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Machine Learning

• A technique in which a computer extracts

hidden rules or patterns as it iteratively learns data.
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Supervised Learning

Unsupervised Learning

Reinforcement Learning



Supervised  Unsupervised
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estimates the correspondence
between data and signals

It is needed to prepare a large amount of data.

finds the similarity among data



Reinforcement Learning (RL)
• Reinforcement learning can find optimal solutions

even from a small amount of reference data

by repeatedly trying to solve problems to be solved.

Can we utilize and apply

the unique feature of RL

to searching for flavor models?
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The SM

Mass Hierarchy Flavor Mixing 
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Froggatt-Nielsen Model（１）

• It is a flavor model that try to explain mass hierarchy and mixing

by breaking 𝑈 1  flavor symmetry.

• A complex scalar field 𝜙 is introduced to Yukawa lagrangian.

𝐿Yuk = 𝑦𝑖𝑗
𝑢𝜙𝑛𝑖𝑗

𝑢
ത𝑄𝑖𝐻𝑐𝑢𝑗 + 𝑦𝑖𝑗

𝑑𝜙𝑛𝑖𝑗
𝑑

𝑄𝑖𝐻𝑑𝑗 + h. c.

• 𝑈 1  charges 𝑞 𝑄 , 𝑞 𝑢 , 𝑞 𝑑 ,… are assigned for each fields.
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Froggatt-Nielsen Model（２）

• having 𝑈 1  sym. ↔ in each term, sum of 𝑈 1  charges = 0

𝑞 𝜙 𝑛𝑖𝑗
𝑢 − 𝑞 𝑄𝑖 − 𝑞 𝐻 + 𝑞 𝑢𝑗 = 0

• When complex scalar field 𝜙 develop an expectation value ⟨𝜙⟩:

𝑌𝑖𝑗
𝑢 = 𝑦𝑖𝑗

𝑢 𝜙 𝑛𝑖𝑗
𝑢

,

• Froggatt-Nielsen (FN) charges will lead to a hierarchical

structure of physical Yukawa couplings from indices 𝑛𝑢, 𝑛𝑑.
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Froggatt-Nielsen Model（３）

• There is a problem. To find the appropriate parameters 𝑞 & ⟨𝜙⟩,

a vast number of combinations must be searched.

parameter space：−9 ≤ 𝑞 ≤ 9 → 1911 ~ 1014 patterns

  For each pattern, 𝜙 should be determined properly.

• To efficiently explore charges which reproduce experimental results,

  we focus on application of RL.
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Reinforcement Learning

• Subject of learning ：Agent

• Problem to be solved：Environment
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（１）

（２）

（３）



Reinforcement Learning

• Procedure：The agent observe the environment,

  

（Example of mazes）

（１）observe walls
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（１）

（２）

（３）



Reinforcement Learning

• Procedure：The agent observe the environment, choose an action,

（Example of mazes）

（１）observe walls

（２）take one step
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（１）

（２）

（３）



Reinforcement Learning

• Procedure：The agent observe the environment, choose an action,

  and get rewards depending on the action.

（Example of mazes）

（１）observe walls

（２）take one step

（３）get points as closing the goal
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（１）

（２）

（３）



Reinforcement Learning

• Procedure：The agent observe the environment, choose an action,

  and get rewards depending on the action.

• The agent autonomously acquires a principle of action

that maximizes the sum of rewards.

 (Examples of mazes) By turning back upon reaching a dead-end,

the agent can solve mazes correctly.
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Previous Work & This Work

• RL was constructed using the FN model as the environment,

and it have explored FN charges that reproduce masses and

mixings for quarks. T.R.Harvey, A.Lukas [ JHEP08(2021)161 ]

• Extending this, we constructed the RL, 

and it have found FN charges that reproduce masses and

mixings for quarks & leptons simultaneously.
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Design of RL (Environment)

• Yukawa lagrangian has FN mechanism for quarks and leptons,

and the agent explore sets of charges (−9 ≤ 𝑞 ≤ 9)

  𝐿Yuk = 𝑦𝑖𝑗
𝑢 𝜙

𝑀

𝑛𝑖𝑗
𝑢

ത𝑄𝑖𝐻𝑐𝑢𝑗 + 𝑦𝑖𝑗
𝑑 𝜙

𝑀

𝑛𝑖𝑗
𝑑

𝑄𝑖𝐻𝑑𝑗

+𝑦𝑖𝑗
𝜈 𝜙

𝑀

𝑛𝑖𝑗
𝜈

ത𝐿𝑖𝐻𝑐𝑁𝑗 + 𝑦𝑖𝑗
𝑙 𝜙

𝑀

𝑛𝑖𝑗
𝑙

𝐿𝑖𝐻𝑙𝑗

+
1

2
𝑦𝑖𝑗
𝑁 𝜙

𝑀

𝑛𝑖𝑗
𝑁

𝑀ഥ𝑁𝑐𝑖𝑁𝑗 + h. c.

※ In trainings, we fixed FN couplings 𝑦 as random real 𝑂 1  constants. 16

𝑄 ：Left-handed quark

𝑢, 𝑑 ：Right-handed quark

𝐿 ：Left-handed lepton

𝑙 ：Right-handed

charged lepton

𝑁 ：Right-handed Neutrino

𝐻 ：Higgs

𝜙 ：Complex Scalar

𝑀 ：Right-handed Neutrino 

Mass = 1015 GeV



Design of RL (Reward: 1)
• The agent gets points when the masses of particles and

  the mixing matrix, which are calculated from the FN charges,

are close to the experimental values.
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How to determine the reward

• Intrinsic Value 𝑉 𝑄  is defined as follow.

𝑉 𝑄 = −min
𝜙

𝑀1 +𝑀2 + 𝐶 + 𝑃

  For example, 𝑀1 evaluates masses of charged particle.

𝑀1 = 

𝛼=𝑢,𝑑,𝑙

𝐸𝛼 = 

𝛼=𝑢,𝑑,𝑙

log10
𝑚𝛼

𝑚𝛼,exp

• closing to experimental values ↔ increasing the intrinsic value
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Design of RL (Reward: 2)
• The agent gets points when the masses of particles and

  the mixing matrix, which are calculated from the FN charges,

are close to the experimental values.

• Neutrino masses are only known to differ in mass squared

between flavors, so different mass orders are possible. 

Normal：𝑚1 < 𝑚2 < 𝑚3 Inverted：𝑚3 < 𝑚1 < 𝑚2

We can choose whether to designate the order or not.
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Physical Values for Reward

• 9 masses of quarks and charged leptons

• 2 values of differs in neutrino masses

• 9 absolute values of CKM matrix

• 9 absolute values of PMNS matrix

• Total : 29 values (with designated ordering)

27 values (without designated ordering)
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It reproduces hierarchical structure.

One example of charges
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Majorana Phases and 0𝜈𝛽𝛽 decay (１)

• 0𝜈𝛽𝛽 decay is important to search Majorana neutrinos.

  The decay width is affected by the effective Majorana mass:

𝑚𝛽𝛽 = 𝑚𝜈1𝑐12
2 𝑐13

2 +𝑚𝜈2𝑠12
2 𝑐13

2 𝑒𝑖𝛼21 +𝑚𝜈3𝑠13
2 𝑒𝑖 𝛼31−2𝛿𝐶𝑃
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𝑚𝜈1

𝑚𝜈2

𝑚𝜈3

=
2.187 × 10−6

9.821
56.84

meV

σ𝑚𝜈 = 66.66 meV < 87 meV
PDG (PTEP 2022 083C01)

𝛿𝐶𝑃
𝛼21
𝛼31

=
0.000
0.000
0.5495𝜋



Majorana Phases and 0𝜈𝛽𝛽 decay (２)

• RL can be used to calculate neutrino masses & Majorana phases,

and to expand the possibilities of model validation.

𝑚𝛽𝛽 = 3.155 meV
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𝑚𝜈1

𝑚𝜈2

𝑚𝜈3

=
2.187 × 10−6

9.821
56.84

meV

σ𝑚𝜈 = 66.66 meV < 87 meV
PDG (PTEP 2022 083C01)

𝛿𝐶𝑃
𝛼21
𝛼31

=
0.000
0.000
0.5495𝜋



Mass Structure of Neutrinos
• This boxplot shows distribution of 

the intrinsic values 𝑉 which is found by RL.

  The values of normal ordering tends to be

larger than that of inverted ordering.

→ The normal ordering is well fitted

with the current experimental data

in contrast to the inverted ordering.
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Summary (１)

• We applied reinforcement learning (RL) to the search for

charge assignment in the Froggatt-Nielsen model.

RL efficiently found FN charges that reproduce the masses

and flavor mixing of quarks & leptons, simultaneously.

→ RL is useful to explore parameters of flavor models.
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Summary (２)

• We calculated Majorana phases from the charges

which is found by RL, and statistically derived that

the normal order of neutrino masses is reasonable.

→ RL can be a new method

for understanding the flavor structure.
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What is new
• Previous work

“RL can reproduce experimental values”

• This work

“RL can also give some predictions”

(not only reproducing)

Potential of reinforcement learning in flavor physics
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Future Work
• This work do not derive CP violation in quark sector

→ Adding a complex scalar 𝜙 → 𝜙1, 𝜙2 is promising.

• The scale of right-handed neutrino 𝑀 = 1015 GeV can be changed.

→ More precise sets of parameters may be found.

• Exhaustive search for flavor models, Black-box problem of AI, …

(Modular flavor models, etc.)
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Backup
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• ChatGPT = Supervised + Reinforcement

Keiya.I, Satsuki.N, Hajime.O, arXiv:2312.07181 [hep-th]

application for string theory

31
Unsupervised Learning
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Machine Learning (Advertisement)



Supervised  Unsupervised
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These are good methods

for particle experiments.

Ex) jet tagging

It is needed to prepare a large amount of data.

https://en.wikipedia.org/wiki/B-tagging



The Standard Model (SM)

• SM describes the behavior of elementary particles

with a high degree of accurately. It is valid for ~ 10−18 m.

However, there are many problems.

（neutrino masses, generation, ……）

• The search for new physics beyond the Standard Model (BSM)

is the challenge in particle physics.
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Mass Hierarchy of SM

• Quarks and leptons have the large hierarchical masses.

𝑚𝑑

𝑚𝑢
~ 1, 

𝑚𝑡

𝑚𝑢
~ 105

• The reason for this is that Yukawa couplings 𝑌𝑢, 𝑌𝑑

have very different components in each generation.

𝐿Yuk = 𝑌𝑖𝑗
𝑢 ത𝑄𝑖𝐻𝑐𝑢𝑗 + 𝑌𝑖𝑗

𝑑𝑄𝑖𝐻𝑑𝑗 + h. c.

What is the background cause of such hierarchy?
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Flavor Mixing of SM

• Flavor mixing is characterized differently in each sector.

CKM matrix for quarks ：weak

  PMNS matrix for leptons ：strong

• Various models have been proposed

that focus on the flavor physics.

Among them, we deal with Froggatt-Nielsen model in this work.
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https://upload.wikimedia.org/wikipedia/commons/

6/66/Quark_weak_interactions.svg



Difference of Parameter Space

• Previous work “analyzing for quark sector”

−9 ≤ 𝑞 ≤ 9 → 1911 ~ 1014 patterns. 𝜙 is real.

(0.01 ≤ 𝜙 ≤ 0.3)

• This work “analyzing for quark & lepton sector”

−9 ≤ 𝑞 ≤ 9 → 1920 ~ 1025 patterns. 𝜙 is complex.

(0.01 ≤ 𝜙 /𝑀 ≤ 0.3, −𝜋 ≤ arg 𝜙 ≤ 𝜋)
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Terminal State

• Terminal states are defined as FN charges

that realize sufficiently high intrinsic value.

𝑉 𝑄 < 𝑉0, 𝐸𝛼 , 𝐸𝛼
𝜈 < 𝑉1, 𝐸𝐶,𝑃

𝑖,𝑗
< 𝑉2, ∀𝛼, 𝑖, 𝑗

• For terminal states, 𝑂 1 Yukawa couplings

are optimized using Monte Carlo method.
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Design of RL (Action)
• The agent make increasing or decreasing any FN charges by ±1.

Ex)

𝑄 = 1,1,3,3,5,⋯

𝑄′ = 1,1,2,3,5,⋯
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The agent has a neural network (NN) as a brain.
The agent observes the current charges as an input,
and take an action by an output of NN.

“3rd charge should be added −1.”

1 step



Terminal State (１)

• Terminal states are defined as FN charges

that realize sufficiently high intrinsic value.

𝑉 𝑄 < 𝑉0, 𝐸𝛼 , 𝐸𝛼
𝜈 < 𝑉1, 𝐸𝐶,𝑃

𝑖,𝑗
< 𝑉2, ∀𝛼, 𝑖, 𝑗

• We adopt 𝑉0 = 10.0, 𝑉1 = 1.0, 𝑉2 = 0.2 based on previous work.

It means 0.1 ≤
𝑚mass

𝑚mass,exp
≤ 10.0, 0.63 ≤

𝑚mixing

𝑚mixing,exp
≤ 1.58.
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Terminal State (２)

• For terminal states, 𝑂 1 Yukawa couplings are optimized

using Monte-Carlo method.

• We used the two Gaussian distribution.

(average ±1 & standard deviation 0.25)

Then, FN Yukawa couplings are still 𝑂(1).
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Design of RL (Reward: 3)

• The reward 𝑅 of 1 step is determined as 𝑅 = 𝑅base + 𝑅term

• 𝑄 : the charge assignment observed by the agent

𝑄’ : the charge assignment after the action

𝑅base = ቊ
𝑉 𝑄′ − 𝑉 𝑄
𝑅offset = −10

if 𝑉 𝑄′ > 𝑉 𝑄
if 𝑉 𝑄′ ≤ 𝑉 𝑄

• When 𝑄′ is a terminal state, 𝑅term = +100.

When it is not so, 𝑅term = 0.
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random

• Random 𝑈(1) charges

• Random 𝑂(1) Yukawa couplings

RL
• RL gives candidates of appropriate charges.

human
• We optimize 𝑂(1) Yukawa couplings.
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Neutrino Masses with NO designated

Some models are found which satisfy
experimental 3𝜎 constraints.
(green square is a best-fit model)



Mass Structure of Neutrinos (２)
• About without designated ordering,

  the values of NO also tends to be

larger than that of IO.

→ The normal ordering is well fitted

with the current experimental data

in contrast to the inverted ordering.

2024/6/10-14 SUSY24 44



2024/6/10-14 SUSY24 45

• Without designated ordering, the agent does not know

the structure of neutrino masses. 

→ RL helps to investigate what flavor structure the theory leads to.

Neutrino Masses without designated ordering

RL found some models
which satisfy experimental
3𝜎 constraints for only NO.
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