

Latest results from the NA64 experiment

Mirald Tuzi on behalf of the NA64 collaboration

SUSY 2024, Madrid 13th June 2024

NA64 target: Light Dark Matter (LDM)

- Aside from gravity, an **additional** force between dark matter (DM) and visible/SM particles may exist
- Mediator of force: particles at sub-GeV mass scale, which could decay into dark matter
- Interact feebly with SM particles through various mechanisms

MA64 @ CERN SPS

NA64: a *fixed target* experiment at the CERN SPS, probing **LDM candidates** and other **New Physics** (NP) extensions using **electron** (e^-), **positron** (e^+), **muon** (μ) and **hadron** (h) beams.

CERN Prévessin site (North Area)

Current status: NA64e⁻ @ 100 GeV

Mirald Tuzi | Latest results from the NA64 experiment

Projected NA64 LDM sensitivity

How can we enlarge the sensitivity at higher masses?

NA64e⁺ (@ 100 GeV): A' resonance with e⁺

NA64 collaboration, Phys. Rev. D 109, L031103 (2024)

Current status: NA64µ @ 160 GeV

Background source	Background, n_b
(I) Momentum mis-reconstruction	0.05 ± 0.03
(II) $K \to \mu + \nu$, in-flight decays	0.010 ± 0.001
(III) Calorimeter non-hermeticity	< 0.01
Total n_b (conservatively)	0.07 ± 0.03

Benchmark model: $L_{\mu} - L_{\tau} Z'$. Exclusion limits for other models to be published soon!

Search for additional NP scenarios: An overview

• inelastic DM (iDM) (2023, *EPJC* **83**, no.5, 391)

 \rightarrow more details about these three examples in backup

Summary and Outlook

NA64e

• Total **2016-2023** statistics: **1.5x10¹² EOT**

- Analysis of the 2016-2022 data (~10¹² EOT) completed: LDM suggested parameter space probed for the first time. World-best sensitivity!
- Analysis with latest data ongoing to probe:
 - uncovered area for classical axion models and ALPs
 - New hidden interactions in the neutrino sector, e.g. B-L Z'
 - inelastic DM model
- 2024 run finished this week (5.2x10¹¹ EOT collected!) The plan is to collect 3x10¹² EOT before LS3.

ΝΑ64μ

- Total 2021-2023 statistics: 1.9x10¹¹ MOT
 - Analysis of the 2022 data (1.98x10¹⁰ MOT) completed: part of the g-2 and LDM parameter space excluded.
- Goal to reach 3x10¹¹ MOT before LS3

NA64e⁺

- Total 2022-2023 statistics: 1x10¹⁰ e⁺OT (100 GeV) and 1.5x10¹⁰ e⁺OT (70 GeV)
 - Analysis of the 2022 data (~10¹⁰ e⁺OT) completed: LDM using 100 GeV positrons demonstrating feasibility of the technique

NA64h

• **Proof of concept successful!** First results published in arXiv:2406.01990

NA64 is an ideal experiment to decisively discover or disprove very interesting predictive LDM models and greatly explore DS in the coming years

The high-sensitivity NA64 hunt for New Physics has just begun!

Thanks for your attention!

Acknowledgements

The NA64 collaboration, in particular L. Molina Bueno, H. Sieber, P.Crivelli and S.Gniennko

The NA64 collaboration in front of the M2 beamline experimental hall, where the NA64 μ experiment is located

PID2021-123955NA-100

Motivation: Dark sectors (DS) to explain dark matter

Detection technique: Beam dump vs active dump

The signature at NA64

Initial well-defined

e-, e+, μ, h beam

Missing momentum technique

The NA64 μ setup: M2 beamline

The NA64 μ setup: main part

Search for additional NP scenarios: An overview

