

MicroBooNE's Beyond Standard Model Physics Program

 José I. Crespo-Anadón CIEMAT

June 13th, 2024 31st International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY 2024)

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Theory meets Experiment

One experiment. Two neutrino beams:

Booster Neutrino Beam (BNB) from pion decay-in-flight mostly, plus kaon and muon decays.

Single horn for focusing charged mesons. MicroBooNE BNB dataset is only **neutrino-mode** (positive mesons focused).

Neutrinos from the Main Injector (NuMI) from a high-energy beam off-axis.

Two horns. MicroBooNE NuMI dataset has both **neutrino and antineutrino modes**.

One experiment. Two neutrino beams:

Booster Neutrino Beam (BNB) from pion decay-in-flight mostly, plus kaon and muon decays.

Single horn for focusing charged mesons. MicroBooNE BNB dataset is only **neutrino-mode** (positive mesons focused).

Neutrinos from the Main Injector (NuMI) from a high-energy beam off-axis.

Two horns. MicroBooNE NuMI dataset has both **neutrino and antineutrino modes**.

MicroBooNE detector

José I. Crespo-Anadón

85 ton active liquid argon TPC.

Maximum drift length: 2.5 m. Drift time: 2.3 ms.

3 wire planes to reconstruct 3D interaction. 3 mm wire pitch.

Low-noise cold front-end electronics.

32 8" Hamamatsu R5912 Cryogenic **PMTs** mounted behind the wire planes with TPB-coated acrylic plates.

Near surface. External cosmic-ray tagger system.

Operations 2015 – 2021.

MicroBooNE BSM program

Liquid Argon TPC (LArTPC) technology

Imaging like a "**digital bubble chamber**". mm-level spatial resolution. High resolution calorimetry.

3-D reconstruction.

Scintillation light for triggering and cosmic background rejection.

Exclusive final-state kinematics and particle identification.

José I. Crespo-Anadón

Search for anomalous v_{e} appearance

PRD 105 (2022) 11, 112005

Oscillation analysis

MicroBooNE has set **constraints on the eV-sterile neutrino parameter space**, excluding part of the LSND-allowed region at 95% CL.

New searches for excesses and oscillation analyses coming soon!

José I. Crespo-Anadón

Neutrino beams as portals to BSM physics

Neutrino experiments compete in the intensity frontier (exploring smaller couplings).

Neutrino beams are made from intense secondary **meson beams created by the high-intensity proton beams.**

Remaining protons are dump into beam stoppers

New particles may be produced in the decay of **both charged and neutral mesons**.

Long-lived massive particles may avoid helicity suppression due to their mass or from production in 3-body decays.

Neutrino portal: Heavy Neutral Leptons (HNL)

From arXiv:1504.04855

Extension of SM by adding **right-handed** counterparts to left-handed neutrinos.

Singlets under SM interactions \rightarrow a.k.a. **Heavy** sterile neutrinos.

Can have both **Dirac** (Yukawa) and **Majorana** masses. **Mass scale unconstrained.**

Produced in meson decays through mixing with SM neutrinos via extended PMNS mixing matrix elements: U_{e4} , $U_{\mu4}$ (no significant τ production).

No oscillation due to large mass – loss of coherence.

HNL **decay in flight**. No interaction with Ar nucleus.

Heavy neutral leptons: BNB search

MicroBooNE exploited their baseline (470 m) to search for delayed HNL from the BNB in a neutrino-free window.

Dedicated trigger window after the BNB SM neutrino trigger.

Assume $|U_{{}_{e4}}|$ = $|U_{{}_{\tau4}}|$ =0 and production via K \rightarrow μN

Search between kinematic limits for $K \rightarrow \mu N$ production and $N \rightarrow \mu \pi$ decay.

Majorana HNL decays

 $N \rightarrow \mu^+\pi^-$ and $N \rightarrow \mu^-\pi^+$

Isotropic decays (summed over both channels, no charge discrimination).

Dirac HNL decays

 $N \rightarrow \mu - \pi^+$ only: factor of two lower rate.

Non-isotropic decays (negligible effect).

Prospects for ns-timing searches

Phys.Rev.D 108 (2023) 5, 052010

José I. Crespo-Anadón

Heavy neutral leptons: NuMI search

search.

Heavy neutral leptons: new NuMI search

New NuMI search targeting lower HNL masses and focused on EM final states has set worldleading limits on HNL via $|U_{\mu4}|$ mixing.

Higgs portal: light scalar

New dark boson that mixes with the SM Higgs boson, parameterized by an angle θ .

May be produced in kaon decays via a Penguin diagram [Proposed in **Phys. Rev. D 100, 115039** (2019)].

Exploit directionality of signal produced from decay-at-rest kaons in the NuMI absorber vs neutrino background from decay-in-flight mesons in the NuMI beam.

Decay volume

MicroBooNE

Hadron

absorber

(not to scale)

Side view

NuMI target

and horns

Higgs-portal scalar NuMI searches

José I. Crespo-Anadón

Vector portal: dark photons and dark matter

Proposed in JHEP 01 (2019) 001.

Off-shell **dark photon A'** produced in decays of neutral mesons via **kinematic mixing with SM photon (ε)**.

Dark photon (mass M_A) subsequently decays (α_D coupling) into dark matter (DM) particles (mass M_x), either fermions or bosons.

Dark trident: DM travels to detector and scatters off an Ar nucleus, radiating another **dark photon that decays into an e+e- pair**.

Large off-axis DM flux compared to beam neutrinos due to neutral mesons not being focused and decaying into 3 bodies.

Dark trident NuMI search

511

Drift Time

µBooNE

High charge

Low charge

MicroBooNE NuMI Data Signal score: 6.358

Run: 5985, Subrun: 28, Event 1446

NuMI neutrino background suppressed due to off-axis location.

Signal selection using **deep learning methods** (convolutional neural network).

Exclude previously unexplored space for dark photons with mass between 10 and 400 MeV at 90% CL.

Just published! Phys.Rev.Lett. 132 (2024) 24, 241801 511 Wire Number Scalar DM ($\alpha_D = 1.0, M_{\chi}/M_{A'} = 0.6$) Fermion DM ($\alpha_D = 1.0, M_{\chi}/M_{A'} = 0.6$) Fermion DM ($\alpha_D = 1.0, M_y/M_{A'} = 2.0$) 10^{-5} 10^{-5} 10^{-5} LHCb BaBar LHCb BaBar LHCb NA48/2 BaBar NA48/2 NA48/2 10^{-} 10 10 10^{-7} 10^{-7} 10^{-7} LSND ε2 ε2 ~ω 10⁻⁸ 10^{-8} 10 10- 10^{-9} 10^{-9} FASER Planck LHCb LHCb LHCb 10-10 10-10 10^{-10} **Beam Dump Beam Dump Beam Dump** (a)(b) (c) 10-11 10-11 10⁻¹¹ 10^{-1} 10^{-1} 10^{-1} $M_{A'}[GeV]$ $M_{A'}[GeV]$ $M_{A'}[GeV]$

José I. Crespo-Anadón

Neutron-antineutron oscillation search

Neutron-antineutron oscillation predicted by BSM theories with **baryon number violation**.

Antineutron annihilates with a neutron within the Ar nucleus, producing a charateristic topology of pions.

MicroBooNE search uses non-beam triggers.

MicroBooNE's exposure cannot compete with large detectors (e.g. Super-Kamiokande) but serves as **demonstrator for the future DUNE Far Detector** (same LArTPC technology).

We use **deep learning techniques** to identify the topology and achieve 70% signal efficiency.

Our techniques can **improve DUNE's** TDR **efficiency** (assumed to be 8%) for neutronantineutron searches [arXiv:2002.03005 [hepex]].

Probing the MiniBooNE anomaly

MicroBooNE's first series of LEE search results

Phys.Rev.Lett. 121 (2018) 24, 241801 Phys.Rev.D 99 (2019) 071701

Conclusion

MicroBooNE has:

- light sterile-neutrino oscillation searches (more coming soon),
- a comprehensive neutrino cross-section program (not covered today),
- a **blooming BSM physics program**: heavy neutral leptons, Higgs-portal scalars, dark tridents, neutron-antineutron oscillation.
- **Exciting analyses are in progress**: $e+e^{-}$ production from Z'/Z_D decays, axionlike particles, millicharged particles...

The full **Short-Baseline Neutrino Program** at Fermilab, and the future **DUNE Near Detector** complex and the powerful LBNF beam, will be able to push beyond the current limits.

New ideas to test with our data are most welcomed!

Contraction of the second

Thank you for your attention!

jcrespo@ciemat.es

Backup

Search for anomalous production of single photons

A × 3.18 enhancement of the effective branching ratio of NC $\Delta \rightarrow$ Ny describes well the MiniBooNE excess.

Two search topologies: 1y1p and 1y0p.

Backgrounds constrained from dedicated in-situ high-purity NC π^0 measurement (both 2y1p and 2y0p).

Result shows no excess with respect to SM.

NC $\Delta \rightarrow$ Ny explanation of the excess is disfavored at 94.8% CL.

PRL. 128 (2022) 11, 111801

More single photon analyses soon!

LSND experiment

Antineutrinos from $\pi^+\&\mu^+$ decay at rest source.

Very low intrinsic $\overline{\nu}_{e}$ contamination.

Liquid scintillator detector.

Low background & well-understood cross-section: inverse β -decay detection.

$$\overline{\nu}_e + p \rightarrow e^+ + n$$

 \overline{v}_{e} excess observed.

José I. Crespo-Anadón

LSND anomaly

If the excess is interpreted as **oscillations**:

José I. Crespo-Anadón

MiniBooNE experiment

Different beam: mostly pion decay-in-flight experiment.

Magnetic horn enhances neutrino/antineutrino.

Higher energy and longer baseline.

Different detector: Cherenkov detector.

 $\mathsf{P}(\mathsf{v}_{\alpha} \rightarrow \mathsf{v}_{\beta}) = \sin^2(2\theta) \sin^2\left(\frac{\Delta m^2 L}{4E}\right)$

Different event selection and systematic uncertainties.

Similar L/E to explore the same oscillation region.

MiniBooNE anomaly

New MiniBooNE results

Latest MiniBooNE results (2018, 2021) more than **doubled statistics** in neutrino mode.

Old and new datasets are **consistent** with each other.

Same analysis. Improved background constrains with the additional statistics.

Consistent results with LSND.

José I. Crespo-Anadón

Short-Baseline Neutrino Anomalies

Other anomalies in reactor and **radioactive source experiments** also interpreted as neutrino oscillations point to $\Delta m^2 \sim 1 \text{ eV}^2$.

Cannot be explained with the 3 Standard Model neutrinos.

Minimal model (3 + 1) requires an **additional** heavier neutrino mass eigenstate, m₄, mostly sterile.

Most of the very short-baseline reactor new experiments do not see an oscillation signal.

Cosmology observations consistent with 3 v.

Tension between appearance and disappearance experiments. (3 + 2) or (3 + 3) models do not improve much.

Is the MiniBooNE excess really caused by appearance of electron neutrinos?

If not, what is it?