_{hhH} with different sign @ILC500

SUSY 2024 – IFT, Madrid

400

 -10^{5}

 10^{4}

Events [

 10^{1}

 $= 10^{0}$

BPsign, type I

18 13/06/2024 Francisco Arco – Impact of One-Loop Triple Higgs Couplings on di-Higgs Production at e⁺e⁻ Colliders

250

$d\sigma/dm_{hh}$ [fb/1 GeV] ••••• $\sigma_{\rm SM}^{\rm tree} = 0.1568 \; {\rm fb}$ $\tan\beta = 2.5,$ ---- $\sigma_{\text{Eff.Pot}}^{\text{NLO}(\kappa_{\lambda})} = 0.1895 \text{ fb}$ $\cos(\beta - \alpha) = -0.18$ ---- $\sigma_{p^2=m^2}^{\operatorname{NLO}(\kappa_\lambda)} = 0.1946 \text{ fb}$

 $\begin{aligned} \kappa_{\lambda}^{(0)} &= 1.06, \ \lambda_{hhH}^{(0)} = 0.24 \\ \kappa_{\lambda}^{(1)} &= 1.40, \ \lambda_{hhH}^{(1)} = 0.44 \end{aligned}$

Large 1L λ_{hhH} + large Γ_H @ILC500

BPlahhH-3, type I

 $m_H = m_{H^{\pm}} = \bar{m} = 300 \text{ GeV},$

 $m_A = 100 \,\,{\rm GeV}.$

 10^{4}

 10_{3} L_{20}

Events [

 10^{0}

 $\sigma_{\rm Eff \ Pot}^{\rm NLO} = 0.2086 \ {\rm fb}$

 $\sigma_{2\text{HDM}}^{\text{tree}} = 0.1606 \text{ fb}$

--- $\sigma_{n^2=m^2}^{\text{NLO}} = 0.2136 \text{ fb}$

400

A more realistic bin size: 15 GeV

All the previous features are more difficult to see now...

 10^{2}

 10^{1}

 10^{0}

 10^{-1}

 10^{-2}

 10^{-3}

 $d\sigma/dm_{hh}$ [fb/15 GeV]

Can we quantify this?

'Sensitivity' to the *H* resonance

Theoretical 'estimator' to the sensitivity to the *H* resonance with the final 4*b*-jet events from the resonance (R) and the 'continuum' (C):

$$R = \sqrt{2\left((s+b)\log\left(1+\frac{s}{b}\right)-s\right)}$$
$$\bar{N}_{4bZ} = N_{hhZ} \times BR\left(h \to b\bar{b}\right)^2 \times \epsilon_b^4 \times$$

Correction factors:

- *b*-tagging efficiency: $\epsilon_b = 80\%$
- Detector acceptance \mathcal{A} with detection cuts:

 $p_T^Z > 20 \text{ GeV}, \ p_T^b > 20 \text{ GeV}, \ \eta_b < 2, \ \Delta R_{bb} > 0.4$

$$s = \sum_{i} \left| \bar{N}_{i,4bZ}^{R} - \bar{N}_{i,4bZ}^{C} \right|$$
$$b = \sum_{i} \bar{N}_{i,4bZ}^{C}$$
(Sum over the bins where R and are at least 3σ awa

Similar analysis to

[FA, Heinemeyer, Herrero,21] [FA, Heinemeyer, Radchenko, Mühlleitner, 221

 $\overline{M}C$

Warning! This is not an experimental analysis! No backgrounds, detection simulation, hadronization...

Results for *R* :

- Large bin size decreases R by 5-6 units
 - Still optimistic results
- BPlahhH-3 (broad peak) is challenging
 - Small bins have no events and large bins give small sensitivity

Point	\sqrt{s}	Bin size	# of bins	s	b	$b_{\rm tree}$	$b_{\rm SM}$	\mathcal{A}	R_2
BPlahhH-1	500	15	1	76.3	35.6	8.6	6.3	0.688	10.2
BPlahhH-1	500	1	3	72.3	7.2	3.6	1.2	0.688	15.4
BPlahhH-1	1000	15	1	64.5	19.4	3.3	1.4	0.613	10.8
BPlahhH-1	1000	1	3	60.9	3.9	2.2	0.3	0.613	15.6
BPlahhH-2	500	15	1	42.1	8.1	31.3	6.6	0.69	9.9
BPlahhH-2	500	1	3	40.7	1.5	26.8	1.2	0.69	14.2
BPlahhH-2	1000	15	1	65.8	2.4	40.4	1.4	0.672	18.0
BPlahhH-2	1000	1	6	65.2	1.2	39.8	0.6	0.672	20.1
BPlahhH-3	500	15	1	9.6	7.9	10.1	5.9	0.679	2.9
BPlahhH-3	500	1	0	0	0	0	0	0.679	-
BPlahhH-3	1000	15	1	6.0	2.6	3.9	1.5	0.675	2.9
BPlahhH-3	1000	1	0	0	0	0	0	0.675	-
BPsign	500	15	1	18.4	27.0	14.0	6.5	0.684	3.2
BPsign	500	1	2	19.0	3.5	7.6	0.8	0.684	6.8
BPsign	1000	15	1	27.3	18.1	11.6	1.3	0.626	5.4
BPsign	1000	1	2	27.0	2.4	9.8	0.2	0.626	9.7
BPext	500	15	1	83.7	38.9	27.7	3.1	0.678	10.7
BPext	500	1	2	79.9	6.3	24.8	0.6	0.678	17.1
BPext	1000	15	1	53.3	19.8	16.4	0.8	0.587	9.2
BPext	1000	1	2	50.6	3.3	15.6	0.2	0.587	14.1

Summary & Conclusions

- Analysis of the 1L corrected triple Higgs couplings κ_{λ} and λ_{hhH} , and their impact in double Higgs production at e^+e^- colliders in the 2HDM, specifically $e^+e^- \rightarrow hhZ$ at ILC
- **1L corrections to** κ_{λ} can be very large, even in the alignment limit!!!
 - Very distinct prediction even for a very SM-like Higgs boson!
- 1L corrected λ_{hhH} can lead to interesting pheno!
 - Access to this effect via the *H* resonance peak
 - Analysis of the final 4b-jet events: access to the resonance peak may be challenging (but an experimental analysis is needed)
 - Resolution in the m_{hh} distributions will be crucial

Thanks for your attention! :)

Back up

XS vs κ_{λ} in the SM at LHC

XS vs κ_{λ} in the SM at e^+e^- colliders

$\kappa_{\lambda} \neq 1$ at HL-LHC and e^+e^- colliders

[Torndal, List, Ntounis, Vernieri, 23]

SUSY 2024 - IFT, Madrid

Main corrections to κ_{λ}

[Kanemura, Kiyoura, Okada, Senaha, Yuan, 02]

$$\kappa_{\lambda}^{(1)} \equiv \frac{\lambda_{hhh}^{(1)}}{\lambda_{\rm SM}^{(0)}} \simeq 1 + \sum_{\phi=H,A,H^{\pm}} \frac{m_{\phi}^4}{12\pi^2 m_h^2 v^2} \left(1 - \frac{\bar{m}^2}{m_{\phi}^2}\right)^3$$

$$\lambda_{\rm SM}^{(1)} \simeq \lambda_{\rm SM}^{(0)} \left(1 - \frac{m_t^4}{\pi^2 m_h^2 v^2} \right) \qquad \qquad \lambda_{\rm SM}^{(0)} = \frac{2m_h^2}{v^2} \simeq 0.13$$

Results for κ_{λ}

Results for λ_{hhH}

Example for large κ_{λ} **at 1 loop** BPal, all types!

5.85

$$m_H = \bar{m} = 400 \text{ GeV},$$

$$m_A = m_{H^{\pm}} = 800 \text{ GeV},$$

$$\tan \beta = 3, \ \cos(\beta - \alpha) = 0$$

- \blacksquare Large $\kappa_{\lambda}^{(1)}$ due to large $\lambda_{hAA}^{(0)}$ and $\lambda_{hH^+H^-}^{(0)}$
- Good agreement between effective potential and diagramatic computation
 - Momentum dependence more important for large momentum

Relative difference w/ and wo/ p

 $m_H = \bar{m} = 400 \text{ GeV},$ $m_A = m_{H^{\pm}} = 800 \text{ GeV},$ $\tan \beta = 3, \ \cos(\beta - \alpha) = 0$

BPal, all types!

2HDM Yukawa couplings

$$\mathcal{L}_{\text{Yukawa}} \supset -\sum_{f=u,d,l} \frac{m_f}{v} \left[\xi_f^h \bar{f} f h + \xi_f^H \bar{f} f H + \xi_f^A \bar{f} \gamma_5 f A \right]$$
$$-\frac{\sqrt{2}}{v} \left[\bar{u} \left(\xi_d V_{\text{CKM}} m_d P_R - \xi_u m_u V_{\text{CKM}} P_L \right) dH^+ + \xi_l \bar{\nu} m_l P_R lH^+ + \text{h.c.} \right]$$

	Type I	Type II	Type III	Type IV
$-\xi_u$	\coteta	\coteta	\coteta	\coteta
ξ_d	\coteta	$-\tan\beta$	$-\taneta$	\coteta
ξ_l	\coteta	$-\tan\beta$	\coteta	$-\taneta$

with
$$\xi_{f}^{h} = s_{\beta-\alpha} + \xi_{f}c_{\beta-\alpha}, \xi_{f}^{H} = c_{\beta-\alpha} - \xi_{f}s_{\beta-\alpha}, \xi_{u}^{A} = -i\xi_{u}, \xi_{d,l}^{A} = i\xi_{d,l}$$