A search for $\mu \rightarrow e\gamma$ with the first dataset of the MEG II experiment

Cecilia Voena

INFN Roma

Istituto Nazionale di Fisica Nucleare

on behalf of the MEGII collaboration

SUSY24: The 31st International Conference on Supersymmetry and Unification of Fundamental Interactions

Madrid, 10-14 Jun 2024

Charged Lepton Flavor Violation (cLFV)

 Allowed but unobservable in the Standard Model (with neutrino mass ≠0)

 $BR(\mu \rightarrow e\gamma)\Big|_{SM} < 10^{-50}$

 Enhanced, sometimes just below the experimental limit, in many New Physics (NP) models

new particle neutrino oscillation μ, -X---×··· B 10-10 10⁻¹¹ μ e $BR(\mu \rightarrow e\gamma)_{\pi_{1}01}$ $\tilde{\chi}^0$ 10⁻¹ 10-11 vation of cLFV is a clean signal of 10-14 tysics beyond the Standard Model 10⁻¹⁵ 10 10 10-16 1013 1012 1014 M, (GeV)

cLFV in the Muon Sector (I)

- Probe NP at very high energy scales: $\Lambda > 10^2-10^4$ TeV
- High intensity frontier: complementary to LHC
- Benchmark test for NP Models

Muons golden processes

• Not only muons: т, EDM...

cLFV in the Muon Sector (II)

• Loops may mix dipole and 4-fermion operators creating patterns that are specific to the NP model

• Complementarity of the different muon modes

Principles of $\mu \rightarrow e\gamma$ Searches

- **High intensity** muon beam stopped in a thin target
- Two types of backgrounds:
 - physical background
 - accidental background
 from decay products of different
 muons

RADIATIVE MUON DECAY (RMD)

μ

ACCIDENTAL BACKGROUND

The MEG-II Location: PSI

- Paul Scherrer Institute
 - continuous muon beam up to few 10⁸ μ^+/s

- Multi-disciplinary lab:
 - fundamental research, cancer therapy, muon and neutron sources
 - protons from cyclotron (D = 15m, $E_{proton} = 590 MeV$ P = 1.4MW)

The MEG II Experiment

The MEG II Detector

- Liquid Xenon Calorimeter with high granularity, readout by PMTs and UV sensitive MPPC (γ detection)
- Cylindrical Drift Chamber in a graded magnetic field, high granularity, very thin wires (e⁺ momentum and trajectory)

 Pixelated Timing Counter 2x256 scintillating times readout by SIPM (e⁺ time)

Eur. Phys. J. C78 (2018) no.5, 380

Detector Performances

 Improvements in resolution and efficiency almost everywhere with respect to MEG

relative time resolution from muon radiative decay

Resolutions	Foreseen	Achieved 89	
E_{e^+} (keV)	100		
$\phi_{e^+}{}^{a)}, \theta_{e^+}$ (mrad)	3.7/6.7	4.1/7.2	
y_{e^+}, z_{e^+} (mm)	0.7/1.6	0.74/2.0	
$E_{\gamma}(\%) \ (w < 2 \text{ cm})/(w > 2 \text{ cm})$	1.7/1.7	2.0/1.8	
$u_{\gamma}, v_{\gamma}, w_{\gamma} \text{ (mm)}$	2.4/2.4/5.0	2.5/2.5/5.0	
$t_{e^+\gamma}$ (ps)	70	78	
Efficiency (%)			
\mathcal{E}_{γ}	69	62	
\mathcal{E}_{e^+}	65	67	
ETRG	≈99	80	

The MEG II Dataset (so far)

Likelihood (Blind) Analysis

- Extended unbinned maximum likelihood fit to estimate the number of signal events
- Region where the signal is expected is kept hidden until the analysis is defined

$$L(N_{sig}, N_{Acc}, N_{RMD}, x_{syst}) = C(N_{Acc}, N_{RMD}, x_{syst}) \qquad \qquad \text{Constraints on nuisance parameters}$$
$$\times \frac{e^{-(N_{sig}+N_{Acc}+N_{RMD})}}{N_{obs}!} \times \prod_{dataset} \left(N_{sig} \cdot S(x) + N_{acc} \cdot A(x) + N_{RMD} \cdot R(x) \right)$$

 Fully frequentistic confidence intervals using the Feldman-Cousins prescription with profile likelihood ordering for the treatment of nuisance parameters

number of radiative decay events

parameter

 \mathbf{X}

$$\lambda_{p}(N_{\text{sig}}) = \begin{cases} \frac{\mathcal{L}(N_{\text{sig}}, \hat{\hat{\boldsymbol{\theta}}}(N_{\text{sig}}))}{\mathcal{L}(0, \hat{\hat{\boldsymbol{\theta}}}(0))} & \text{if } \hat{N}_{\text{sig}} < 0 \\ \frac{\mathcal{L}(N_{\text{sig}}, \hat{\boldsymbol{\theta}}(N_{\text{sig}}))}{\mathcal{L}(\hat{N}_{\text{sig}}, \hat{\boldsymbol{\theta}})} & \text{if } \hat{N}_{\text{sig}} \ge 0 \\ \frac{\mathcal{L}(N_{\text{sig}}, \hat{\boldsymbol{\theta}}(N_{\text{sig}}))}{\mathcal{L}(\hat{N}_{\text{sig}}, \hat{\boldsymbol{\theta}})} & \text{if } \hat{N}_{\text{sig}} \ge 0 \end{cases}$$
Nuisance parameters
$$\boldsymbol{\theta} = (N_{\text{RMD}}, N_{\text{ACC}}, x_{\text{T}})$$
number of
$$\begin{array}{c} \text{number of} \\ \text{accidental} \\ \text{events} \end{array} \quad \text{target} \\ \text{alignment} \end{cases}$$

Sensitivity

• Sensitivity: 90% upper limit in case no signal is observed

Results: Likelihood Projection

Results: the Signal Box

Results: Upper Limit on $\mu \rightarrow e\gamma$

	Sensitivity	Limit from data
MEG final (2016)	5.3×10^{-13}	$Br(\mu \rightarrow e\gamma) < 4.2 \times 10^{-13}$
MEG II 2021	8.8×10^{-13}	$Br(\mu \rightarrow e\gamma) < 7.5 \times 10^{-13}$
Combined	4.3×10^{-13}	$Br(\mu \rightarrow e\gamma) < 3.1 \times 10^{-13}$

- New best limit in the world
- Already reached ~MEG (2016) sensitivity

MEG II Perspectives

Summary and Conclusions

- **MEG II goal**: search $\mu \rightarrow e\gamma$ with 6×10^{-14} sensitivity => × 10 improvement vs MEG final result (2016)
- First result of MEG II on 2021 data
- No signal excess => BR($\mu \rightarrow e\gamma$) < 7.5 10⁻¹³ @90%CL
- Combined limit with MEG 2016 => $BR(\mu \rightarrow e\gamma) < 3.1 \cdot 10^{-13} @90\%CL$
- Plan of MEG II
 - 2023 DAQ successfully finished
 - run 2024 about to start
 - continue till 2026 to reach 6 × 10⁻¹⁴ sensitivity

Backup

Other Opportunities at MEG II

- Search for $\mu \rightarrow ea\gamma$ (axion-like particle)
 - dedicated run at very low intensity
 - search for a peak in missing mass distribution
- Search for the X17 boson
 - attempt to confirm/exclude the excess observed at ATOMKI (Hungary) in the angular spectrum of e⁺e⁻ pairs from Internal Pair Conversion (IPC) in 8Be* (and other nuclei) transitions
 - 4 weeks of DAQ at the beginning of 2024 (3-5 σ expected)
 - options for additional data taking to be evaluated

A.J. Krasznahorkay, Phys. Rev. Lett. 116, 042501 (2016)

Normalization

• How many muons: normalization factor k

$$Br(\mu o e\gamma) = rac{N_{sig}}{k}$$

$$k_{2021} = (2.64 \pm 0.12) \times 10^{12}$$

- Evaluation by background positron counting in dedicated dataset
- Can automatically include efficiency factors

Systematics

Parameter	Impact on limit
$\overline{\phi_{e\gamma}}$ uncertainty	1.1%
E_{γ} uncertainty	0.9%
$\theta_{e\gamma}$ uncertainty	0.7~%
Normalization uncertainty	0.6~%
$t_{e\gamma}$ uncertainty	0.1~%
E_e uncertainty	0.1~%
RDC uncertainty	< 0.1%

Table 4: Sumamry of uncertain parameters

Parameter	Uncertainty
Target alignment	$100 \mu \mathrm{m}$
LXe global shift	$1\mathrm{mm}$
Normalization	5%
E_{γ} energy scale	0.3%
E_e energy scale	$6\mathrm{keV}$
$t_{e\gamma}$ center	$4\mathrm{ps}$
Positron correlation	5-10%

Future $\mu \rightarrow e\gamma$ Searches

- Activities around the world to increase the muon beam rate to 10⁹-10¹⁰ muons/s
- Crucial to understand which factors will limit the sensitivity

Future $\mu \rightarrow e\gamma$ Experiment

 A few 10⁻¹⁵ level seems to be within reach for 3 years running with 10⁹ muons/s with

Wilson Coefficient

 Limits on the Wilson coefficients of LFV effective operators from present and future cLFV muon processes

	$\ \qquad \operatorname{Br}\left(\mu^+ \to e^+ \gamma\right)$		$\operatorname{Br}(\mu^+ \to e^+ e^- e^+)$		$\mathrm{Br}^{\mathrm{Au/Al}}_{\mu ightarrow e}$	
	$4.2 \cdot 10^{-13}$	$4.0 \cdot 10^{-14}$	$1.0 \cdot 10^{-12}$	$5.0 \cdot 10^{-15}$	$7.0 \cdot 10^{-13}$	$1.0 \cdot 10^{-16}$
C_L^D	$1.0 \cdot 10^{-8}$	$3.1 \cdot 10^{-9}$	$2.0 \cdot 10^{-7}$	$1.4 \cdot 10^{-8}$	$2.0 \cdot 10^{-7}$	$2.9 \cdot 10^{-9}$
$C_{ee}^{S \ LL}$	$4.8\cdot 10^{-5}$	$1.5 \cdot 10^{-5}$	$8.1 \cdot 10^{-7}$	$5.8 \cdot 10^{-8}$	$1.4 \cdot 10^{-3}$	$2.1 \cdot 10^{-5}$
$C^{S \ LL}_{\mu\mu}$	$2.3 \cdot 10^{-7}$	$7.2 \cdot 10^{-8}$	$4.6 \cdot 10^{-6}$	$3.3 \cdot 10^{-7}$	$7.1 \cdot 10^{-6}$	$1.0\cdot10^{-7}$
$C_{\tau\tau}^{\dot{S}\ LL}$	$1.2 \cdot 10^{-6}$	$3.7 \cdot 10^{-7}$	$2.4 \cdot 10^{-5}$	$1.7 \cdot 10^{-6}$	$2.4 \cdot 10^{-5}$	$3.5 \cdot 10^{-7}$
$C_{\tau\tau}^{T \ LL}$	$2.9 \cdot 10^{-9}$	$9.0 \cdot 10^{-10}$	$5.7 \cdot 10^{-8}$	$4.1 \cdot 10^{-9}$	$5.9 \cdot 10^{-8}$	$8.5 \cdot 10^{-10}$
$C^{S LR}_{\tau\tau}$	$9.4 \cdot 10^{-6}$	$2.9 \cdot 10^{-6}$	$1.8 \cdot 10^{-4}$	$1.3 \cdot 10^{-5}$	$1.9 \cdot 10^{-4}$	$2.7 \cdot 10^{-6}$
$C_{bb}^{S \ LL}$	$2.8\cdot 10^{-6}$	$8.6 \cdot 10^{-7}$	$5.4 \cdot 10^{-5}$	$3.8\cdot10^{-6}$	$9.0 \cdot 10^{-7}$	$1.2 \cdot 10^{-8}$

arXiv:170203020 A. Crivellin et al.

1 column = present best limit 2 column = future limit

....

Present cLFV Limit

Reaction	Present limit	C.L.	Experiment	Year
$\mu^+ \to e^+ \gamma$	$< 4.2 \times 10^{-13}$	90%	MEG at PSI	2016
$\mu^+ \rightarrow e^+ e^- e^+$	$< 1.0 \times 10^{-12}$	90%	SINDRUM	1988
$\mu^- \mathrm{Ti} \to e^- \mathrm{Ti}^{\dagger}$	$< 6.1 \times 10^{-13}$	90%	SINDRUM II	1998
$\mu^- \mathrm{Pb} \to e^- \mathrm{Pb}^{\dagger}$	$< 4.6 \times 10^{-11}$	90%	SINDRUM II	1996
$\mu^{-}\mathrm{Au} \rightarrow e^{-}\mathrm{Au}^{\dagger}$	$< 7.0 \times 10^{-13}$	90%	SINDRUM II	2006
$\mu^{-}\mathrm{Ti} \rightarrow e^{+}\mathrm{Ca}^{*}^{\dagger}$	$< 3.6 \times 10^{-11}$	90%	SINDRUM II	1998
$\mu^+ e^- \rightarrow \mu^- e^+$	$< 8.3 \times 10^{-11}$	90%	SINDRUM	1999
$\tau \to e \gamma$	$< 3.3 \times 10^{-8}$	90%	BaBar	2010
$ au o \mu \gamma$	$< 4.4 \times 10^{-8}$	90%	BaBar	2010
$\tau \to eee$	$<2.7\times10^{-8}$	90%	Belle	2010
$ au o \mu \mu \mu$	$< 2.1 \times 10^{-8}$	90%	Belle	2010
$ au o \pi^0 e$	$< 8.0 \times 10^{-8}$	90%	Belle	2007
$ au o \pi^0 \mu$	$< 1.1 \times 10^{-7}$	90%	BaBar	2007
$\tau ightarrow ho^0 e$	$< 1.8 \times 10^{-8}$	90%	Belle	2011
$ au o ho^0 \mu$	$< 1.2 \times 10^{-8}$	90%	Belle	2011
$\pi^0 \to \mu e$	$< 3.6 \times 10^{-10}$	90%	KTeV	2008
$K_L^0 \to \mu e$	$< 4.7 \times 10^{-12}$	90%	BNL E871	1998
$K_L^0 o \pi^0 \mu^+ e^-$	$< 7.6 \times 10^{-11}$	90%	KTeV	2008
$K^+ \to \pi^+ \mu^+ e^-$	$< 1.3 \times 10^{-11}$	90%	BNL $E865$	2005
$J/\psi \to \mu e$	$< 1.5 \times 10^{-7}$	90%	BESIII	2013
$J/\psi \to \tau e$	$< 8.3 \times 10^{-6}$	90%	BESII	2004
$J/\psi \to \tau \mu$	$< 2.0 \times 10^{-6}$	90%	BESII	2004
$B^0 \to \mu e$	$< 2.8 \times 10^{-9}$	90%	LHCb	2013
$B^0 \to \tau e$	$< 2.8 \times 10^{-5}$	90%	BaBar	2008
$B^0 \to \tau \mu$	$< 2.2 \times 10^{-5}$	90%	BaBar	2008
$B \to K \mu e^{\ddagger}$	$< 3.8 \times 10^{-8}$	90%	BaBar	2006
$B \to K^* \mu e^{\ddagger}$	$< 5.1 \times 10^{-7}$	90%	BaBar	2006
$B^+ \to K^+ \tau \mu$	$< 4.8 \times 10^{-5}$	90%	BaBar	2012
$B^+ \to K^+ \tau e$	$< 3.0 \times 10^{-5}$	90%	BaBar	2012
$B_s^0 \to \mu e$	$< 1.1 \times 10^{-8}$	90%	LHCb	2013
$\Upsilon(1s) \to \tau \mu$	$< 6.0 \times 10^{-6}$	95%	CLEO	2008
$Z \to \mu e$	$< 7.5 \times 10^{-7}$	95%	LHC ATLAS	2014
$Z \to \tau e$	$< 9.8 \times 10^{-6}$	95%	LEP OPAL	1995
$Z \to \tau \mu$	$< 1.2 \times 10^{-5}$	95%	LEP DELPHI	1997
$h \to e \mu$	$< 3.5 \times 10^{-4}$	95%	LHC CMS	2016
$h \to \tau \mu$	$< 2.5 \times 10^{-3}$	95%	LHC CMS	2017
$h \to \tau e$	$< 6.1 \times 10^{-3}$	95%	LHC CMS	2017