

Searches for LF/LN violation and hidden sectors in kaon decays at the NA62 experiment

Cristina Biino * - INFN Torino and GSSI (email: <u>cristina.biino@cern.ch</u>)

SUSY 2024 - Theory meets experiments

The 31st International Conference on Supersymmetry and Unification of Fundamental Interactions

Madrid (IFT) 10-14 June 2024

* On behalf of the NA62 Collaborations

★ The NA62 experiment at the CERN kaon beam facility

CENN KAOH DEAMHACHTY

The NA62 experiment at CERN

3

A fixed target experiment at the CERN SPS dedicated to the study of rare decays in the kaon sector.

- Detector installation completed in 2016
- Physics runs in 2016, 2017 and 2018
- Data taking resumed in July 2021, approved up to CERN Long-Shutdown-3...
- Main goal: BR($K^+ \rightarrow \pi^+ \nu \overline{\nu}$) measurement
- Broad physics program thanks to unprecedented statistics for many decay modes

~300 physicists from 31 institutes in 11 countries

The NA62 kaon beam

- SPS beam: 400 GeV/c proton on beryllium target, 3 10¹² /spilL
- 75 \pm 1 GeV/c unseparated secondary hadron beam (70% pions, 24% protons, 6% kaons)
- **Decay in-flight technique**: the high energy kaons decay in a ~60 m fiducial region
- Beam rate: 600 MHz; K⁺ rate ~ 35 MHz; 4 MHZ K⁺ decays in the fiducial volume
 - \checkmark One year ~ 2 10¹⁸ protons on target ~ 5 10¹² K⁺ decays
 - \checkmark Beam structure: ideally, uniform over a 4.8 s long spill
 - In practice, significant variations of instantaneous beam intensity during the spill

SUSY 2024

The CERN kaon facility

The NA62 detector

JINST 12 (2017) 05, P05025

- Beam Si pixel spectrometer (GTK)
- Decay products magnetic spectrometer (STRAW)
- Particle identification system (KTAG, RICH, MUVs)

- LKr: electromagnetic calorimeter
- Veto system (LAV, iRC, SAC, CHANTI, MUV, HASC)
- CHOD: scintillator hodoscopes
- Multi level (L0, L1, L2) trigger

NA62 datasets

- Run 1 (2016–18): $N_{\kappa} \sim 10^{13}$ useful K⁺ decays with the main trigger Sample 2016 (30 days, ~ 1.3×10^{12} ppp): 2 × 10¹¹ useful K⁺ decays Sample 2017 (160 days, $\sim 1.9 \times 10^{12}$ ppp): 2 × 10¹² useful K+ decays Sample 2018 (217 days, $\sim 2.3 \times 10^{12}$ ppp): 4×10^{12} useful K+ decays
- Run 2 (2021–...): in progress (up to 3×10^{12} ppp), approved till 2025

- Currently: $\sim 2 \ 10^{18}$ pot/year, *
- $\sim 5 \ 10^{12} \ \text{K}^+ \ \text{decays/year}$
- Beam-dump mode:
- $\sim 4 \ 10^{17}$ pot collected so far

Precision measurement	Flavor Physics	Dump mode: Hidden
Search for new physics with	Search for lepton flavor &	Search for New Phy
precision measurement to test	lepton number violation,	EW scale (MeV-GeV)
the Standard Model.	rare & forbidden decays.	to SM particles via c
		of long –lived particle

sector Physics sics below the feebly-coupled direct detection s.

SUSY 2024

The CERN kaon facility

C. Biino

★ Searches for Lepton Flavour and Lepton Number violation in kaon decays

in kaon decays

Searches for $K^+ \rightarrow \pi^- e^+ e^+$

SUSY 2024

LFV/LNV searches

PLB 830 (2022) 137172

Searches for $K^+ \rightarrow \pi^- \mu^+ \mu^+_+$

 $K^+ \rightarrow \pi^- \pi^0 e^+ e^+$ and $K^+ \rightarrow \mu^- \gamma e^+ e^+$

NA62 🧗

Search for $K^+ \rightarrow \pi \mu e$ decays

PRL 127 (2021) 131802

K+ decays in FV: $(1.33 \pm 0.02) \times 10^{12}$ Expected background: 0.92 ± 0.34 evtExpected background: 1.07 ± 0.20 evtCandidates observed: 2Candidates observed: 0BR(K+ $\rightarrow \pi^{-}\mu^{+}e^{+}) < 4.2 \times 10^{-11}$ at 90% CLBR(K+ $\rightarrow \pi^{-}\mu^{+}e^{+}) < 4.2 \times 10^{-11}$ at 90% CLBR($\pi^{0} \rightarrow \mu^{-}e^{+}) < 3.2 \times 10^{-10}$ at 90% CL

Search for $K^+ \rightarrow \pi^0 \pi \mu e$ decays

Mode	Expected	Candidates	Upper limit of BR
	background	observed	at 90% CL
$K^+ \rightarrow \pi^0 \pi^- \mu^+ e^+$	0.33±0.07	0	2.9×10 ⁻¹⁰
$K^+ \rightarrow \pi^0 \pi^+ \mu^- e^+$	0.004±0.003	0	3.1×10 ⁻¹⁰
$K^+ \rightarrow \pi^0 \pi^+ \mu^+ e^-$	0.29±0.07	0	5.0×10 ⁻¹⁰

3 new results! to be published

Summary: LFV/LNV searches

★ Searches for Hidden Sectors in kaon decays

п каоп чесауз

NA62: $K^+ \rightarrow \pi^+ \chi \overline{\chi}$ decay signal regions

Main K⁺ decay modes (>90% of BR) rejected kinematically.

Resolution on m^2_{miss} : $\sigma = 1.0 \times 10^{-3} \text{ GeV}^4/c^2$.

Measured kinematic background suppression: $\checkmark K^+ \rightarrow \pi^+ \pi^0$: 1×10⁻³; $\checkmark K^+ \rightarrow \mu^+ \nu$: 3×10⁻⁴.

Further background suppression:

- ✓ PID (calorimeters & RICH): μ suppression ~10⁻⁸, π efficiency = 64%.
- ✓ Hermetic photon veto: $\pi^0 \rightarrow \gamma \gamma$ rejection factor = 1.4×10⁻⁸.

NA62 results from Run 1 (2016-2018)

$$N^{exp}_{\pi\nu\nu} = 10.01 \pm 0.42_{syst} \pm 1.19_{ext}$$
$$N^{exp}_{background} = 7.03^{+1.05}_{-0.82}$$
$$SES = (0.839 \pm 0.053_{syst}) \times 10^{-11}$$

JHEP 06 (2021) 093

NA62 🦹

BR(K⁺ $\rightarrow \pi^+ \nu \bar{\nu}$) = (10.6 ^{+4.0}_{-3.4} |_{stat} ± 0.9_{syst}) x 10⁻¹¹ 3.4 σ significance

Hidden sectors with $K^+_+ \rightarrow \pi^+_+ \chi \ \overline{\chi}$

Squared missing mass (2018 data)

• Signal regions R1,R2: search for $K^+ \rightarrow \pi^+ X$ (X=invisible), 0 <m_X < 110 MeV/c² and 154 < m_X < 260 MeV/c².

- Interpretation: dark scalar, ALP, QCD axion, axiflavon.
- Main background: $K^+ \rightarrow \pi^+ \nu \nu$
- Search for $\pi^0 \rightarrow \text{invisible}$ in the $\pi^+\pi^0$ region
 - Negligible SM rate $(\pi^0 \rightarrow 4\nu)$
 - Observation = BSM physics.
 - Reduction of $\pi^0 \rightarrow \gamma \gamma$
 - background: optimised
 - π^+ momentum range.
 - Interpretation as $K^+ \rightarrow \pi^+ X$ with m_x between R1 and R2.

JHEP 06 (2021) 93

Results: search for $K^+ \rightarrow \pi^+ X$

- Mass resolution is $\delta m_X \sim 40 \text{ MeV/c}^2$ at $m_X=0$, and improves with m_X
- Upper limits of $BR(K^+ \rightarrow \pi^+ X)$ established depending on X mass and lifetime
- Improvement on BNL-E949 [PRD79 (2009) 092004] over most of m_x range
- Interpretation shown here: the dark scalar model
- Note the KOTO result based on 2016–18 data. [PRL125 (2021) 021801]

$K^+_+ \rightarrow \pi^+ \pi^0$ with $\pi^0 \rightarrow$ invisible

- Basic event selection same as for $K^+ \rightarrow \pi^+ \nu \nu$ decays
- Rejection of $(K^+ \rightarrow \pi^+ \pi^0(\gamma), \pi^0 \rightarrow \gamma \gamma)$ decays: simulations based on single-photon efficiency [JHEP 02 (2021) 201].
- Validates π^0 rejection estimates for BR(K⁺ $\rightarrow \pi^+ \nu \nu$) measurement
- 2017 data only reaching limits from photon veto inefficiency
- $K_{\pi\nu\nu}$ trigger and selection used, with 0.015 < m_{miss}^2 < 0.021 GeV²/c⁴

Pair production of exotic states - $K^+ \rightarrow \pi^+ e^+ e^- e^+ e^-$

Theory: SM allowed BR = 7.2 \pm 0.7 \times 10⁻¹¹ (outside π^0 pole)

Dark sector probe: $K^+ \rightarrow \pi^+ aa$ with $a \rightarrow e^+e^-$ QCD axion, e.g. $m_a = 17$ MeV $BR = 1.7 \times 10^{-5}$ $K^+ \rightarrow \pi^+ S$ with $S \rightarrow A'A'$ dark scalar and $A' \rightarrow e^+e^-$ dark photon ($m_S > 2mA'$)

Goal: Search for: 1) SM process ($K_{\pi 4e}$); 2) QCD di-axion; 3) Dark cascade

Results: HNL production

RUN1

PLB 807 (2020) 135599

- ★ Trigger lines: $K_{\pi\nu\nu}$ for $K^+ \rightarrow e^+N$; Control/400 for $K^+ \rightarrow \mu^+N$.
- Numbers of K⁺ decays in fiducial volume:
 N_K=3.5×10¹² in the positron case; N_K=4.3×10⁹ in the muon case.
 PLB 816 (2021) 136259
- Squared missing mass: $m_{miss}^2 = (P_K P_\ell)^2$, using STRAW and GTK trackers.
- HNL production signal: a spike above continuous missing mass spectrum.

SUSY 2024

HNL production

JHEP 02 (2021) 201

Results: HNL production

- ♦ For $|U_{e4}|^2$, complementary to search for $\pi^+ \rightarrow e^+ N$ at PIENU.
- ♦ For $|U_{\mu4}|^2$, complementary to search for $K^+ \rightarrow \mu^+ N$ at BNL-E949.
- In both cases, complementary to HNL <u>decay</u> searches at T2K.
- Future kaon and pion experiments will approach the seesaw bound.
- ★ An upper limit at 90% CL: $BR(K^+ \rightarrow \mu^+ \nu \nu \nu) < 1.0 \times 10^{-6}$, and similar limits of $BR(K^+ \rightarrow \mu^+ \nu X)$, with X=invisible.

SUSY 2024

PLB 807 (2020) 135599

Summary

Physics program with charged kaons successfully pursued at CERN SPS by NA62. Run 2 (2021–): in progress (up to 3 × 10¹² ppp), approved till 2025.

- Kaon decays: a unique probe for new physics
 - ✓ Large decay samples are available (~10¹³ decays)
 - ✓ Often simple and clean final states, low backgrounds
- NA62 at CERN is collecting data from 2016 till at least 2025
 - ✓ World's largest multi-purpose sample of K⁺ decays
 - ✓ First measurement of the ultra-rare $K^+ \rightarrow \pi^+ \nu \nu$ decay
- NA62 LFV/LNV programme: stringent limits on 10 decay modes
- Searches for hidden sectors in kaon decays at NA62 address a range of PBC benchmark scenarios
 - ✓ $K^+ \rightarrow \pi^+ X_{invisible}$: dark scalar and ALP $K^+ \rightarrow \ell^+ N$: heavy neutral leptons

Thank you for your attention

NA62 published results

- Search for leptonic decays of the dark photon at NA62, arXiv: 2312.12055 [hep-ex] (2023), submitted to Phys. Rev. Lett.
- Measurement of the $K^+ \rightarrow \pi^+ \gamma \gamma$ decay, Phys. Lett. B. 850 (2024) 138513.
- Search for K^+ decays into the $\pi^+e^+e^-e^+e^-$ final state, Phys. Lett. B. 846 (2023) 138193.
- A study of the $K^+ \rightarrow \pi^0 e^+ \nu \gamma$ decay, JHEP 09 (2023) 040.
- Search for dark photon decays to $\mu^+\mu^-$ at NA62, JHEP 09 (2023) 035.
- A search for the $K^+ \rightarrow \mu^- \nu e^+ e^+$ decay, Phys. Lett. B 838 (2023) 137679.
- A measurement of the $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ decay, JHEP 11 (2022) 011.
- Searches for lepton number violating $K^+ \to \pi^-(\pi^0) e^+ e^+$ decays, Phys. Lett. B 830 (2022) 137172.
- Search for Lepton Number and Flavor Violation in K^+ and π^0 Decays, Phys. Rev. Lett. 127 (2021) 131802.
- Measurement of the very rare $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay, JHEP 06 (2021) 093.
- Search for K^+ decays to a muon and invisible particles, Phys. Lett. B 816 (2021) 136259.
- Search for a feebly interacting particle X in the decay $K^+ \rightarrow \pi^+ X$, JHEP 03, (2021) 058.
- Search for π^0 decays to invisible particles, JHEP 02, (2021) 201.
- An investigation of the very rare $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay, JHEP 11 (2020) 042.
- Search for heavy neutral lepton production in K^+ decays to positrons, Phys. Lett. B 807 (2020) 135599.
- Searches for lepton number violating K^+ decays, Phys. Lett. B 797 (2019) 134794.
- Search for production of an invisible dark photon in π^0 decays, JHEP 1905 (2019) 182.
- First search of $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ using the decay-in-flight technique, Phys. Lett. B 791 (2019) 156.
- Search for heavy neutral lepton production in K⁺ decays, Phys. Lett. B 778 (2018) 137.

★ Backup slides

