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Small vev for the singlet

Big values of tan beta

Almost non-perturbative 
quartic couplings

Their perturbativity
condition is given by
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All benchmark point from previous works are this way excluded.
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The deviation from the experimental measurement of g-2 can be explained
within this model.

The main contribution to g-2 in mediated by charged scalars and neutrinos!
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● I have discussed a NP model which can explain SM fermion’s mass generation 
(and mixings) in a completely new way (SM-like interactions are not allowed).

● We have re-assessed findings from previous works. The main result is a 
thorough study of the perturbativity of the model, investigated by requiring 
that the observable do not get corrections from possible UV completions.

● When imposing conditions on the parameter space (SM masses and couplings,
vacuum stability, perturbativity) the number of free parameters gets drastically 
reduced, preventing the model from having a too big parameter space.

● We have presented (c.f. paper) three benchmark points which accommodate 
all the physical requirements and explain the deviation in the muon g-2.

● Incidentally, the perturbativity of the benchmark points is guaranteed up to a
much higher energy scale (1000 TeV) than the theoretical value (50 TeV).

● The main contribution to g-2 is the loop with neutrino and charged scalar.

● The benchmark points can be tested at the LHC: discovery/exclusion.



Daniele Rizzo National Center for Nuclear Research, Warsaw, Poland       

CKM Mixing Matrix

With only 1 VL family 
it is not possible to 
fit all the elements 
of the CKM matrix!

Reduced CKM matrix
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Scanning methodology

Minimization of a χ2 function 
to determine benchmark points.

Parameter Space

SM masses, CKM elements, g-2
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