Entanglement and Bell Inequality Violation in Semi-Leptonic Top Decays

Matthew Low arXiv:2310.17696 arXiv:2311.09166 with Kun Cheng, Tao Han, Arthur Wu

Entanglement

- Einstein's "spooky action at a distance"
- Can only describe subsystem A with knowledge of subsystem B
- Usually measured with photons or electrons

• Examples:

Entanglement

• Let the spin of the *top* be a **qubit** and let the spin of the *anti-top* be a **qubit**

- Parametrize the tt system by: scattering angle heta and invariant mass $m_{ar{t}t}$
- Each point $(heta, m_{ar{t}t})$ is quantum state $ho(heta, m_{ar{t}t})$
- Integrate to obtain total quantum state
- With the same procedure, can test Bell Inequalities

Matthew Low (Pittsburgh)

Afik, de Nova 2003.02280

Fabbrichesi, Floreanini, Panizzo <u>2102.11883</u>

Barr <u>2106.01377</u>

See also Abel, Dittmar, Dreiner 1992 3

Measuring the Density Matrix

- Quantum state described by density matrix $ho = \sum |\psi\rangle\langle\psi|$
- Can be decomposed in Pauli basis

M

$$\rho = \frac{1}{4} \left(\mathbf{I}_4 + B_i^+ \sigma_i \otimes \mathbf{I}_2 + B_i^- \mathbf{I}_2 \otimes \sigma_i + C_{ij} \sigma_i \otimes \sigma_j \right)$$

 B_i^+ Polarization vector of qubit A B_i^- Polarization vector of qubit B C_{ij} Spin correlation matrix

- Reconstruct density matrix by measuring spins
- At a colliders, measuring spins *statistically* by angles of decay products

• Example:

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \longrightarrow B_i^+ = \begin{pmatrix} 0\\0\\0 \end{pmatrix} B_i^- = \begin{pmatrix} 0\\0\\0 \end{pmatrix} C_{ij} = \begin{pmatrix} 1 & 0 & 0\\0 & -1 & 0\\0 & 0 & 1 \end{pmatrix}$$
atthew Low (Pittsburgh)

Measuring the Density Matrix

• Differential cross section (with respect to decay angles)

$$\frac{1}{\sigma} \frac{\mathrm{d}^4 \sigma}{\mathrm{d}^2 \Omega^{\mathcal{A}} \mathrm{d}^2 \Omega^{\mathcal{B}}} = \frac{1}{(4\pi)^2} \left(1 + \sum_i \left(B_i^{\mathcal{A}} \Omega_i^{\mathcal{A}} + B_i^{\mathcal{B}} \Omega_i^{\mathcal{B}} \right) + \sum_{i,j} \Omega_i^{\mathcal{A}} C_{ij} \Omega_j^{\mathcal{B}} \right)$$

• Partially integrate to isolate parameters

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}(\cos\theta_i^{\mathcal{A}}\cos\theta_j^{\mathcal{B}})} = -\frac{1}{2} \left(1 + C_{ij}\cos\theta_i^{\mathcal{A}}\cos\theta_j^{\mathcal{B}} \right) \log \left| \cos\theta_i^{\mathcal{A}}\cos\theta_j^{\mathcal{B}} \right|$$
Measure angles to extract parameters
$$2.0 \begin{bmatrix} C_{ij} = 1 \\ C_{ij} = 0 \\ 1.5 \\ 0.0 \end{bmatrix}$$

$$1.0 \begin{bmatrix} 0 \\ 0.5 \\ 0.0 \end{bmatrix}$$

$$0.1 \begin{bmatrix} 0 \\ 0.5 \\ 0.0 \end{bmatrix}$$

 $\cos\theta_i \cos\theta_i$

Testing Entanglement and Bell Inequalities

- Entanglement: Peres-Horodecki criterion (Positive Partial Transpose)
 - Apply transpose to subsystem B
 - If the resulting matrix corresponds to a state (\rightarrow separable), if not (\rightarrow entangled)
 - Inequality using elements of spin correlation matrix

$$C_{11} + C_{22} + C_{33} < -1$$
 (tt near threshold)

- Bell Inequality Violation: Clauser-Horne-Shimony-Holt inequality
 - Make 4 measurements $\langle A_1B_1 \rangle, \langle A_1B_2 \rangle, ...$
 - Test the inequality $|\langle A_1B_1\rangle \langle A_1B_2\rangle + \langle A_2B_1\rangle + \langle A_2B_2\rangle| \le 2$
 - Inequality using elements of spin correlation matrix

$$\sqrt{2}|C_{11} - C_{22}| \le 2$$

Top-Antitop Final States

- Fully Leptonic Top Decays
 - Lepton carries maximal spin information of the top
 - "Clean" final state
 - Existing spin correlation measurements by CMS (prior to present entanglement work)
- Semi-leptonic Top Decays
 - Lose some spin information from the hadronic top
 - Larger branching ratio
 - Only one invisible particle in event

Fabbrichesi, Floreanini, Panizzo <u>2102.11883</u> Severi et al <u>2110.10112</u> Afik, de Nova <u>2203.05582</u> Aguilar-Saavedra, Casas <u>2205.00542</u>

Our work

Back of the Envelope

• Sensitivity estimated by

$$\frac{\mathcal{O}_{\text{measured}} - \mathcal{O}_{\text{separable}}}{\Delta \mathcal{O}}$$

• Measurement *degraded* by using angle of jets (instead of lepton)

 $\mathcal{O}_{measured} \rightarrow (0.64)\mathcal{O}_{measured}$

• Branching ratio *improves* uncertainty by sqrt(num events)

$$\Delta \mathcal{O} \to \left(\frac{1}{2.5}\right) \Delta \mathcal{O}$$

• Sensitivity naively expected to *improve* by a factor **1.6**

Simulation

- Step one: parton-level study
 - Madgraph, Madspin, no event selection
 - \circ Signal region in $(heta, m_{ar{t}t})$ space
 - Extract spin correlation coefficients
 - Scale results down by reconstruction efficiency

Simulation

- Step two: detector-level study
 - Pythia, Delphes, event selection
 - \circ Signal region in $(heta, m_{ar{t}t})$ space
 - Calculate reconstruction efficiency
 - Apply parametric fitting (i.e. unfolding)

Parametric fitting is essential and inflates the uncertainty

Results

- Bell inequality violation
 - Degraded slightly from parton-level
 - Needs additional improvements to be discoverable at HL-LHC
 - Factor of 3x more sensitive than leptonic channel

Reconstructed	$N_{ m detected}$	$B-\sqrt{2}$		Significance	
	$(300{ m fb}^{-1})$	(Individual)	(Direct)	$(300{ m fb}^{-1})$	$(3000{ m fb}^{-1})$
Weak	6280	0.23 ± 0.18	0.22 ± 0.22	1.3σ	4.1σ
Strong	4127	0.27 ± 0.22	0.25 ± 0.28	1.2σ	3.8σ

Conclusions

- Treating the top and anti-top as qubits yields a quantum system
- Can measure entanglement and Bell inequality in this system
- ATLAS and CMS have measured entanglement in the leptonic channel
- Semi-leptonic channel may have higher sensitivity (>60%)

Source: https://atlas.cern/Updates/Briefing/Top-Entanglement

Back-Up: Entanglement

- Results: Entanglement
 - Degraded slightly from parton-level
 - \circ Well above 5 σ
 - Measured by ATLAS and CMS in leptonic channel

Reconstructed	$N_{ m detected}$	$2\mathcal{C}(ho)$		Drogision
	$(139{ m fb}^{-1})$	(Individual)	(Direct)	Frecision
Threshold	$1.26 imes 10^6$	0.523 ± 0.033	0.522 ± 0.016	3.0%
Boosted	1.15×10^5	0.549 ± 0.084	0.552 ± 0.052	9.5%

Back-Up: ATLAS and CMS

CMS 2406.03976

ATLAS <u>2311.07288</u>

14

Back-Up: Unfolding

• Unfolding

$$\vec{x}_{\text{truth}} \xrightarrow{\text{folding}} \vec{x}_{\text{detected}} = R \cdot \vec{x}_{\text{truth}},$$

 $\vec{x}_{\text{unfolded}} = R^{-1} \cdot \vec{x}_{\text{detected}}.$

• Parametric/template fitting

