Assumptions 00 Methods 000 Result 000 Conclusions 00

GUTs - how common are they?

Johannes Herms (MPI für Kernphysik) in collaboration with Maximilian Ruhdorfer (Cornell)

SUSY 2024, Madrid

10.06.2024

Motivation	Assumptions	Methods	Results	Conclusio
•00	00	000	000	00

The Puzzle

Experiment: $SU(3) \times SU(2) \times U(1)$

$$3 \times \begin{pmatrix} v \\ e_L \end{pmatrix} e_R \begin{pmatrix} u_{L,1}u_{L,2}u_{L,3} \\ d_{L,1}d_{L,2}d_{L,3} \end{pmatrix} (d_{R,1}d_{R,2}d_{R,3}) (u_{R,1}u_{R,2}u_{R,3})$$

Motivation	Assumptions	Methods	Results	Conclusio
•00	00	000	000	00

The Puzzle

Experiment: $SU(3) \times SU(2) \times U(1)$

$$3 \times \begin{pmatrix} v \\ e_L \end{pmatrix} e_R \begin{pmatrix} u_{L,1}u_{L,2}u_{L,3} \\ d_{L,1}d_{L,2}d_{L,3} \end{pmatrix} (d_{R,1}d_{R,2}d_{R,3}) (u_{R,1}u_{R,2}u_{R,3})$$

Georgi-Glashow: $SU(5) : 3 \times (\overline{5}, 10)$

$$3 \times \begin{pmatrix} d_{R,1}^{c} \\ d_{R,1}^{c} \\ d_{R,1}^{c} \\ e_{L} \\ -\nu \end{pmatrix} \begin{pmatrix} 0 & u_{R,3}^{c} & -u_{R,2}^{c} & u_{L,1} & d_{L,1} \\ -u_{R,3}^{c} & 0 & u_{R,1}^{c} & u_{L,2} & d_{L,2} \\ u_{R,2}^{c} & -u_{R,1}^{c} & 0 & u_{L,3} & d_{L,3} \\ -u_{L,1} & -u_{L,2} & -u_{L,3} & 0 & e_{R}^{c} \\ -d_{L,1} & -d_{L,2} & -d_{L,3} & -e_{R}^{c} & 0 \end{pmatrix}$$

Motivation	Assumptions	Methods	Results	Conclusio
● ○ ○	00	000	000	00

The Puzzle

Experiment: $SU(3) \times SU(2) \times U(1)$

$$3 \times \begin{pmatrix} v \\ e_L \end{pmatrix} e_R \begin{pmatrix} u_{L,1}u_{L,2}u_{L,3} \\ d_{L,1}d_{L,2}d_{L,3} \end{pmatrix} (d_{R,1}d_{R,2}d_{R,3}) (u_{R,1}u_{R,2}u_{R,3})$$

Georgi-Glashow: $SU(5) : 3 \times (\overline{5}, 10)$

$$3 \times \begin{pmatrix} d_{R,1}^{c} \\ d_{R,1}^{c} \\ d_{R,1}^{c} \\ e_{L} \\ -\nu \end{pmatrix} = \begin{pmatrix} 0 & u_{R,3}^{c} & -u_{R,2}^{c} & u_{L,1} & d_{L,1} \\ -u_{R,3}^{c} & 0 & u_{R,1}^{c} & u_{L,2} & d_{L,2} \\ u_{R,2}^{c} & -u_{R,1}^{c} & 0 & u_{L,3} & d_{L,3} \\ -u_{L,1} & -u_{L,2} & -u_{L,3} & 0 & e_{R}^{c} \\ -d_{L,1} & -d_{L,2} & -d_{L,3} & -e_{R}^{c} & 0 \end{pmatrix}$$

What are the odds!?

Motivation	Assumptions	Methods	Results	Conclusions
000	00	000	000	00

How common are "unifiable" fermions among "Standard Model like" theories?

Motivation	Assumptions	Methods	Results	Conclusions
000	00	000	000	00

How common are "unifiable" fermions among "Standard Model like" theories?

silly question

- counterfactual
- arbitrary

Motivation	Assumptions	Methods	Results	Conclusions
000	00	000	000	00

How common are "unifiable" fermions among "Standard Model like" theories?

silly question

- counterfactual
- arbitrary

interesting answer

- if common: no need to be surprised by grand unifiability, can stay GUT agnostic
- if rare: purely group-theoretical bottom-up indication for Grand Unification

Motivation	Assumptions	Methods	Results	Conclusions
000	00	000	000	00

Outline

Assumptions

- "unifiability"
- SM-like" theories

Methods

- construct consistent theories
- determine their unifiability

Results

- fraction of theories that are unifiable
- discuss dependence on assumptions

Motivation	Assumptions	Methods	Results
000	•0	000	000

Unifiability

observation

I fermion sector of the SM remarkably complete

- anomaly free generation-by-generation
- no evidence for BSM fermios charged under SM
- LHC: new fermions chiral under SM all but ruled out by Higgs measurements
- ② SM *fermions unify neatly* into representation of SU(5)
 - unification of all gauge forces (simple group)
 - no additional fermions in GUT rep

 \rightarrow closure

Conclusions

Motivation	Assumptions	Methods	Results
000	•0	000	000

Unifiability

observation

I fermion sector of the SM remarkably complete

- anomaly free generation-by-generation
- no evidence for BSM fermios charged under SM
- LHC: new fermions chiral under SM all but ruled out by Higgs measurements

② SM *fermions unify neatly* into representation of SU(5)

- unification of all gauge forces (simple group)
- no additional fermions in GUT rep

 \rightarrow closure

How common is neat unifiability of fermions among SM-like theories?

 \rightarrow we do not consider gauge coupling unification

Conclusions

Motivation	Assumptions	Methods	Results	Conclusions
000	0•	000	000	00

SM-like theories

characteristic features

- 3 gauge forces ~ reductive rank-4 gauge algebra
- D = 15 fermions per generation
- three separately anomaly free generations
- integer^{*} hypercharges $|Q| \le 6$
- fermion representation is chiral

Motivation	Assumptions	Methods	Results	Conclusions
000	0•	000	000	00

SM-like theories

characteristic features

- 3 gauge forces ~ reductive rank-4 gauge algebra
- D = 15 fermions per generation
- three separately anomaly free generations
- integer^{*} hypercharges $|Q| \le 6$
- fermion representation is chiral

SM-like theories (single generation)

- anomaly-free reps of SM-like gauge group
- similar number of fermions
- similar range of charges
- not just semisimple-singlets
- fermions not completely vector-like

Motivation	Assumptions	Methods	Results	Conclusions
000	0•	000	000	00

SM-like theories

characteristic features

- 3 gauge forces ~ reductive rank-4 gauge algebra
- D = 15 fermions per generation
- three separately anomaly free generations
- integer^{*} hypercharges $|Q| \le 6$
- fermion representation is chiral

SM-like theories (single generation)

- anomaly-free reps of SM-like gauge group
- similar number of fermions
- similar range of charges
- not just semisimple-singlets
- fermions not completely vector-like

\Rightarrow result depends on these assumptions; can be discussed

 $D \leq 20$

SM (for starters)

 $|Q| \le 10$

number of SS-singlets $S \le 5$

Motivation	Assumptions	Methods	Results	Conclusions
000	00	•00	000	00

Base set of anomaly-free representations

- ① find all non-anomalous reps of semisimple part $(SU(3) \times SU(2))$
- 2 assign U(1) charges, keep those that satisfy anomaly cancellation
- In remove equivalent representations
 - rescaling of U(1) charge, conjugate reps

 \Rightarrow easy using Mathematica packages SuperFlocci or GroupMath.

Some subtleties in efficient U(1) charge assignment.

thanks to Joseph Tooby-Smith!

Motivation	Assumptions	Methods	Results	Conclusions
000	00	● ○ ○	000	00

Base set of anomaly-free representations

- ① find all non-anomalous reps of semisimple part $(SU(3) \times SU(2))$
- ② assign U(1) charges, keep those that satisfy anomaly cancellation
- In remove equivalent representations
 - rescaling of U(1) charge, conjugate reps

 \Rightarrow easy using Mathematica packages SuperFlocci or GroupMath.

Some subtleties in efficient U(1) charge assignment. thanks to Joseph Tooby-Smith!

examples

$$\begin{cases} \mathbf{1} \otimes \mathbf{2} \otimes \mathbf{0}, \ \mathbf{3} \otimes \mathbf{1} \otimes -1, \ \mathbf{\overline{3}} \otimes \mathbf{1} \otimes 1 \end{cases}$$
 smallest, $D = 8$
$$\{ \mathbf{3} \otimes \mathbf{2} \otimes \mathbf{0}, \ \mathbf{\overline{3}} \otimes \mathbf{1} \otimes -1, \ \mathbf{\overline{3}} \otimes \mathbf{1} \otimes 1 \}$$
 smallest chiral, $D = 12$
$$\{ \mathbf{1} \otimes \mathbf{1} \otimes -6, \ \mathbf{1} \otimes \mathbf{2} \otimes 3, \ \mathbf{\overline{3}} \otimes \mathbf{2} \otimes -1, \ \mathbf{3} \otimes \mathbf{1} \otimes -2, \ \mathbf{3} \otimes \mathbf{1} \otimes 4 \}$$
 you know this one, $D = 15$

Motivation	Assumptions	Methods	Results	Conclus
000	00	000	000	00

SuperFlocci – checking unifiability bottom-up

https://github.com/jstoobysmith/Superfloccinaucinihilipilification

Semisimple unifications of any gauge theory

Andrew Gomes[•], ^{*}Maximilian Ruhdorfer[•], [†] and Joseph Tooby-Smith[•] Laboratory for Elementary Particle Physics, Cornell University, Ithaca, New York 14853, USA

We present a Mathematica package that takes any reductive gauge algebra and fully-reducible fermion representation, and outputs all semisimple gauge extensions under the condition that they have no additional fermions, and are free of local anomalies. These include all simple completions, also known as grand unified theories. We additionally provide a list of all semisimple completions for 5835 fermionic extensions of the one-generation Standard Model.

 \Rightarrow plug in every theory in base set and check for simple gauge extension

[2306.16439]

Motivation	Assumptions	Methods	Results	Conclusi
000	00	000	000	00

SuperFlocci – checking unifiability bottom-up

https://github.com/jstoobysmith/Superfloccinaucinihilipilification

Semisimple unifications of any gauge theory

Andrew Gomes[•], ^{*}Maximilian Ruhdorfer[•], [†] and Joseph Tooby-Smith[•] Laboratory for Elementary Particle Physics, Cornell University, Ithaca, New York 14853, USA

We present a Mathematica package that takes any reductive gauge algebra and fully-reducible fermion representation, and outputs all semisimple gauge extensions under the condition that they have no additional fermions, and are free of local anomalies. These include all simple completions, also known as grand unified theories. We additionally provide a list of all semisimple completions for 5835 fermionic extensions of the one-generation Standard Model.

\Rightarrow plug in every theory in base set and check for simple gauge extension

SuperFlocci Output	SuperFlocci Output
Program by: Andrew Gomes, Maximillian Ruhdorfer, and Joseph Tooby-Smith. 2022	Program by: Andrew Gomes, Maximillian Ruhdorfer, and Joseph Tooby-Smith. 2022
Input algebra: su(2) @su(3) @u(1)	Input algebra: $su(2) \oplus su(3) \oplus u(1)$
Input representation: $(2,3,\theta) \oplus (1,\overline{3},-1) \oplus (1,\overline{3},1)$	$\label{eq:input} \text{Input representation:} \ (1,1,-6) \oplus (2,1,3) \oplus (2,\overline{3},-1) \oplus (1,3,-2) \oplus (1,3,4)$
Date of generation: Sun 9 Jun 2024 11:58:36	Date of generation: Sun 9 Jun 2024 12:00:08
	Maximal algebras:
Maximal algebras:	navnav otgeoraat
 su(2)⊕su(2)⊕su(3) (1,2,3)⊕(2,1,3) 	 su(5) (5)⊕(10)
Minimal algebras:	

[2306.16439]

Motivation	Assumptions	Methods	Results	Conclusions
000	00	00●	000	00

GroupMath – top-down decoposing all candidate GUTs

https://renatofonseca.net/groupmath

[R.Fonseca'2011.01764]

• candidate GUTs with non-singlet fermion rep with $D \leq D_{\max}$

Motivation	Assumptions	Methods	Results	Conclusions
000	00	000	000	00

GroupMath – top-down decoposing all candidate GUTs

https://renatofonseca.net/groupmath

[R.Fonseca'2011.01764]

• candidate GUTs with non-singlet fermion rep with $D \leq D_{\text{max}}$

Motivation	Assumptions	Methods	Results	Conclusions
000	00	000	000	00

GroupMath – top-down decoposing all candidate GUTs

https://renatofonseca.net/groupmath

[R.Fonseca'2011.01764]

• candidate GUTs with non-singlet fermion rep with $D \leq D_{\text{max}}$

 $\begin{array}{l} \{ (SU2, (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20) \}, \{ SU3, \{ 1, 3, \overline{3}, 6, \overline{6}, 8, 10, \overline{16}, 15, 15, 15^*, 15^* \} \}, \\ \left\{ \{ (SU2, (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20) \}, \{ (SU3, \{ 1, 3, \overline{3}, 6, \overline{6}, 8, 10, \overline{16}, 15, 15, 15^*, 15^* \} \}, \\ \left\{ (SU4, (1, 4, 5, 10, \overline{10}, 15, 20, \overline{20}, 20^*, 20^*, \overline{20}^*, \overline{20}^*) \}, \{ (SU5, (1, 5, 5, 16, 15, 15] \}, \{ (SU6, [1, 6, 6, 15, 13, 20] \}, \{ (SU7, \{ 1, 7, 7 \} \}, \\ \{ (SU5, [1, 4, 5, 13]), \{ (SU16, (1, 10, \overline{10}) \}, (SU10, [1, 11, 11]), \{ (SU12, (1, 2, \overline{12}) \}, (SU20, [1, 2, 0, \overline{20}] \}, \\ \{ (SU5, [1, 4, 5, 13]), \{ (SU6, (1, 16, \overline{10}) \}, (SU17, (1, 17, 17) \}, \{ (SU18, \{ 1, 18, \overline{18}) \}, \{ (SU10, [1, 13, 13] \}, \{ (SU14, [1, 44, 14] \} \}, \\ \{ (SU5, [1, 4, 5, 10, 14, 16, 20) \}, \{ (SP6, (1, 6, 14, 14^*)), (SP6, (1, 8)), (SP10, (1, 10)), (SP12, (1, 12)), (SP14, (1, 14)), (SP16, (1, 16)), \\ \\ (SP14, (1, 13)), (SP20, (1, 20)), (SD5, (1, 4, 5, 10, 14, 16, 20)), \{ (SO6, [1, 4, 4, 6, 10, \overline{15}, 5, 20, \overline{20}, 20^*, 20^*, \overline{20^*}), \overline{20^*} \} \}, \\ (SO14, (1, 44)), (SO15, (1, 15)), (SO16, (1, 61)), (SO17, (1, 17)), (SO136, (1, 13)), (SO14, (1, 24)), (SO14, (1, 24)), (SO15, (1, 26)), (SO7, (1, 27)), (SO14, (1, 24)), (SO14, (1,$

• GroupMath computes all distinct decompositions, fast!

There are	2 non-eau	ivalent wavs o	f embedding {S	U3, SU2,	U1} in SO10.	
	· · · · ·	the representa	ation			
-16 decom	poses as f	Follows (x1 is	a free real n	umber):		
-16 decom	ooses as f	Follows (x1 is		umber): position		
			Decom	position	1 ⊗ 1 ⊗ (-3 + x1)	1 × 1 × (-3 - x1)

assign charges and count

Motivation	Assumptions	Methods	Results	Conclusions
000	00	000	●00	00

First result

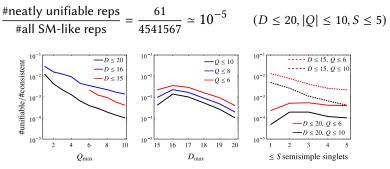
naive result:

 $\frac{\text{#neatly unifiable reps}}{\text{#all SM-like reps}} = \frac{61}{4541567} \simeq 10^{-5} \qquad (D \le 20, |Q| \le 10, S \le 5)$

Motivation	Assumptions	Methods	Results	Conclusions
000	00	000	•00	00

First result

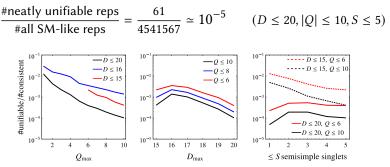
naive result:



Motivation	Assumptions	Methods	Results	Conclusions
000	00	000	•00	00

First result

naive result:



most conservative result:

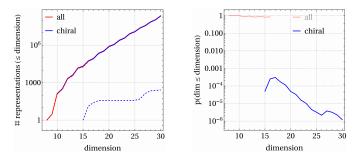
$$rac{\# neatly unifiable reps}{\# all SM-like reps} = rac{1}{76} \simeq 10^{-2}$$

 $(D \le 15, |Q| \le 6, S \le 1)$ \Rightarrow rare at " 2σ " level.

Motivation	Assumptions	Methods	Results	Conclusions
000	00	000	000	00

Top-down strikes back – the role of chirality

• using GroupMath, we can extend analysis to $D \le 30$, as well as consider VL theories

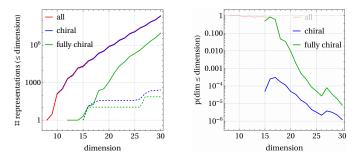


restricted to $\tilde{S} \leq 4$ same SS reps here

Motivation	Assumptions	Methods	Results	Conclusions
000	00	000	000	00

Top-down strikes back – the role of chirality

• using GroupMath, we can extend analysis to $D \le 30$, as well as consider VL theories

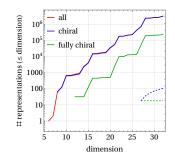


restricted to $\tilde{S} \leq 4$ same SS reps here

Motivation	Assumptions	Methods	Results	Conclusion
000	00	000	000	00

Is $SU(3) \times SU(2) \times U(1)$ special?

$SU(3) \times U(1)$



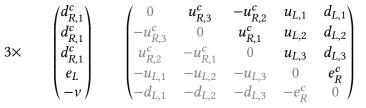
- need to go to larger *D* to find unifiable chiral theory
- there, similar result as SM group

further groups \rightarrow work in progress

Assumption 00 Methods 000 Result: 000 Conclusions •O

$$3 \times \quad \begin{pmatrix} \nu \\ e_L \end{pmatrix} e_R \begin{pmatrix} u_{L,1}u_{L,2}u_{L,3} \\ d_{L,1}d_{L,2}d_{L,3} \end{pmatrix} (d_{R,1}d_{R,2}d_{R,3}) (u_{R,1}u_{R,2}u_{R,3})$$

It unifies. Surprised?



"Evidence"?!

Motivation	Assumptions	Methods	Results	Conclusions
000	00	000	000	0●

Conclusions

- The SM fermions unify neatly into a representation of a simple group
- Is that surprising?
 - finding an SM-like theory to be neatly unifiable is O(1/100) odd, but not impossibly rare
 - among *fully chiral* fermion representations, no need to be surprised by unifiability
- Bottom-up indication for Grand Unification, relying only on group theory
 - without measure in theory space \rightarrow no "evidence"
- Result comparable to a fine-tuning measure

We wish to thank Joseph Tooby-Smith for collaboration during the early stages of this project and for coding support throughout.

