Searches for Higgs boson pair production at CMS

Elvira Martín Viscasillas - CIEMAT

GOBIERNO DE ESPAÑA

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

13th June, 2024 SUSY2024, IFT (Madrid)

Exploring the Higgs Potential

- Precision measurement of the Higgs boson properties is one of the main goals of the LHC
- Higgs self-coupling is not measured yet in the SM → Direct access via Di-Higgs production and indirect access through Single-Higgs production

Di-Higgs production

- The Di-Higgs cross section in the SM it's ~1000 times smaller than Single-Higgs
- New physics effects can modify HH production rates and kinematics

Non-Resonant HH production (SM & BSM)

- SM HH production mechanisms:
 - → ggF and VBF main production modes
 - → First results on VHH and prospects for ttHH
- BSM physics effects parametrized by coupling modifiers: κ_{λ} , κ_{t} , κ_{v} , κ_{2v}

Resonant HH production (BSM)

Higgs pair produced from heavy resonance X

Resonant BSM models:

٠

- → 2HDM two Higgs doublet models (including MSSM)
- → Generic resonances, e.g. Warped extra dimension models → spin-0 Radion / spin-2 Graviton
- BSM physics effects parametrized by heavy resonance mass m_x

Measuring couplings modifiers

Self-couplings can be constrained through total HH cross section and differential distributions

Di-Higgs phenomenology

Rich phenomenology with many final states accessible at LHC

→ There is not a single golden channel

- Significant **experimental challenges** due to their rare production rate and complex final states
- To achieve good sensitivity → compromise between
 - Branching Ratio (BR)
 - Final state signal purity
 - → Escaping gradually these two constraints thanks to improving reconstruction techniques and identification methods

"Big 3" HH analyses

HH+4b : Largest BR, challenging due to high b-jet multiplicity and QCD background

HH+2b2 τ : sizeable branching ratio, lower QCD background HH+2b2 γ : rare process but clean signature due to photons

Decreasing background complexity

Analysis Landscape

• Final states covered by CMS

HH→4b

- Phys. Rev. Lett. 129, 081802 (non-resonant, resolved)
- Phys. Rev. Lett. 131.041803 (non-resonant, boosted)
- <u>CMS-PAS-B2G-21-001</u> (non-resonant, VBF boosted)
- <u>Submitted to JHEP</u> (non-resonant, VHH production)
- <u>Phys. Lett. B 842. 137392</u> (resonant X→YH)
- B2G-20-004 (resonant, boosted)

HH→2b2τ

- Phys. Lett. B 842.137531 (non-resonant)
- <u>JHEP 11 (2021) 057</u> (resonant X→YH)

HH→2b2γ

- JHEP 03 (2021) 257 (non-resonant)
- CMS PAS HIG-21-011 (resonant) 🔆

HH→2b2Z

- JHEP 06 (2023) 130 (non-resonant)
- <u>Phys. Rev. D. 102.032003</u> (resonant)

HH→2b2W

- <u>CMS PAS HIG-21-005</u> (non-resonant + resonant)
- JHEP 05 (2022) 005 (resonant)

HH→2W2γ

<u>CMS-PAS-HIG-21-014</u> (non-resonant)

HH**→**4W+2W2τ+4τ

JHEP 07 (2023) 095 (non-resonant + resonant)

ΗΗ→2γ2τ

CMS-PAS-HIG-22-012 (non-resonant + resonant) 🔆

• Searches across various decay channels complement each other ↔ complementary sensitivity to coupling variations

→ Combination is the key

- HH combination → Nature 607 (2022) 60 ☆
- H+HH combination → <u>CMS-PAS-HIG-23-006</u> ☆

Non-resonant production

Non-resonant HH Run 2 combination

- Similar sensitivity between **boosted HH+4b**, HH+2b2 τ and HH+2b2 γ
- Maximal sensitivity obtained through combination → most restrictive upper limits on the Di-Higgs cross section

The newcomers: H + HH combination

Combine all recent CMS analyses targeting the most sensitive Single-Higgs and Di-Higgs production modes

The newcomers: ΗΗ→γγττ

- HH production in the $2\gamma 2\tau$ final state covered for the first time
 - → Very tiny branching ratio (0.028%), but clean final state from good di-photon resolution

Resonant production

The newcomers: X→HH/HY→γγττ

- **Resonant scenario:** $X \rightarrow HH$, $X \rightarrow H(2\gamma)Y(2\tau)$ and $X \rightarrow H(2\tau)Y(2\gamma)$ (split into low-mass and high-mass channels) production
 - X mass range 260-1000 GeV, spin-0 and spin-2
 - Y mass range 50-800 GeV, spin 0

Resonant searches: X→HH/HY→bbyy

- Resonant HH and HY production decaying into 2b2γ (H→2γ, H/Y→2b)
 - X mass range 260-1000 GeV, spin-0 and spin-2
 - Y mass range 90-800 GeV, spin-0

Elvira Martín Viscasillas - CIEMAT

Searches for Di-Higgs at CMS - SUSY24

Resonant searches: X→HH/HY→bbyy

- Resonant HH and HY production decaying into 2b2γ (H→2γ, H/Y→2b)
 - X mass range 260-1000 GeV, spin-0 and spin-2
 - Y mass range 90-800 GeV, spin-0

GeV, my=90 GeV (global 2.8o) **Resonant HY results** Limits on $\sigma_{HH} \times BR$: 0.79 fb - 0.05 fb over the range of mx and my 138 fb⁻¹ (13 TeV) m, = 350 GeV m_v = 400 GeV m, = 500 GeV m_y = 550 GeV m, = 650 GeV m_v = 700 GeV m_x = 800 GeV m_v = 850 GeV m. = 950 GeV m_v = 1000 GeV m_v [GeV]

JHEP 05 (2024) 316

Local 3.8g excess at mx=650

Expected limit $\pm 2 \sigma$

Observed 95% upper limit

Resonant searches: HH/HY sensitivity

• Results and combinations of the latest full Run 2 resonant X→HH/HY searches performed by CMS

CMS-B2G-23-002

Resonant searches: HH/HY sensitivity

Results and combinations of the latest full Run 2 resonant X+HH/HY searches performed by CMS

Relative HY sensitivity

Run 3 improvements

- Improved reconstruction and object identification techniques (eg. ParticleNet, extensive and improved use of Machine Learning)
- Improved trigger strategies for Run 3 based on improved object identification: new b-tagging and τ-tagging algorithms (ParticleNet and DeepTau)
 - \Rightarrow Improvements are expected for all HH searches targeting **bb** or $\tau\tau$ final states

Prospects for HH measurements

- Nature 607 (2022) 60YR2018 (ECFA)Snowmass ATLAS+CMS
- Large impact of the high luminosity that allows to extend the Di-Higgs production and decays modes accessible at LHC
- Many new developments on reconstruction and identification methods (triggers, machine learning based taggers)

Elvira Martín Viscasillas - CIEMAT

Conclusions

- Investigating the Di-Higgs process is fundamental for a complete understanding of the shape of the Higgs potential and one of the primary goals of Higgs Physics for the coming years
- Great results already accomplish in LHC **Run 2** thanks to:
 - Innovative analysis techniques
 - Exploration of new HH decay channels
 - HH and H+HH combinations
 - → Limits and constraints on non-resonant production
 - Upper limit on Di-Higgs cross section: σ^{HH} < 3.4×σ^{HH}(SM) @ 95% CL
 - Self coupling constrained to: -1.24<κλ<6.49 (assuming other couplings = 1) @ 95% CL
 - Excluded the absence of VVHH at >5σ: K₂v ≠ 0 for all Kv
- **Run 3** is ongoing and represents a huge opportunity to improve sensitivity:
 - More data to analyze
 - Improved triggering strategy
 - Extended interpretations and exploration of models
 - Test-bench for new ideas and analysis strategies for HL-LHC
- So many improvements such as innovative detector technology, machine learning methods and activation strategies have the potential to lead us to observation at the **HL-LHC** ... Exciting results to come!

Backup

Overcoming experimental challenges

- Improve statistics → Run 3 is underway, with higher energy and more data to analyze
- More advanced analysis techniques Taking advantage of new tools and techniques becoming available
- Include new final states → Expand the available phase space
- Add more production modes + Bring access to other couplings
- Combination with Single-Higgs → Connection between H and HH to investigate the entire Higgs sector
- Exploration of extended interpretations → SMEFT, HEFT