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Machine Learning

* A technique in which a computer extracts

hidden rules or patterns as it iteratively learns data.

Reinforcement Learning

Supervised Learning

Unsupervised Learning
2024/6/10-14  SUSY24 3



Supervised Unsupervised

estimates the correspondence

between data and signals finds the similarity among data

It is needed to prepare a large amount of data.
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Reinforcement Learning (RL)

 Reinforcement learning can find optimal solutions
even from a small amount of reference data

by repeatedly trying to solve problems to be solved.

Observation
‘ Can we utilize and apply
Acti e — :
Y A & | the unique feature of RL
%| TE L to searching for flavor models?
|\ g Y
Reward ‘ ©F 2024/6/10-14 SUSY24
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Froggatt-Nielsen Model (1)

- It 1s a flavor model that try to explain mass hierarchy and mixing

by breaking U(1) flavor symmetry.

« A complex scalar field ¢ is introduced to Yukawa lagrangian.
u —. . d . .
Lyuk = Yi:¢"Q"H U + yi:¢™iQ'Hd’ + h.c.

« U(1) charges q(Q),q(u), g(d), ... are assigned for each fields.
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Froggatt-Nielsen Model (2)

* having U(1) sym. < 1in each term, sum of U(1) charges = 0

q(P)nt; —q(Q') — q(H) + q(u/) =0

* When complex scalar field ¢ develop an expectation value (¢):

Vi = yifd)™,

» Froggatt-Nielsen (FN) charges will lead to a hierarchical

structure of physical Yukawa couplings from indices n%,n?.

2024/6/10-14 SUSY24
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Froggatt-Nielsen Model (3)

 There is a problem. To find the appropriate parameters q & (¢),
a vast number of combinations must be searched.
parameter space : —9 < g <9 - 19! ~ 10!* patterns

For each pattern, (¢) should be determined properly.

* To efficiently explore charges which reproduce experimental results,
we focus on application of RL.
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Reinforcement Learning

* Subject of learning @ Agent

* Problem to be solved : Environment

(1) Observation

(2) Action
VR

RN

(3) Reward

|
|
i
o

=
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Reinforcement Learning

 Procedure : The agent observe the environment,

(1) Observation (Example of mazes)

(1) observe walls

(2) Action e—

i

(3) Reward

% @)
F‘_

QL
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Reinforcement Learning

 Procedure : The agent observe the environment, choose an action,

(1) Observation (Example of mazes)

(1) observe walls

(2) Action e—

i

(3) Reward

(2) take one step

% @)
F‘_

QL
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Reinforcement Learning

 Procedure : The agent observe the environment, choose an action,
and get rewards depending on the action.

(1) Observation (Example of mazes)

(1) observe walls

<2)ﬁfi°\1 S (2) take one step
|
%| - TE L@; (3) get points as closing the goal
(3) Reward )

2024/6/10-14 SUSY24 13



Reinforcement Learning

 Procedure : The agent observe the environment, choose an action,

and get rewards depending on the action.

 The agent autonomously acquires a principle of action
that maximizes the sum of rewards.
(Examples of mazes) By turning back upon reaching a dead-end,

the agent can solve mazes correctly.
2024/6/10-14  SUSY24 14



Previous Work & This Work

- RL was constructed using the FN model as the environment,
and it have explored FN charges that reproduce masses and

mixings for quarks. T.R.Harvey, A.Lukas [ JHEP08(2021)161 |

- Extending this, we constructed the RL,
and 1t have found FIN charges that reproduce masses and

mixings for quarks & leptons simultaneously.
2024/6/10-14  SUSY24 15



Design of RL (Environment)

 Yukawa lagrangian has FN mechanism for quarks and leptons,

and the agent explore sets of charges (-9 < g <9)

Lyuk = V3 (%)ng; Q'Hu + y (

+y§(

M
I\

nf
¢) ]QlHd]

M

¢)n1i/j LLHENT + yilj (qb)n%j LiH

M

1 S\ i
+2yN ()" MNNI +h.c

¢ In trainings, we fixed FN couplings y as random real 0(1) constants.

M

Q
u,d
L
[

=6 T =

: Left-handed quark
: Right-handed quark
: Left-handed lepton
: Right-handed

charged lepton

: Right-handed Neutrino
: Higgs

: Complex Scalar

: Right-handed Neutrino

Mass = 101° GeV

16




Design of RL (Reward: 1)

 The agent gets points when the masses of particles and
the mixing matrix, which are calculated from the FN charges,

are close to the experimental values.

2024/6/10-14 SUSY24 17



How to determine the reward

e Intrinsic Value V(Q) is defined as follow.

For example, M, evaluates masses of charged particle.

|mg |
M; = E, = log; g ‘m

a=u,d,l a=u,d,l

* closing to experimental values <> increasing the intrinsic value
2024/6/10-14  SUSY24 18



Design of RL (Reward: 2)

 The agent gets points when the masses of particles and
the mixing matrix, which are calculated from the FN charges,

are close to the experimental values.

 Neutrino masses are only known to differ in mass squared
between flavors, so different mass orders are possible.
Normal : m; <m, < m, Inverted : m; < m; <m,

We can choose whether to designate the order or not.
2024/6/10-14 SUSY24
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Physical Values for Reward

* 9 masses of quarks and charged leptons

« 2 values of differs in neutrino masses

* 9 2

DSO)

* 9 2

DSO)

ute values of CKM matrix

ute values of PMNS matrix

» Total : 29 values (with designated ordering)

27 values (wit

hout designated ordering)
2024/6/10-14

SUSY24
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Masses of charged particles

1.0E+06
ot
1.0E+05
1.0E+04
— C Db T One example of charges
% 1.0E+03 e X o
S 1.0E+02 " . IR Rk
U =\ o, . v N ML L Lo
1.0E+01 3 3 2]-3 -7 —6|1 -2 0] 1
o U ed
1.0E+00 o,
1.0E-01
®FN A SM

It reproduces hierarchical structure. 2024/6/10-14  SUSY24 21



Components of CKM matrix Components of PMNS matrix

1 —e A 0o— 1 .
e o o 02 ¢ . 0 ®
P P 1 ®
(A
0.1 0.1
® ®
0.01 v 0.01
PN
0.001 0.001
S ) S )
®FN ASM ®FN A SM

It also reproduces flavor mixing. 2024/6/10-14  SUSY24 22



Majorana Phases and 0vBp decay (1)

* OvBS decay is important to search Majorana neutrinos.

The decay width 1s affected by the effective Majorana mass:

= 2 c? 2 -2 Ll 2 _i(az1—26
Mpp = ‘mv1C12C13 + m,»S12C13€ 2 + m,,3S513€ (az1 CP)‘

mMy1 2.187 x 107° Ocp 0.000
my, | = 9.821 meV d->1 =< 0.000 )
my3 56.84 0.5495n

Ym, = 66.66 meV < 87 meV

PDG (PTEP 2022 083C01) 2024/6/10-14  SUSY24 23



Majorana Phases and 0vBS decay (2 )

« RL can be used to calculate neutrino masses & Majorana phases,

and to expand the possibilities of model validation.

mgp = 3.155 meV

mMy1 2.187 x 107° Ocp 0.000
my, | = 9.821 meV d->1 =< 0.000 )
my3 56.84 0.5495n

Ym, = 66.66 meV < 87 meV

PDG (PTEP 2022 083C01) 2024/6/10-14  SUSY24 24



Mass Structure of Neutrinos

* This boxplot shows distribution of

Intrinsic Value

the intrinsic values V which is found by RL. 0
The values of normal ordering tends to be : L
2
larger than that of inverted ordering. 3
4 L
— The normal ordering 1s well fitted - 1
with the current experimental data 6
aNO =10

in contrast to the inverted ordering.
2024/6/10-14  SUSY24 25



Summary (1)

» We applied reinforcement learning (RL) to the search for
charge assignment in the Froggatt-Nielsen model.
RL efficiently found FN charges that reproduce the masses

and flavor mixing of quarks & leptons, simultaneously.

— RL is useful to explore parameters of flavor models.

2024/6/10-14 SUSY24
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Summary (2 )

» We calculated Majorana phases from the charges

Intrinsic Value

0
which 1s found by RL, and statistically derived that _

. . -2

the normal order of neutrino masses is reasonable. ;
4 —

-5

—  RL can be a new method 6

BNO B]O

for understanding the flavor structure.

2024/6/10-14 SUSY24 27



What 1s new

» Previous work

Intrinsic Value

0

“RL can reproduce experimental values” |
: ' T

e This work 2

“RL can also give some predictions” ’ :

4 —

(not only reproducing) 5 i |
6

BNO B[O

Potential of reinforcement learning in flavor physics

2024/6/10-14 SUSY24 28



Future Work

* This work do not derive CP violation in quark sector

— Adding a complex scalar (¢ - ¢4, p,) is promising.

* The scale of right-handed neutrino M = 10%> GeV can be changed.

—  More precise sets of parameters may be found.

- Exhaustive search for flavor models, Black-box problem of Al, ---
(Modular flavor models, etc.)

2024/6/10-14 SUSY24 29
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Machine Learning (Advertisement)

« ChatGPT = Supervised + Reinforcement
Keiya.l, Satsuki.N, Hajime.O, arXiv:2312.07181 [hep-th]

application for string theory

Unsupervised Learning
2024/6/10-14  SUSY24 31



Supervised Unsupervised

—% tracks

b hadron

These are good methods

for particle experiments.

light jet

Ex) jet tagging

- primary vertex

https://en.wikipedia.org/wiki/B-tagging l g ht J et

It is needed to prepare a large amount of data.

2024/6/10-14 SUSY24



The Standard Model (SM)

* SM describes the behavior of elementary particles

with a high degree of accurately. It is valid for ~ 1071 m.
However, there are many problems.

(neutrino masses, generation, ****** )

» The search for new physics beyond the Standard Model (BSM)

is the challenge in particle physics.
2024/6/10-14  SUSY24 33



Mass Hierarchy of SM

* Quarks and leptons have the large hierarchical masses.

~1, —£~10°

my My
» The reason for this is that Yukawa couplings Y%, Y¢

have very different components in each generation.
Lyuk = Y1Q'"H u) + Y$Q'Hd’ + h.c.

What is the background cause of such hierarchy?

2024/6/10-14 SUSY24
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Flavor Mixing of SM

» Flavor mixing 1s characterized differently in each sector.

CKM matrix for quarks

PMNS matrix for leptons

» Various models have been proposed

that focus on the flavor pl

: weak

. strong

Weak

https://upload.wikimedia.org/wikipedia/commons/

1y51CS . 6/66/Quark_weak_interactions.svg

Among them, we ¢

eal wit!

h Froggatt-Nielsen model in this work.
2024/6/10-14  SUSY24 35



Ditterence of Parameter Space

 Previous work “analyzing for quark sector”
—9<q <9 - 19 ~ 10 patterns. (¢) is real.
(0.01 < (¢) < 0.3)
* This work “analyzing for quark & lepton sector”
—9 < g <9 - 19%° ~ 102 patterns. (¢) is complex.

(0.01 < [{¢p)/M]| < 0.3, —1 < arg (¢p) < 1)

2024/6/10-14  SUSY24 36



Terminal State

 Terminal states are defined as FN charges

that realize sufficiently high intrinsic value.
[V(Q)| <V, Eq Eq <V, Elp < Vs, (Va,i,j)

* For terminal states, 0(1) Yukawa couplings

are optimized using Monte Carlo method.

2024/6/10-14 SUSY24 37



Design of RL (Action)

 The agent make increasing or decreasing any FN charges by 1.
Ex)

Q — (1)1;3;3;5; )
“3rd charge should be added —1.”

1 step

The agent has a neural network (NN) as a brain.
Q' =(1,1,2,3,5,:--) The agent observes the current charges as an input,
and take an action by an output of NN.

2024/6/10-14 SUSY24 38



Terminal State (1)

 Terminal states are defined as FN charges

that realize sufficiently high intrinsic value.
[V(Q)| <V, Eq Eq <V, Elp < Vs, (Va,i,j)

« We adopt V, = 10.0,V; = 1.0,V, = 0.2 based on previous work.

It means 0.1 < —"massl 10.0,0.63 < Mmixing| < 1.58.

|mmass,exp | |mmixing,exp |

2024/6/10-14 SUSY24 39



Terminal State (2)

* For terminal states, 0(1) Yukawa couplings are optimized

using Monte-Carlo method.

» We used the two Gaussian distribution.
(average +1 & standard deviation 0.25)

Then, FN Yukawa couplings are still 0(1).

2024/6/10-14 SUSY24 40



Design of RL (Reward: 3)

* The reward R of 1 step is determined as R = Ry..c + Rierm

* Q :the charge assignment observed by the agent

Q' : the charge assignment after the action

V(Q") —V(Q) ifv(@n >Vv(Q)
Roffser = —10 ifV(Q7) =V (Q)

Rbase —

 When Q' 1s a terminal state, R.., = +100.

When it is not so, Rierm = 0. 2024/6/10-14  SUSY24
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Random U (1) charges
e © Random O(1) Yukawa couplings

RL

We optimize O(1) Yukawa couplings.

human

2024/6/10-14 SUSY24 42



Neutrino Masses with NO designated

Some models are found which satisfy
experimental 30 constraints.
green square is a best-fit model)

022 023 024 025 026 027 0.28 00020 023 024 025 026 027 0.28

B23/1T B3/
Figure 9. Neutrino masses vs mixing angle 623, where the dotted line represents the global best fit
value in NuFIT v5.2 results with Super-Kamiokande atmospheric data [I7], and the inside region of
each line represents dashed line < 1o, dotdashed line < 30 CL, respectively. The sum of neutrino

masses is constrained by 0.15 eV (95% CL) corresponding to the black solid line in the case of
ACDM model [20]. We denote a best-fit point within 30 by a square, and the intrinsic value (3.14)

is written in the legend. Note that the neutrino mass ordering is fixed as NO in the training of the
neural network.

2024/6/10-14 SUSY24 43



Mass Structure of Neutrinos ( 2 )

 About without designated ordering,

Intrinsic Value

the values of NO also tends to be 0
L,
larger than that of 10. 4
6
— The normal ordering 1s well fitted -8 ==

: . 10

with the current experimental data 1 E
in contrast to the inverted ordering. 14

BNO B8]0
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Neutrino Masses without designated ordering

K X e R I e |
---------------------------------

RL found some models
which satisfy experimental
30 constraints for only NO.

0022 023 024 025 026 027 028 022 023 024 025 0.26 0.27 028

B3/ Bo5/1T

» Without designated ordering, the agent does not know
the structure of neutrino masses.

— RL helps to investigate what flavor structure the theory leads to.

2024/6/10-14 SUSY24 45
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