Neutral triple gauge boson vertices and fermionic UV models

Martin Hirsch

Instituto de Física Corpuscular - CSIC Universidad Valencia, Spain

http://www.astroparticles.es/

Based on: R. Cepedello, F. Esser, M. Hirsch and V. Sanz arXiv:2402.04306

I. Introduction

II. NTGCs and Effective Field Theory

III.

NTGCs in (fermionic) UV models

$\mathcal{IV}.$

Experimental limits on NTGCs

V. Conclusions

$\mathcal{I}.$

Introduction

Anomalous NTGCs

Considering Bose symmetry and gauge invariance, the following CP-conserving vertices can be written down (after EWSB):

$$ie\Gamma_{ZZV}^{\alpha\beta\mu}(q_{1},q_{2},q_{3}) = e\frac{(q_{3}^{2}-m_{V}^{2})}{m_{Z}^{2}} \Big[f_{5}^{V} \epsilon^{\mu\alpha\beta\rho}(q_{1}-q_{2})_{\rho} \Big],$$

$$ie\Gamma_{Z\gamma V}^{\alpha\beta\mu}(q_{1},q_{2},q_{3}) = e\frac{(q_{3}^{2}-m_{V}^{2})}{m_{Z}^{2}} \Big[h_{3}^{V} \epsilon^{\mu\alpha\beta\rho}q_{2,\rho} + \frac{h_{4}^{V}}{m_{Z}^{2}} q_{3}^{\alpha} \epsilon^{\mu\beta\rho\sigma}q_{3,\rho}q_{2,\sigma} \Big].$$

Gounaris et al. 1999 & 2000

Anomalous NTGCs

Considering Bose symmetry and gauge invariance, the following CP-conserving vertices can be written down (after EWSB):

$$ie\Gamma_{ZZV}^{\alpha\beta\mu}(q_{1},q_{2},q_{3}) = e\frac{(q_{3}^{2}-m_{V}^{2})}{m_{Z}^{2}} \Big[f_{5}^{V} \epsilon^{\mu\alpha\beta\rho}(q_{1}-q_{2})_{\rho} \Big],$$

$$ie\Gamma_{Z\gamma V}^{\alpha\beta\mu}(q_{1},q_{2},q_{3}) = e\frac{(q_{3}^{2}-m_{V}^{2})}{m_{Z}^{2}} \Big[h_{3}^{V} \epsilon^{\mu\alpha\beta\rho}q_{2,\rho} + \frac{h_{4}^{V}}{m_{Z}^{2}} q_{3}^{\alpha} \epsilon^{\mu\beta\rho\sigma}q_{3,\rho}q_{2,\sigma} \Big].$$

A few comments:

- \Rightarrow aNTGC vanish for all 3 bosons on-shell
- \Rightarrow "form factors" f_5^V , h_3^V and h_4^V in principle independent parameters

($ightarrow h_4^V$ can not be generated at 1-loop and d=8)

- \Rightarrow There are also CP-violating vertices (ignored in this talk!)
- \Rightarrow More vertices posible for more than one boson off-shell
 - \rightarrow experimentally irrelevant (therefore ignored here)
- \Rightarrow experimentally at LHC cleanest final state is $ZZ \rightarrow 4l$

Gounaris et al. 1999 & 2000

NTGCs and EFT

SUSY-2024, 10. June, 2024 - p.5/21

SMEFT and NTGCs

In Greens basis for SMEFT list all operators at d = 6 containing only bosons MatchMakerEFT (1908.05295):

X^3		X^2H^2		$H^2 D^4$	
\mathcal{O}_{3G}	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	${\cal O}_{HG}$	$G^A_{\mu\nu}G^{A\mu\nu}(H^{\dagger}H)$	\mathcal{R}_{DH}	$(D_{\mu}D^{\mu}H)^{\dagger}(D_{\nu}D^{\nu}H)$
$\mathcal{O}_{\widetilde{3G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$\mathcal{O}_{_{H\widetilde{G}}}$	$\widetilde{G}^A_{\mu\nu}G^{A\mu\nu}(H^\dagger H)$		H^4D^2
\mathcal{O}_{3W}	$\epsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	${\cal O}_{HW}$	$W^{I}_{\mu u}W^{I\mu u}(H^{\dagger}H)$	$\mathcal{O}_{H\Box}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$
$\mathcal{O}_{\widetilde{3W}}$	$\epsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$\mathcal{O}_{H\widetilde{W}}$	$W^{I}_{\mu\nu}W^{I\mu\nu}(H^{\dagger}H)$	\mathcal{O}_{HD}	$(H^{\dagger}D^{\mu}H)^{\dagger}(H^{\dagger}D_{\mu}H)$
	X^2D^2	\mathcal{O}_{HB}	$B_{\mu\nu}B^{\mu\nu}(H^{\dagger}H)$	\mathcal{R}'_{HD}	$(H^{\dagger}H)(D_{\mu}H)^{\dagger}(D^{\mu}H)$
\mathcal{R}_{2G}	$-\tfrac{1}{2}(D_{\mu}G^{A\mu\nu})(D^{\rho}G^{A}_{\rho\nu})$	$\mathcal{O}_{_{H\widetilde{B}}}$	$\widetilde{B}_{\mu\nu}B^{\mu\nu}(H^{\dagger}H)$	\mathcal{R}''_{HD}	$(H^{\dagger}H)D_{\mu}(H^{\dagger}\mathrm{i}\overleftrightarrow{D}^{\mu}H)$
\mathcal{R}_{2W}	$-\tfrac{1}{2}(D_{\mu}W^{I\mu\nu})(D^{\rho}W^{I}_{\rho\nu})$	${\cal O}_{HWB}$	$W^{I}_{\mu\nu}B^{\mu\nu}(H^{\dagger}\sigma^{I}H)$		H^6
\mathcal{R}_{2B}	$-\frac{1}{2}(\partial_{\mu}B^{\mu\nu})(\partial^{\rho}B_{\rho\nu})$	$\mathcal{O}_{_{H\widetilde{W}B}}$	$\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}(H^{\dagger}\sigma^{I}H)$	\mathcal{O}_{H}	$(H^{\dagger}H)^3$
		$H^2 X D^2$			
		\mathcal{R}_{WDH}	$D_{\nu}W^{I\mu\nu}(H^{\dagger}\mathrm{i}\overleftrightarrow{D}_{\mu}^{I}H)$		
		\mathcal{R}_{BDH}	$\partial_{ u}B^{\mu u}(H^{\dagger}\mathrm{i}\overleftrightarrow{D}_{\mu}H)$		

 \Rightarrow Only X^3 , X^2D^2 and H^2X^2 contains three (or more) gauge bosons

- \Rightarrow No NTGC in any of these operators
- \Rightarrow Need to go to d = 8 operators!

d = 8 basis for NTGCs

The following four d = 8 operators generate the NTGCs shown previously:

$$\begin{split} \mathcal{O}_{DB\tilde{B}} &= i \frac{c_{DB\tilde{B}}}{\Lambda^4} H^{\dagger} \tilde{B}_{\mu\nu} (D^{\rho} B_{\nu\rho}) D_{\mu} H + \text{h.c.}, \\ \mathcal{O}_{DW\tilde{W}} &= i \frac{c_{DW\tilde{W}}}{\Lambda^4} H^{\dagger} \tilde{W}_{\mu\nu} (D^{\rho} W_{\nu\rho}) D_{\mu} H + \text{h.c.}, \\ \mathcal{O}_{DW\tilde{B}} &= i \frac{c_{DW\tilde{B}}}{\Lambda^4} H^{\dagger} \tilde{B}_{\mu\nu} (D^{\rho} W_{\nu\rho}) D_{\mu} H + \text{h.c.}, \\ \mathcal{O}_{DB\tilde{W}} &= i \frac{c_{DB\tilde{W}}}{\Lambda^4} H^{\dagger} \tilde{W}_{\mu\nu} (D^{\rho} B_{\nu\rho}) D_{\mu} H + \text{h.c.}. \end{split}$$

d = 8 basis for NTGCs

The following four d = 8 operators generate the NTGCs shown previously:

$$\begin{split} \mathcal{O}_{DB\tilde{B}} &= i \frac{c_{DB\tilde{B}}}{\Lambda^4} H^{\dagger} \tilde{B}_{\mu\nu} (D^{\rho} B_{\nu\rho}) D_{\mu} H + \text{h.c.}, \\ \mathcal{O}_{DW\tilde{W}} &= i \frac{c_{DW\tilde{W}}}{\Lambda^4} H^{\dagger} \tilde{W}_{\mu\nu} (D^{\rho} W_{\nu\rho}) D_{\mu} H + \text{h.c.}, \\ \mathcal{O}_{DW\tilde{B}} &= i \frac{c_{DW\tilde{B}}}{\Lambda^4} H^{\dagger} \tilde{B}_{\mu\nu} (D^{\rho} W_{\nu\rho}) D_{\mu} H + \text{h.c.}, \\ \mathcal{O}_{DB\tilde{W}} &= i \frac{c_{DB\tilde{W}}}{\Lambda^4} H^{\dagger} \tilde{W}_{\mu\nu} (D^{\rho} B_{\nu\rho}) D_{\mu} H + \text{h.c.}. \end{split}$$

 \Rightarrow All 4 operators are necessary to describe f_5^Z , f_5^γ , h_3^Z and h_3^γ as independent parameters

d = 8 basis for NTGCs

The following four d = 8 operators generate the NTGCs shown previously:

$$\begin{split} \mathcal{O}_{DB\tilde{B}} &= i \frac{c_{DB\tilde{B}}}{\Lambda^4} H^{\dagger} \tilde{B}_{\mu\nu} (D^{\rho} B_{\nu\rho}) D_{\mu} H + \text{h.c.}, \\ \mathcal{O}_{DW\tilde{W}} &= i \frac{c_{DW\tilde{W}}}{\Lambda^4} H^{\dagger} \tilde{W}_{\mu\nu} (D^{\rho} W_{\nu\rho}) D_{\mu} H + \text{h.c.}, \\ \mathcal{O}_{DW\tilde{B}} &= i \frac{c_{DW\tilde{B}}}{\Lambda^4} H^{\dagger} \tilde{B}_{\mu\nu} (D^{\rho} W_{\nu\rho}) D_{\mu} H + \text{h.c.}, \\ \mathcal{O}_{DB\tilde{W}} &= i \frac{c_{DB\tilde{W}}}{\Lambda^4} H^{\dagger} \tilde{W}_{\mu\nu} (D^{\rho} B_{\nu\rho}) D_{\mu} H + \text{h.c.}. \end{split}$$

 \Rightarrow All 4 operators are necessary to describe f_5^Z , f_5^γ , h_3^Z and h_3^γ as independent parameters

 \Rightarrow We disagree with previous literature (Degrande, 2013) that defines:

$$\mathcal{O}_{\tilde{B}W} = i \frac{c_{\tilde{B}W}}{\Lambda^4} H^{\dagger} \tilde{B}_{\mu\nu}(W_{\mu\rho}) \{D^{\rho}, D_{\mu}\} H + \text{h.c.},$$

 \Rightarrow This operator can not describe all of f_5^Z , f_5^γ , h_3^Z and h_3^γ

Form factors

The relation to the form factors are:

$$\begin{split} f_{5}^{Z} &= \frac{v^{2}m_{Z}^{2}}{\Lambda^{4}} \frac{1}{c_{W}s_{W}} \left[s_{W}^{2}c_{DB\tilde{B}} + c_{W}^{2}c_{DW\tilde{W}} + \frac{1}{2}c_{W}s_{W}(c_{DW\tilde{B}} + c_{DB\tilde{W}}) \right], \\ f_{5}^{\gamma} &= \frac{v^{2}m_{Z}^{2}}{\Lambda^{4}} \frac{1}{c_{W}s_{W}} \left[c_{W}s_{W}(-c_{DB\tilde{B}} + c_{DW\tilde{W}}) - \frac{1}{2}(s_{W}^{2}c_{DW\tilde{B}} - c_{W}^{2}c_{DB\tilde{W}}) \right], \\ h_{3}^{Z} &= \frac{v^{2}m_{Z}^{2}}{\Lambda^{4}} \frac{1}{c_{W}s_{W}} \left[c_{W}s_{W}(-c_{DB\tilde{B}} + c_{DW\tilde{W}}) + \frac{1}{2}(c_{W}^{2}c_{DW\tilde{B}} - s_{W}^{2}c_{DB\tilde{W}}) \right], \\ h_{3}^{\gamma} &= \frac{v^{2}m_{Z}^{2}}{\Lambda^{4}} \frac{1}{c_{W}s_{W}} \left[c_{W}^{2}c_{DB\tilde{B}} + s_{W}^{2}c_{DW\tilde{W}} - \frac{1}{2}c_{W}s_{W}(c_{DW\tilde{B}} + c_{DB\tilde{W}}) \right], \end{split}$$

Note that in the special case of $c_{DW\tilde{B}} = c_{DB\tilde{W}}$ (true in many models):

$$\begin{split} f_5^{\gamma} &= \frac{v^2 m_Z^2}{\Lambda^4} \, \frac{1}{c_W s_W} \left[c_W s_W (-c_{DB\tilde{B}} + c_{DW\tilde{W}}) + \frac{1}{2} c_{DW\tilde{B}} (c_W^2 - s_W^2) \right], \\ h_3^Z &= \frac{v^2 m_Z^2}{\Lambda^4} \, \frac{1}{c_W s_W} \left[c_W s_W (-c_{DB\tilde{B}} + c_{DW\tilde{W}}) + \frac{1}{2} c_{DW\tilde{B}} (c_W^2 - s_W^2) \right], \end{split}$$

SUSY-2024, 10. June, 2024 - p.8/21

III.

NTGCs in (fermionic) models

SUSY-2024, 10. June, 2024 - p.9/21

Fermionic loops

Fermionic triangle diagram in the mass eigenstate basis

Adequate for calculation in broken phase

Fermionic loops

Fermionic triangle diagram in the mass eigenstate basis

Adequate for calculation in broken phase

Fermionic pentagram diagram in the weak eigenstate basis

Adequate for calculation in SMEFT

Fermionic loops

Fermionic triangle diagram in the mass eigenstate basis

Adequate for calculation in broken phase

Fermionic pentagram diagram in the weak eigenstate basis

Adequate for calculation in SMEFT

 $L_H = F_{1,2,-1/2}$ and $E_H = F_{1,1,-1}$ "vector-like" leptons

Diracology:

$$\operatorname{tr}[\gamma_{\mu}\gamma_{\nu}\gamma_{\rho}\gamma_{\sigma}P_{L/R}] = 2(g_{\mu\nu}g_{\rho\sigma} - g_{\mu\rho}g_{\nu\sigma} + g_{\mu\sigma}g_{\nu\rho} \pm i\epsilon^{\mu\nu\rho\sigma}).$$

⇒ left-handed and right-handed couplings must differ!

Models and matching

 \Rightarrow All models need two fermions with $\Delta(Y) = (1/2)$

 \Rightarrow Product of $SU_L(2)$ needs to contain doublet:

ightarrow 2 imes 1 (DS), 3 imes 2 (TD), 4 imes 3 (QT), 5 imes 4 (QQ), \cdots

 \rightarrow Model # increasing hypercharge from 1 = (0, -1/2) to 5 = (-2, -5/2)(except DS, which starts at 1 = (-1/2, -1))

Form factors

 \Rightarrow For $\Lambda=0.1$ TeV typically (few) 10^{-3}

 \Rightarrow All models make different predictions!

Form factors

 $\Lambda = 100 \; {\rm GeV}$ $\blacktriangle DS$ $10^3 h_3^\gamma$ • *TD* -3Ż • *QT QQ* -5 -10 -5 0 5 10 $10^{3} f_{5}^{Z}$ 10 2(4,4) f_5^Z/f_5^γ $\land DS$ • *TD* ■ *QT* \bullet QQ -5 5(4.4)-10-2 0 2 4 -6

 $h_3^{\gamma}/f_5^{\gamma}$

 \Rightarrow For $\Lambda=0.1$ TeV typically (few) 10^{-3}

 \Rightarrow All models make different predictions!

Plot double-ratio: Independent of Λ ALL models lie along a line!

 $\blacktriangle DS$

• *TD*

• *QT*

◆ QQ

SUSY-2024, 10. June, 2024 - p.12/21

d = 6 versus d = 8

All models that generate NTGCs also will generate the following d = 6 operators:

$$\mathcal{O}_{HB} = \frac{c_{HB}}{\Lambda^2} H^{\dagger} H B_{\mu\nu} B^{\mu\nu},$$

$$\mathcal{O}_{HWB} = \frac{c_{HWB}}{\Lambda^2} H^{\dagger} H W_{\mu\nu} B^{\mu\nu},$$

$$\mathcal{O}_{HW} = \frac{c_{HW}}{\Lambda^2} H^{\dagger} H W_{\mu\nu} W^{\mu\nu},$$

d = 6 versus d = 8

All models that generate NTGCs also will generate the following d = 6 operators:

$$\mathcal{O}_{HB} = \frac{c_{HB}}{\Lambda^2} H^{\dagger} H B_{\mu\nu} B^{\mu\nu},$$

$$\mathcal{O}_{HWB} = \frac{c_{HWB}}{\Lambda^2} H^{\dagger} H W_{\mu\nu} B^{\mu\nu},$$

$$\mathcal{O}_{HW} = \frac{c_{HW}}{\Lambda^2} H^{\dagger} H W_{\mu\nu} W^{\mu\nu},$$

$\mathcal{IV}.$

Experimental limits on NTGCs

SUSY-2024, 10. June, 2024 - p.14/21

Measuring $ZZ \rightarrow 4l$

SM background

NTGC signal

Measuring $ZZ \rightarrow 4l$

X-section versus invariant mass of 4 lepton system

Measuring $ZZ \rightarrow 4l$

X-section versus invariant mass of 4 lepton system

CMS, 2021

Limits

Limits on f_5^Z and f_5^γ from CMS

Limits

Limits on d = 8 operators

Limits on f_5^Z and f_5^γ from CMS

Limits

Conclusions

- \Rightarrow Complete and correct d = 8 operator basis for NTGCs found
- \Rightarrow Correcting existing literature!
- \Rightarrow Limits derived on operators from experimental searches by ATLAS and CMS: $\Lambda \sim O(1)$ TeV, depending on operator
- \Rightarrow Set of fermionic UV models for NTGCs constructed
- \Rightarrow Limits derived on models, but ...
 - Limits on models very weak! Not even $\Lambda = 100$ GeV in some cases (EFT assumption not valid!)

Backup

General matching formulas

It is actually possible to derive an analytic formula for \tilde{c}_{DAB} for all models:

$$\begin{split} \tilde{c}_{DB\tilde{B}} &= \frac{1}{160} (-1)^{(\mathbf{r_1} \bmod 2)} \mathrm{sgn} \left(y_2^2 - y_1^2 \right) \sqrt{2\mathbf{r_1 r_2}} \left(y_1^2 + y_2^2 + \frac{4}{3} y_2 y_1 \right) \,, \\ \tilde{c}_{DW\tilde{W}} &= \frac{1}{160} (-1)^{(\mathbf{r_1} \bmod 2)} \mathrm{sgn} \left(y_2^2 - y_1^2 \right) \sqrt{2\mathbf{r_1 r_2}} \frac{1}{12} \left[(\mathbf{r_1}^2 - 1) + (\mathbf{r_2}^2 - 1) + \frac{4}{3} \left(\mathbf{r_1 r_2} - 2 \right) \right] \\ \tilde{c}_{DW\tilde{B}} &= \frac{1}{48} (-1)^{(\mathbf{r_1} \bmod 2)} \sqrt{2\mathbf{r_1 r_2}} \frac{1}{12} \left(y_1 + y_2 \right) \left[(\mathbf{r_1} + \mathbf{r_2}) + \frac{3}{5} \left(y_1 - y_2 \right) \right] \,, \\ \tilde{c}_{DB\tilde{W}} &= \tilde{c}_{DW\tilde{B}} \,. \end{split}$$

The following effective Lagrangian generates all NTGC CPC vertices:

Gounaris et al., 1999

$$\mathcal{L}_{\rm NP}^{CPC} = \frac{e}{2m_Z^2} \left[f_5^{\gamma} (\partial^{\sigma} F_{\sigma\mu}) \tilde{Z}^{\mu\beta} Z_{\beta} + f_5^Z (\partial^{\sigma} Z_{\sigma\mu}) \tilde{Z}^{\mu\beta} Z_{\beta} - h_3^{\gamma} (\partial^{\sigma} F_{\sigma\mu}) \tilde{F}^{\mu\beta} Z_{\beta} - h_3^Z (\partial^{\sigma} Z_{\sigma\mu}) \tilde{F}^{\mu\beta} Z_{\beta} + \frac{h_4^{\gamma}}{2m_Z^2} [\Box (\partial^{\sigma} F^{\rho\alpha})] \tilde{F}_{\rho\alpha} Z_{\sigma} + \frac{h_4^Z}{2m_Z^2} [(\Box + m_Z^2) (\partial^{\sigma} Z^{\rho\alpha})] \tilde{F}_{\rho\alpha} Z_{\sigma} \right],$$

with $\tilde{X}_{\mu\nu} = 1/2 \epsilon_{\mu\nu\alpha\beta} X^{\alpha\beta}$. Note: This Lagrangian requires EWSB!

The following effective Lagrangian generates all NTGC CPC vertices:

 $\mathcal{L}_{\mu\beta}^{CPC} = \frac{e}{1-\frac{e}{1-\frac{1}{2}}} \left[\int_{\alpha}^{\gamma} (\partial^{\sigma} F_{-\mu}) \tilde{Z}^{\mu\beta} Z_{\alpha} + \int_{\alpha}^{Z} (\partial^{\sigma} Z_{-\mu}) \tilde{Z}^{\mu\beta} Z_{\alpha} \right]$ Gounaris et al., 1999

$$\mathcal{L}_{\mathrm{NP}} = \frac{1}{2m_Z^2} \left[\int_{5}^{5} (0^{-} F_{\sigma\mu})Z - Z_{\beta} + \int_{5}^{2} (0^{-} Z_{\sigma\mu})Z - Z_{\beta} \right] \\ - h_3^{\gamma} (\partial^{\sigma} F_{\sigma\mu}) \tilde{F}^{\mu\beta} Z_{\beta} - h_3^{Z} (\partial^{\sigma} Z_{\sigma\mu}) \tilde{F}^{\mu\beta} Z_{\beta} \\ + \frac{h_4^{\gamma}}{2m_Z^2} [\Box(\partial^{\sigma} F^{\rho\alpha})] \tilde{F}_{\rho\alpha} Z_{\sigma} + \frac{h_4^{Z}}{2m_Z^2} [(\Box + m_Z^2)(\partial^{\sigma} Z^{\rho\alpha})] \tilde{F}_{\rho\alpha} Z_{\sigma} \right],$$

with $\tilde{X}_{\mu\nu} = 1/2 \epsilon_{\mu\nu\alpha\beta} X^{\alpha\beta}$. Note: This Lagrangian requires EWSB!

Why is there the dual in the CP-even vertices?

The following effective Lagrangian generates all NTGC CPC vertices:

$$\mathcal{L}_{\mathrm{NP}}^{CPC} = \frac{e}{2m_Z^2} \begin{bmatrix} f_5^{\gamma} (\partial^{\sigma} F_{\sigma\mu}) \tilde{Z}^{\mu\beta} Z_{\beta} + f_5^Z (\partial^{\sigma} Z_{\sigma\mu}) \tilde{Z}^{\mu\beta} Z_{\beta} \\ -h_3^{\gamma} (\partial^{\sigma} F_{\sigma\mu}) \tilde{F}^{\mu\beta} Z_{\beta} - h_3^Z (\partial^{\sigma} Z_{\sigma\mu}) \tilde{F}^{\mu\beta} Z_{\beta} \\ + \frac{h_4^{\gamma}}{2m_Z^2} [\Box (\partial^{\sigma} F^{\rho\alpha})] \tilde{F}_{\rho\alpha} Z_{\sigma} + \frac{h_4^Z}{2m_Z^2} [(\Box + m_Z^2) (\partial^{\sigma} Z^{\rho\alpha})] \tilde{F}_{\rho\alpha} Z_{\sigma} \end{bmatrix},$$

with $\tilde{X}_{\mu\nu} = 1/2 \epsilon_{\mu\nu\alpha\beta} X^{\alpha\beta}$. Note: This Lagrangian requires EWSB!

Why is there the dual in the CP-even vertices?

CP-transformations:

$$\begin{array}{ccc} C(Z_{\mu}) \rightarrow -Z_{\mu} & \text{and} & P(Z_{0}) \rightarrow +Z_{0}, P(Z_{i}) \rightarrow -Z_{i} \\ P(\partial_{0}) \rightarrow +\partial_{0}, P(\partial_{i}) \rightarrow -\partial_{i} & \text{and} & P(\epsilon^{\mu\alpha\beta\rho}) \rightarrow -\epsilon^{\mu\alpha\beta\rho} \end{array}$$

The following effective Lagrangian generates all NTGC CPC vertices:

$$\mathcal{L}_{\rm NP}^{CPC} = \frac{e}{2m_Z^2} \left[f_5^{\gamma} (\partial^{\sigma} F_{\sigma\mu}) \tilde{Z}^{\mu\beta} Z_{\beta} + f_5^Z (\partial^{\sigma} Z_{\sigma\mu}) \tilde{Z}^{\mu\beta} Z_{\beta} - h_3^{\gamma} (\partial^{\sigma} F_{\sigma\mu}) \tilde{F}^{\mu\beta} Z_{\beta} - h_3^{\gamma} (\partial^{\sigma} Z_{\sigma\mu}) \tilde{F}^{\mu\beta} Z_{\beta} + \frac{h_4^{\gamma}}{2m_Z^2} [\Box (\partial^{\sigma} F^{\rho\alpha})] \tilde{F}_{\rho\alpha} Z_{\sigma} + \frac{h_4^Z}{2m_Z^2} [(\Box + m_Z^2) (\partial^{\sigma} Z^{\rho\alpha})] \tilde{F}_{\rho\alpha} Z_{\sigma} \right],$$

with $\tilde{X}_{\mu\nu} = 1/2 \epsilon_{\mu\nu\alpha\beta} X^{\alpha\beta}$. Note: This Lagrangian requires EWSB!

Why is there the dual in the CP-even vertices?

CP-transformations:

$$\begin{array}{ccc} C(Z_{\mu}) \rightarrow -Z_{\mu} & \text{and} & P(Z_{0}) \rightarrow +Z_{0}, P(Z_{i}) \rightarrow -Z_{i} \\ P(\partial_{0}) \rightarrow +\partial_{0}, P(\partial_{i}) \rightarrow -\partial_{i} & \text{and} & P(\epsilon^{\mu\alpha\beta\rho}) \rightarrow -\epsilon^{\mu\alpha\beta\rho} \end{array}$$

 \Rightarrow What type of SMEFT operator can produce this Lagrangian?

Counaris at al 1000

γZ versus ZZ

Ratio of number of events in γZ and ZZ final states versus model:

Large variation ... but > 1/2 of models have

$$p \qquad (\gamma Z)/(ZZ) > 1$$