Interplay of inert doublet and vector-like lepton triplet with displaced vertices at the LHC/FCC and MATHUSLA

In Collaboration with Eung Jin Chun, Mariana Frank, Chandrima Sen, Snehashis Parashar

ndian Institute of Technology Hyderabad

SUSY 2024 10th June, 2024

Priyotosh Bandyopadhyay IIT Hyderabad, India

- Hypercharged zero SU(2) triplet fermion: Type-III seesaw
- Unconventional searches: Dispalced decays. Double recoil
- A special case of non-zero hypercharrged SU(2) triplet
- Interplay of Vector like inert triplet lepton and inert doublet
- MATHUSLA detector
- Displaced decay signature of the heavy leptons

Plan

Tiny neutrino mass

• Simple extension of SM with a right-handed neutrino (N_R) would solve the problem as

This is a Dirac type mass $m_D = \frac{Y_N v}{\sqrt{2}}$

- To have a neutrino mass of $\sim 0.1 \, \mathrm{eV}$, one needs $Y_N \sim 10^{-12} \Longrightarrow$ Leads to fine-tuning
- Being charged neutral, a Majorana mass term $M_N N_R N_R^c$ is possible
- A popular mechanism called Seesaw explains the small neutrino mass by having heavy Majorana neutrinos mass term

 \implies existence of heavy Majorana neutrino

 $\mathscr{L}_{m_{\nu}} = -\frac{y_{\nu}v}{\sqrt{2}}\bar{\nu}_L N_R + h.c.$

 $m_{\nu} = \begin{pmatrix} 0 & m_D \\ m^T & M \end{pmatrix}$ I'IID IVIN More

Seesaw mechanisms: Most popular senaris

- The most popular variants are Type-I, Type-II and Type-III seesaw
- Type-I and Type-III involve heavy fermions
- Type-II involves heavy scalar

Type-I involves SM gauge singlet heavy neutrino $\nu_R(N_R/N)$

Type-II involves SU(2) triplet scalar Δ

be-I, Type-II and Type-III seesaw v fermions

Type-III involves SU(2) triplet fermion $\Sigma(N)$

Type-III Seesaw: Extension with zero a hyper (Y=0) charged SU(2) triplet

• A Y=0, SU(2) triplet fermion can be added which generates tiny neutrino mass

$$\mathscr{L}_{N} = -\frac{1}{2}Tr[(\overline{N}M_{N}N) + \overline{N^{c}}M^{*}N] - \frac{1}{2}Tr[(\overline{N}M_{N}N) + \frac{1}{2}Tr[(\overline{N}M_{N}N] - \frac{1}{2}Tr[(\overline{N}M_{N}N] - \frac{1}{2}Tr[(\overline{N}M_{N}N) + \frac{1}{2}Tr[(\overline{N}M_{N}N] - \frac{1}{2}Tr[(\overline{N}M_{N}N]$$

- A Majorana mass term is possible
- The heavy triplet fermions have chared (N^{\pm}) and neutral (N^0) part as given by

$$N = \begin{pmatrix} N^0 & \sqrt{2}N^+ \\ \sqrt{2}N^- & -N^0 \end{pmatrix}$$

Foot, Hambye, Struma, Ma, Bajc, He, Senjanovic, Chaubey, Chun, Goswami, Ghosh, Mitra, Rosa,...

Type-III Seesaw

- For Heavy N the decay widths fol
- There is another mode modinant f

with
$$\Gamma(N^{\pm} \to N^0 \pi^{\pm}) = \frac{2G_F^2 V_{ud}^2 (\Delta M)^3 f_{\pi}^2}{\pi} \sqrt{1 - \frac{m_{\pi}^2}{\Delta M^2}}$$
 Cirelli et al. :Nucl.Phys.B753:178-19 ΔM is the mass difference between N^{\pm} and N^0 arising from the quantum correction

Where, which is $\mathcal{O}(166)$ MeV

- For $Y_N \sim 5 \times 10^{-7}$, the branching ratio in this mode is less than 1 %
- However, for $Y_N \sim 5 \times 10^{-10}$ the branching fraction is ~ 97.5 %

$$\begin{aligned} \text{llows:} \Gamma_{N^{\pm}}^{Z\ell} \simeq \Gamma_{N^{\pm}}^{Z\ell} \simeq \frac{1}{2} \Gamma_{N^{\pm}\nu}^{W^{\pm}\nu} \simeq \frac{Y_N^2 M_N}{32\pi^2} \\ \hline \\ \text{for lower Yukawa , i.e. } N^{\pm} \to N^0 \pi^{\pm} \end{aligned}$$

- decay length of $\mathcal{O}(cm)$
- 100s of meter
- A displaced double recoil is predicted.

PB, Chandrima Sen, Aleesha KT, Saunak Dutta: Eur.Phys.J.C 82 (2022) 3, 230]

Displaced Double recoil

• For lower Yukawa, I.e. $Y_N \lesssim 5 \times 10^{-8}$, $N^{\pm} \to N^0 \pi^{\pm}$ dominates with a

• For similar low values of Yukawa the decay of $N^0 \rightarrow h\nu$ can be a few meeter to

Scotogenic Type-III: Extension with a zero hyper (Y=0) charged Z_2 -odd SU(2) triplet

• Y=0 triplet fermion (Σ) and inert doublet (η) both are Z₂-odd

$$-\mathcal{L}_{\Sigma} = \sum_{\alpha=1}^{n_{\Sigma}} \left(\sum_{i=e,\mu,\tau} h_{i\alpha} \bar{\ell}_L \right)$$

- Neutrino mass cannot be generated at the tree-level
- Neutrino mass is generated at one-loop
- A Y=0, SU(2) triplet fermion with Z_2 -odd can provide Majorana dark matter
- Due to Y=0, the coupling with Z boson is zero
- It can evade the direct dark matter constraint mediated by Z boson
- For Y=0, a scotogenic Type-III can provide the neutral component of Σ can be a Majorana dark matter E. Ma, Suematsu: Mod. Phys. Lett. A 24, 583 (2009).

Extension with a non-zero hyper charged SU(2) triplet

Non-zero Hypercharged fermion

For $Y \neq 0$, we cannot write a Majorana ma

• So usual Seesaw will not work

The gauge invariant Lgrangian also needs a SU(2) doublet scalar $\Phi_2 = \begin{pmatrix} \phi_2^+ \\ \phi_2^0 \end{pmatrix}$ $\mathcal{Y}_N \overline{L_L^e} N_R \Phi_2 + h.c.$

$$\mathcal{L}_{VLL} \supset \left[-\frac{M_N}{2} \overline{N_L} N_R + \mathcal{Y} \right]$$

- We make both $N, \Phi_2 Z_2$ -odd
- Due to $Y \neq 0$, N^0 couples to Z boson
- For $Y \neq 0$, the possible mass term is Dirac Type, which makes it vector like

ass term for
$$N = \begin{pmatrix} \frac{N^{-}}{\sqrt{2}} & N^{0} \\ N^{--} & \frac{-N^{-}}{\sqrt{2}} \end{pmatrix}$$

• Being Z_2 -odd, in principle, neutral component of both (N^0, ϕ_2^0) can provide the dark matter

SU(2) VLL and IDM

Description	Field definition	Gauge charges						
Description	r leiu deminition	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	Z_2			
Vectorlike lepton (VLL)	$N = \begin{pmatrix} \frac{N^-}{\sqrt{2}} & N^0\\ N^{} & -\frac{N^-}{\sqrt{2}} \end{pmatrix}$	1	3	-1				
Scalars	$\Phi_1 = (\phi_1^+ \ \phi_1^0)^T$	1	2	1/2	+			
DCalais	$\Phi_2 = (\phi_2^+ \ \phi_2^0)^T$	1	2	1/2				

The scalar potential can be written as

 $+\lambda_4(\Phi_1^\dagger\Phi_2)(\Phi_2^\dagger\Phi_1)+\left[\lambda_5(\Phi_1^\dagger\Phi_2)^2+h.c
ight]$

• Being Z_2 odd, Φ_2 does not get vev

 $V_{\text{scalar}} = -m_{\Phi_1}^2 \Phi_1^{\dagger} \Phi_1 - m_{\Phi_2}^2 \Phi_2^{\dagger} \Phi_2 + \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2)$

SU(2) VLL and IDM $M_h^2 = 2\lambda_1 v^2$

- The physical masses are
 - $M_{H^0/A^0}^2 =$
 - $M_{H^{\pm}}^{2} =$
- Being Z_2 odd, Φ_2 does not get vev
- Masses of VLLs are all degenerate to M_N at the tree-level • However, at loop-level their is a mass splitting between the different charged and the neutral components

$$\Delta M_{N^{\pm}N^{0}} = \frac{\alpha_{2}M_{N}}{4\pi} \left[(s_{W}^{2}+1)\mathcal{G}\left(\frac{M_{Z}}{M_{N}}\right) - \mathcal{G}\left(\frac{M_{W}}{M_{N}}\right) \right],$$

$$\Delta M_{N^{\pm\pm}N^{0}} = \frac{\alpha_{2}M_{N}}{4\pi} \left[4 s_{W}^{2}\mathcal{G}\left(\frac{M_{Z}}{M_{N}}\right) \right]. \quad \text{where, } \mathcal{G}(x) = \frac{x}{2} \left[2x^{3} \ln x - 2x + (x^{2}+2)\sqrt{x^{2}-4} \ln(\frac{x^{2}-2-x\sqrt{x}}{2}\right) \right].$$

• For $M_N \ge 400 \text{ GeV}, \Delta M_{N^{\pm}N^0} \sim 500 \text{ MeV}, \Delta M_{N^{\pm\pm}N^0} \sim 1.5 \text{ GeV}$

$$= m_{\Phi_2}^2 + \frac{1}{2}v^2\lambda_{L/S}$$
$$= m_{\Phi_2}^2 + \frac{1}{2}v^2\lambda_3,$$

where,
$$\lambda_{L/S} = \lambda_3 + \lambda_4 \pm 2\lambda_5$$
.

SU(2) VLL and IDM • Unlike Y=0 Schotogenic Type-III, N^0 can not be dark matter here

- Due to non-Majorana nature, its coupling with Z boson forbids N^0 to be the dark matter, owing to large direct dark matter cross-section
- Whereas, A^0/H^0 due to CP-coonserving lagranngian do not couple to Z boson. The lighter of these two can be a dark matter candidate, which we choose as A^0
- The direct dark matter constraint even prohibits a multi-component dark matter scenario as well
- So for all the practical purpose, this is IDM scenario
- However, the interplay of N^0 and A^0/H^0 plays an important role in the freeze-out of the dark matter and attaining the correct relic

Interplay between IDM and VLL

Convention: Sector 0: SM particles; Sector 1: IDM: A^0, H^0, H^{\pm} ; Sector 2: VLL: $N^0, N^{\pm}, N^{\pm\pm}$

- For $m_{\Phi_2} < M_N$, IDM is the real dark matter
- Pair-annihilation of Z_2 odd particles $\Phi_2 \Phi_2 \rightarrow SM SM(11 \rightarrow 00)$ and $NN \rightarrow SM SM(22 \rightarrow 00)$
- Co-annihilations of Z_2 odd particles $N\Phi_2 \rightarrow SM SM(21 \rightarrow 00)$
- Co-scatterring of Z_2 odd particles $\Phi_2 \Phi_2 \leftrightarrow NN$
- Late decay effect: $N \rightarrow \Phi_2 SM$

$$\begin{aligned} \frac{dY_{\Phi_2}}{dx} &= -\frac{1}{x^2} \frac{s(M_{A^0})}{H(M_{A^0})} \bigg[\langle \sigma v \rangle_{1100} \left(Y_{\Phi_2}^2 - (Y_{\Phi_2}^{eq})^2 \right) - \langle \sigma v \rangle_{2211} \left(Y_{\Phi_2}^2 - Y_N^2 \frac{(Y_{\Phi_2}^{eq})^2}{(Y_N^{eq})^2} \right) \\ &+ \langle \sigma v \rangle_{1200} \left(Y_{\Phi_2} Y_N - Y_{\Phi_2}^{eq} Y_N^{eq} \right) \bigg] + \frac{x \Gamma_N \to \Phi_2 X}{H(M_{A^0})} \left(Y_N - Y_{\Phi_2} \frac{Y_N^{eq}}{Y_{\Phi_2}^{eq}} \right), \end{aligned}$$

$$\frac{dY_N}{dx} = \frac{1}{x^2} \frac{s(M_{A^0})}{H(M_{A^0})} \left[\langle \sigma v \rangle_{2200} \left(Y_N^2 - (Y_N^{eq})^2 \right) + \langle \sigma v \rangle_{2211} \left(Y_{\Phi_2}^2 - Y_N^2 \frac{(Y_{\Phi_2}^{eq})^2}{(Y_N^{eq})^2} \right) + \langle \sigma v \rangle_{1200} \left(Y_{\Phi_2} Y_N - Y_{\Phi_2}^{eq} Y_N^{eq} \right) \right] = \frac{x \Gamma_N \to \Phi_2 X}{H(M_{A^0})} \left(Y_N - Y_{\Phi_2} \frac{Y_N^{eq}}{Y_{\Phi_2}^{eq}} \right).$$

Interplay between IDM and VLL

- The A^0 suffers a dip due to co-annihilation due to compresses spectra The number density of A^0 increases as N^0 decays completely
- Pure IDM shows over abundant, but due to the inter play with the VLL, the DM relic is lacksquareback to the allowed
- giving rise to displaced decays N

• The situation corresponds to relatively late decay of N^0 , $\Gamma_{N^0} \sim 10^{-16} - 10^{-17} \, \text{GeV}$,

PB, Mariana Frank, Snehashis Parashar, Chandrima Sen: JHEP 03 (2024) 109

Correlation of mass gap and Yukawa coupling

 $M_{40} = 587 \text{ GeV} |\lambda_c| = 0.03$

1.0 (14				$A^{\circ} =$	001	Ger,	113	- 0	.00				1.6	1e-04		0.0	1.0	1.0									
16-0	0.	3 0.7	1.0	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.0		0.7	0.9	1.2	1.3	1.4	1.4	1.3	1.3	1.3	1.3	1.3	1.3	
	0.	4 0.7	1.0	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1			0.7	0.9	1.2	1.3	1.4	1.4	1.3	1.3	1.3	1.3	1.3	1.3	1
	0.	4 0.8	1.0	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.4	1e-05	0.7	1.0	1.2	1.3	1.4	1.4	1.3	1.3	1.3	1.3	1.3	1.3	1.
1e-(05 0.	4 0.7	1.0	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1			0.7	1.0	1.2	1.3	1.4	1.4	1.3	1.3	1.3	1.3	1.3	1.3	1.
	0.	4 0.6	1.0	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.2		0.7	0.9	1.2	1.3	1.4	1.4	1.3	1.3	1.3	1.3	1.3	1.3	1.
	0.	5 0.7	1.0	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1		1e-06	0.9	1.0	1.2	1.3	1.4	1.4	1.3	1.3	1.3	1.3	1.3	1.2	1.
1e-0	⁰⁶ 0.	5 0.7	1.0	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1		10.00	1.0	1.1	1.3	1.3	1.4	1.4	1.3	1.3	1.3	1.3	1.3	1.3	1.
\mathcal{V}_N	0.	.7 0.9	1.0	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.0 Ob ²	\mathcal{Y}_N	1.2	1.3	1.3	1.4	1.4	1.4	1.3	1.3	1.3	1.3	1.3	1.3	1.
	0.	.8 1.0	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	$\overline{\Omega_{\text{Planck}}h^2}$	1e-07	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.3	1.3	1.3	1.3	1.3	1.
1e-0	1.	1 1.1	1.2	1.2	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	0.8	10-01	1.5	1.5	1.5	1.5	1.4	1.4	1.4	1.4	1.4	1.4	1.3	1.3	1.
	1.	2 1.2	1.2	1.2	1.2	1.2	1.1	1.1	1.1	1.1	1.1	1.1	1.1			1.5	1.5	1.5	1.5	1.5		1.5	1.4	1.4	1.4			1
	1.	2 1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	0.6	10.08	1.5	1.5	1.5	1.5	1.5				1.5		1.5	1.5	1.
1e-0	1.	2 1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2		16-00	1.5	1.5	1.5	1.5	1.5								
	1.	2 1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	0.4		1.5	1.5	1.5	1.5	1.5	1.5		1.5		1.5	1.6	1.6	
	1.	2 1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	0.4	1- 00	1.5	1.5	1.5	1.5	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1
1e-0	0		30	(60	9	0	1:	20	13	50	180			1e-09	Ő	3	0	6	60	9	0	12	20	15	50	18	30
					M	Nº -	M_{A^0}	Ge	eV)						$M_{N^0} - M_{A^0} (\text{GeV})$													

- dark matter number density
- larger Yukawa for the correct DM relic

 $M_{A^0} = 1$ TeV, $|\lambda_S| = 0.04$

Lower Yukawa couplings: less co-annihilation and corresponds to very late dacay of NHigher mass splitting: Less phase space for co-annihilation, and leads to overabundance of

Higher dark matter mass: Lesser annihilation of DM, needs more compressed spectrum and

Dark matter relic and the interplay

- The observed relic is $\Omega h^2 = 0.1199 \pm 0.0027$
- $M_{A^0} > 1.4 \text{ TeV}$ is ruled out due to over abundance

• The lower region around $M_{A^0} \sim 70 \,\text{GeV}$ due to the s-channel annihilation via Higgs boson

Direct Dark matter Detection

• The direct detection can only happen via the Hinds nortal coupling $\lambda_S = \lambda_3 + \lambda_4 - 2\lambda_5$

- excludes $|\lambda_S| \ge 0.5$ for $M_{A^0} > 500$ GeV
- $|\lambda_S| \leq 0.01$ Is excluded from the neutrino floor bound

 M_{A^0} (GeV)

 $\sigma_{\rm SI} \simeq \frac{\lambda_S^2 f_n^2}{4\pi M_h^4} \frac{M_n^4}{(M_n + M_{A^0})^2}$ The most stringent upper bound comes from the LUX-ZEPLIN experiment, which

Dark matter Indirect Detection

- The dominant annihilation moose of A^0 is $W^{\pm}W^{\mp}, ZZ$ \bullet
- The Fermi-Lat and HESS detects energetic photons which put bounds won the annihilation cross-section

H.E.S.S. collaboration, Phys. Rev. Lett. 129 (2022) 111101 MAGIC, Fermi-LAT collaboration, JCAP 02 (2016) 039

Benchmark Points

BP	$\begin{bmatrix} M_{A^0} \\ (\text{GeV}) \end{bmatrix}$	$egin{array}{c} M_{H^0}\ ({ m GeV}) \end{array}$	$egin{array}{c} M_{H^{\pm}}\ ({ m GeV}) \end{array}$	$\begin{bmatrix} M_{N^0} \\ (\text{GeV}) \end{bmatrix}$	$\begin{vmatrix} M_{N^-} \\ (\text{GeV}) \end{vmatrix}$	$\begin{vmatrix} M_{N^{}} \\ (\text{GeV}) \end{vmatrix}$	\mathcal{Y}_N
BP1	71.57	117.16	84.76	98.25	98.61	99.28	4.2×10^{-9}
BP2	587.6	589.4	588.2	595.5	595.9	596.8	1.1×10^{-7}
BP3	1000.0	1010.5	1001.0	1010.5	1011.0	1011.9	5.4×10^{-7}

- All the benchmark points satisfy the dark matter relic, direct and indirect bounds
- All the benchmark points have displaced vertex signature. •

PB, Mariana Frank, Snehashis Parashar, Chandrima Sen: JHEP 03 (2024) 109

Collider signature

• $pp \rightarrow N^{\pm\pm}N^{\mp\mp}, N^{\pm}N^{\mp}, N^{\pm\pm}N^{\mp}, N^{\pm}N^{0}$ are looked into at the LHC and FCC-hh

- Typically hadronically quet displaced multi-leptonic $(1\ell 6\ell)$ signature can be achieved. However, we present the numbers only till 4ℓ
- Pair production of doubly charged VLL can lead to 4 displaced leptons for small Yukawa couplings and compressed mass spectrum

- 1. Small coupling g
- 2. Heavy intermediary particle or cancellation in matrix element
- 3. Llow phase space due to compressed spectrum

Dispalced decays

picture courtesy: https://tikz.net/bsm-longlived

MATHUSLA Detecor

- MATHUSLA is proposed to be built 68 meters from the CMS interaction point in the longitudinal direction, 60 meters in the transverse direction.
- MATHUSLA should be able to search for the long-lived particles with near-zero backgrounds
- MATHUSAL geometry: $25 \times 100 \times 100 \text{ m}^3$

The decay widths and the rest mass decay lengths of $N^{\pm\pm}$ ullet

	BP1		BP2		BP3				
	$\mathcal{Y}_N = 4.2 imes$	10^{-9}	$\mathcal{Y}_N = 1.1 imes$	(10^{-7})	$\mathcal{Y}_N = 5.4 \times 10^{-7}$				
$N^{\pm\pm}$	$\Gamma_{\rm tot}~({ m GeV})$	$c au_0$ (m)	$\Gamma_{\rm tot}~({ m GeV})$	$c au_0$ (m)	$\Gamma_{\rm tot}~({ m GeV})$	$c au_0$ (m)			
	1.27×10^{-18}	155.42	5.92×10^{-17}	3.33	1.34×10^{-15}	0.15			

• The decay length distributions including the boost effect

Displaced decay of $N^{\pm\pm}$

PB, Mariana Frank, Snehashis Parashar, Chandrima Sen: JHEP 03 (2024) 109

different centre of mass energies at 300 fb⁻¹ luminosity

Final States:

2 displaced leptons + 0 jet with

 $p_{T_{\ell_1}} \geq 20 \,\mathrm{GeV}$ &

 $p_{T_{\ell_2}} \ge 10 \,\mathrm{GeV}$

 $p_{T_{\ell_{1,2}}} \ge 10 \,\mathrm{GeV}$

 \bullet numbers are

Final \mathbf{at} FS6: 2 with

Numbers for 2 displaced leptons

A typical comparison can be made for the two displaced leptons inside CMS, ATLAS for

h		Centre of mass energies at									
	BPs	14	TeV	27	TeV	100 TeV					
		CMS	ATLAS	CMS	ATLAS	FCC-hh detector					
	BP1	1108.2	2112.5	2107.0	3831.5	40162.2					
	BP2	647.3	1068.5	2300.2	3927.4	28388.6					
	BP3	329.7	329.7	2113.5	2113.5	11401.5					

The events inside MATHUSLA is possible only for BP1 and at 300 fb⁻¹ luminosity the

l States for BP1	production	centre-of-mass energies						
MATHUSLA	modes	$14\mathrm{TeV}$	$27\mathrm{TeV}$	100 Te				
	$N^{++}N^{}$	249.1	507.7	1690.6				
2 displaced leptons	$N^{\pm\pm}N^{\mp}$	259.8	623.8	2114.7				
$p_{T_{\ell_{1,0}}} \geq 10 \mathrm{GeV}$	N^+N^-	1.7	1.8	10.3				
- ~1,2	$N^{\pm}N^{0}$	0.0	0.0	0.0				
	Total	510.6	1133.3	3815.6				

Conclusions

- scenarios
- Dispalce decay of neutral fermions and charged fermions in the case of Type-III or VLL can probe the models for the unexplored territory
- Lower Yukawa coupling and complessed spectrum can alter the DM phenomenology
- $\mathcal{O}(100)$ m decay lengths can be probed inside MATHUSLA detector
- Double recoil: $N^{\pm} \rightarrow N^0 \pi (\sim \text{cm}) \rightarrow h \nu \pi (\sim 1-00 \text{ m})$ can be probed along with a displaced Higgs production
- A doubly charged displaced lepton charged track and its decay can be • searched for

Dispalced decays can be used as non-standard searches to probe New physics

