Global analysis and LHC study of a vector-like extension of the Standard Model with extra scalars

Daniele Rizzo

daniele.rizzo@ncbj.gov.pl

Based on

Phys.Rev.D 109 (2024) 3, 035010

in collaboration with

Antonio E. Cárcamo Hernández, Kamila Kowalska, Huchan Lee

SUSY 2024

The 31st International Conference on Supersymmetry and Unification of Fundamental Interactions

Madrid – June 10th 2024

The model was studied for the first time in

1

S.F.King, JHEP 09, 069 (2018)

The model was studied for the first time in

1

S.F.King, JHEP 09, 069 (2018)

and then later again with different type of experimental motivations

- A.Cárcamo Hernández, S.F.King, H.Lee, S.J.Rowley, Phys. Rev. D 101, 115016 (2020)

- A.Cárcamo Hernández, S.F.King, H.Lee, Phys. Rev. D 103, 115024 (2021)

- A.C.Hernández, S.F.King, H.Lee, Phys. Rev. D 105, 015021 (2022)

- H.Lee, A.Cárcamo Hernández, 2207.01710 (2022)

The model was studied for the first time in

1

S.F.King, JHEP 09, 069 (2018)

Daniele Rizzo

and then later again with different type of experimental motivations

- A.Cárcamo Hernández, S.F.King, H.Lee, S.J.Rowley, Phys. Rev. D 101, 115016 (2020)

- A.Cárcamo Hernández, S.F.King, H.Lee, Phys. Rev. D 103, 115024 (2021)

- A.C.Hernández, S.F.King, H.Lee, Phys. Rev. D 105, 015021 (2022)

- H.Lee, A.Cárcamo Hernández, 2207.01710 (2022)

However, many things were not entirely correct ...

The model was studied for the first time in

1

S.F.King, JHEP 09, 069 (2018)

Daniele Rizzo

and then later again with different type of experimental motivations

- A.Cárcamo Hernández, S.F.King, H.Lee, S.J.Rowley, Phys. Rev. D 101, 115016 (2020)

- A.Cárcamo Hernández, S.F.King, H.Lee, Phys. Rev. D 103, 115024 (2021)

- A.C.Hernández, S.F.King, H.Lee, Phys. Rev. D 105, 015021 (2022)

- H.Lee, A.Cárcamo Hernández, 2207.01710 (2022)

However, many things were not entirely correct ...

In this work, we **re-assess** the previous analysis and add some **new results**.

The model

Particle Content

Field	$ Q_{iL}$	u_{iR}	d_{iR}	L_{iL}	e_{iR}	Q_{4L}	u_{4R}	d_{4R}	L_{4L}	e_{4R}	$ u_{4R}$	$ \widetilde{Q}_{4R}$	\widetilde{u}_{4L}	\widetilde{d}_{4L}	\widetilde{L}_{4R}	\widetilde{e}_{4L}	$\widetilde{\nu}_{4L}$	ϕ	H_u	H_d
$\mathrm{SU}(3)_C$	3	$ar{3}$	$ar{3}$	1	1	3	$ar{3}$	$ar{3}$	1	1	1	3	3	3	1	1	1	1	1	1
$\mathrm{SU}(2)_L$	2	1	1	2	1	2	1	1	2	1	1	2	1	1	2	1	1	1	2	2
$\mathrm{U}(1)_Y$	$\frac{1}{6}$	$-\frac{2}{3}$	$\frac{1}{3}$	$-\frac{1}{2}$	1	$\frac{1}{6}$	$-\frac{2}{3}$	$\frac{1}{3}$	$-\frac{1}{2}$	1	0	$-\frac{1}{6}$	$\frac{2}{3}$	$-\frac{1}{3}$	$\frac{1}{2}$	-1	0	0	$\frac{1}{2}$	$-\frac{1}{2}$
$\mathrm{U}(1)_X$	0	0	0	0	0	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	1	-1	-1

S.F.King, JHEP 09, 069 (2018)

2

National Center for Nuclear Research, Warsaw, Poland

The model

Particle Content

Field	$ Q_{iL}$	u_{iR}	d_{iR}	L_{iL}	e_{iR}	Q_{4L}	u_{4R}	d_{4R}	L_{4L}	e_{4R}	ν_{4R}	$ \widetilde{Q}_{4R}$	\widetilde{u}_{4L}	\widetilde{d}_{4L}	\widetilde{L}_{4R}	\widetilde{e}_{4L}	$\widetilde{\nu}_{4L}$	ϕ	H_u	H_d
$\mathrm{SU}(3)_C$	3	$ar{3}$	$ar{3}$	1	1	3	$ar{3}$	$ar{3}$	1	1	1	$\overline{3}$	3	3	1	1	1	1	1	1
$\mathrm{SU}(2)_L$	2	1	1	2	1	2	1	1	2	1	1	2	1	1	2	1	1	1	2	2
$\mathrm{U}(1)_Y$	$\frac{1}{6}$	$-\frac{2}{3}$	$\frac{1}{3}$	$-\frac{1}{2}$	1	$\frac{1}{6}$	$-\frac{2}{3}$	$\frac{1}{3}$	$-\frac{1}{2}$	1	0	$-\frac{1}{6}$	$\frac{2}{3}$	$-\frac{1}{3}$	$\frac{1}{2}$	-1	0	0	$\frac{1}{2}$	$-\frac{1}{2}$
$\mathrm{U}(1)_X$	0	0	0	0	0	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	1	-1	-1

S.F.King, JHEP 09, 069 (2018)

Daniele Rizzo

Mass of 3rd generation fermions

$$m_t \approx \frac{1}{\sqrt{2}} \frac{y_{43}^u x_{34}^Q v_\phi v_u}{\sqrt{(x_{34}^Q v_\phi)^2 + 2(M_4^Q)^2}}$$

National Center for Nuclear Research, Warsaw, Poland

Mass of 3rd generation fermions

 $m_t \approx \frac{1}{\sqrt{2}} \frac{y_{43}^u x_{34}^Q v_\phi v_u}{\sqrt{(x_{34}^Q v_\phi)^2 + 2(M_4^Q)^2}}$

$$m_c \approx \frac{y_{24}^u x_{42}^u v_\phi v_u}{2 M_4^u}$$

National Center for Nuclear Research, Warsaw, Poland

Mass of 3rd generation fermions

Mass of 2nd generation fermions

$$m_t \approx \frac{1}{\sqrt{2}} \underbrace{\frac{y_{43}^u x_{34}^Q v_{\phi} v_u}{\sqrt{(x_{34}^Q v_{\phi})^2 + 2(M_4^Q)^2}}}_{\text{Need to be O(1) to fit}} \qquad m_c \approx \frac{\frac{y_{24}^u x_{42}^u v_{\phi} v_u}{\sqrt{2M_4^u}}}{\sqrt{(x_{34}^Q v_{\phi})^2 + 2(M_4^Q)^2}}$$
Need to be O(1) to fit the experimental value

The 2 contributions need to be of the same order

Mass of 3rd generation fermions

Mass of 2nd generation fermions

Mass of 3rd generation fermions

Mass of 2nd generation fermions

$$V = \mu_u^2 (H_u^{\dagger} H_u) + \mu_d^2 (H_d^{\dagger} H_d) + \mu_{\phi}^2 (\phi^* \phi) - \frac{1}{2} \mu_{sb}^2 (\phi^2 + \phi^{*2}) + \frac{1}{2} \lambda_1 (H_u^{\dagger} H_u)^2 + \frac{1}{2} \lambda_2 (H_d^{\dagger} H_d)^2 + \lambda_3 (H_u^{\dagger} H_u) (H_d^{\dagger} H_d) + \lambda_4 (H_u^{\dagger} H_d) (H_d^{\dagger} H_u) - \frac{1}{2} \lambda_5 (\epsilon_{ij} H_u^i H_d^j \phi^2 + H.c.) + \frac{1}{2} \lambda_6 (\phi^* \phi)^2 + \lambda_7 (\phi^* \phi) (H_u^{\dagger} H_u) + \lambda_8 (\phi^* \phi) (H_d^{\dagger} H_d)$$

3 massive CP-Even

Spectrum: 2 massive CP-Odd + 1 Goldstone

1 massive charged + 1 Goldstone

$$V = \mu_u^2 (H_u^{\dagger} H_u) + \mu_d^2 (H_d^{\dagger} H_d) + \mu_{\phi}^2 (\phi^* \phi) - \frac{1}{2} \mu_{sb}^2 (\phi^2 + \phi^{*2}) + \frac{1}{2} \lambda_1 (H_u^{\dagger} H_u)^2 + \frac{1}{2} \lambda_2 (H_d^{\dagger} H_d)^2 + \lambda_3 (H_u^{\dagger} H_u) (H_d^{\dagger} H_d) + \lambda_4 (H_u^{\dagger} H_d) (H_d^{\dagger} H_u) - \frac{1}{2} \lambda_5 (\epsilon_{ij} H_u^i H_d^j \phi^2 + H.c.) + \frac{1}{2} \lambda_6 (\phi^* \phi)^2 + \lambda_7 (\phi^* \phi) (H_u^{\dagger} H_u) + \lambda_8 (\phi^* \phi) (H_d^{\dagger} H_d)$$

3 massive CP-Even **Spectrum:** 2 massive CP-Odd + 1 Goldstone 1 massive charged + 1 Goldstone

Alignment limit:

 $\lambda_2 = \lambda_3 + \tan^2 \beta (\lambda_1 - \lambda_3) \qquad \qquad \lambda_8 = -\tan \beta (\lambda_7 \tan \beta + \lambda_5)$

$$V = \mu_u^2 (H_u^{\dagger} H_u) + \mu_d^2 (H_d^{\dagger} H_d) + \mu_{\phi}^2 (\phi^* \phi) - \frac{1}{2} \mu_{sb}^2 (\phi^2 + \phi^{*2}) + \frac{1}{2} \lambda_1 (H_u^{\dagger} H_u)^2 + \frac{1}{2} \lambda_2 (H_d^{\dagger} H_d)^2 + \lambda_3 (H_u^{\dagger} H_u) (H_d^{\dagger} H_d) + \lambda_4 (H_u^{\dagger} H_d) (H_d^{\dagger} H_u) - \frac{1}{2} \lambda_5 (\epsilon_{ij} H_u^i H_d^j \phi^2 + H.c.) + \frac{1}{2} \lambda_6 (\phi^* \phi)^2 + \lambda_7 (\phi^* \phi) (H_u^{\dagger} H_u) + \lambda_8 (\phi^* \phi) (H_d^{\dagger} H_d)$$

3 massive CP-Even **Spectrum:** 2 massive CP-Odd + 1 Goldstone 1 massive charged + 1 Goldstone

Alignment limit:

$$V = \mu_u^2 (H_u^{\dagger} H_u) + \mu_d^2 (H_d^{\dagger} H_d) + \mu_{\phi}^2 (\phi^* \phi) - \frac{1}{2} \mu_{sb}^2 (\phi^2 + \phi^{*2}) + \frac{1}{2} \lambda_1 (H_u^{\dagger} H_u)^2 + \frac{1}{2} \lambda_2 (H_d^{\dagger} H_d)^2 + \lambda_3 (H_u^{\dagger} H_u) (H_d^{\dagger} H_d) + \lambda_4 (H_u^{\dagger} H_d) (H_d^{\dagger} H_u) - \frac{1}{2} \lambda_5 (\epsilon_{ij} H_u^i H_d^j \phi^2 + H.c.) + \frac{1}{2} \lambda_6 (\phi^* \phi)^2 + \lambda_7 (\phi^* \phi) (H_u^{\dagger} H_u) + \lambda_8 (\phi^* \phi) (H_d^{\dagger} H_d)$$

3 massive CP-Even **Spectrum:** 2 massive CP-Odd + 1 Goldstone 1 massive charged + 1 Goldstone

Alignment limit:

 $\lambda_{2} = \lambda_{3} + \tan^{2} \beta (\lambda_{1} - \lambda_{3}) \qquad \qquad \lambda_{8} = -\tan \beta (\lambda_{7} \tan \beta + \lambda_{5})$ $\lambda_{3} \approx \lambda_{1} + \mathcal{O}(1/\tan^{2} \beta) \qquad \qquad \lambda_{7} \sim \mathcal{O}(1/\tan^{2} \beta) \qquad \qquad \lambda_{5} \sim \mathcal{O}(1/\tan \beta)$

National Center for Nuclear Research, Warsaw, Poland

$$V = \mu_u^2 (H_u^{\dagger} H_u) + \mu_d^2 (H_d^{\dagger} H_d) + \mu_{\phi}^2 (\phi^* \phi) - \frac{1}{2} \mu_{sb}^2 (\phi^2 + \phi^{*2}) + \frac{1}{2} \lambda_1 (H_u^{\dagger} H_u)^2 + \frac{1}{2} \lambda_2 (H_d^{\dagger} H_d)^2 + \lambda_3 (H_u^{\dagger} H_u) (H_d^{\dagger} H_d) + \lambda_4 (H_u^{\dagger} H_d) (H_d^{\dagger} H_u) - \frac{1}{2} \lambda_5 (\epsilon_{ij} H_u^i H_d^j \phi^2 + H.c.) + \frac{1}{2} \lambda_6 (\phi^* \phi)^2 + \lambda_7 (\phi^* \phi) (H_u^{\dagger} H_u) + \lambda_8 (\phi^* \phi) (H_d^{\dagger} H_d)$$

"Boundedness from below"

5

$$V = \mu_u^2 (H_u^{\dagger} H_u) + \mu_d^2 (H_d^{\dagger} H_d) + \mu_{\phi}^2 (\phi^* \phi) - \frac{1}{2} \mu_{sb}^2 (\phi^2 + \phi^{*2}) + \frac{1}{2} \lambda_1 (H_u^{\dagger} H_u)^2 + \frac{1}{2} \lambda_2 (H_d^{\dagger} H_d)^2 + \lambda_3 (H_u^{\dagger} H_u) (H_d^{\dagger} H_d) + \lambda_4 (H_u^{\dagger} H_d) (H_d^{\dagger} H_u) - \frac{1}{2} \lambda_5 (\epsilon_{ij} H_u^i H_d^j \phi^2 + H.c.) + \frac{1}{2} \lambda_6 (\phi^* \phi)^2 + \lambda_7 (\phi^* \phi) (H_u^{\dagger} H_u) + \lambda_8 (\phi^* \phi) (H_d^{\dagger} H_d)$$

"Boundedness from below"

National Center for Nuclear Research, Warsaw, Poland

$$V = \mu_u^2 (H_u^{\dagger} H_u) + \mu_d^2 (H_d^{\dagger} H_d) + \mu_{\phi}^2 (\phi^* \phi) - \frac{1}{2} \mu_{sb}^2 (\phi^2 + \phi^{*2}) + \frac{1}{2} \lambda_1 (H_u^{\dagger} H_u)^2 + \frac{1}{2} \lambda_2 (H_d^{\dagger} H_d)^2 + \lambda_3 (H_u^{\dagger} H_u) (H_d^{\dagger} H_d) + \lambda_4 (H_u^{\dagger} H_d) (H_d^{\dagger} H_u) - \frac{1}{2} \lambda_5 (\epsilon_{ij} H_u^i H_d^j \phi^2 + H.c.) + \frac{1}{2} \lambda_6 (\phi^* \phi)^2 + \lambda_7 (\phi^* \phi) (H_u^{\dagger} H_u) + \lambda_8 (\phi^* \phi) (H_d^{\dagger} H_d)$$

"Boundedness from below"

National Center for Nuclear Research, Warsaw, Poland

$$V = \mu_u^2 (H_u^{\dagger} H_u) + \mu_d^2 (H_d^{\dagger} H_d) + \mu_{\phi}^2 (\phi^* \phi) - \frac{1}{2} \mu_{sb}^2 (\phi^2 + \phi^{*2}) + \frac{1}{2} \lambda_1 (H_u^{\dagger} H_u)^2 + \frac{1}{2} \lambda_2 (H_d^{\dagger} H_d)^2 + \lambda_3 (H_u^{\dagger} H_u) (H_d^{\dagger} H_d) + \lambda_4 (H_u^{\dagger} H_d) (H_d^{\dagger} H_u) - \frac{1}{2} \lambda_5 (\epsilon_{ij} H_u^i H_d^j \phi^2 + H.c.) + \frac{1}{2} \lambda_6 (\phi^* \phi)^2 + \lambda_7 (\phi^* \phi) (H_u^{\dagger} H_u) + \lambda_8 (\phi^* \phi) (H_d^{\dagger} H_d)$$

"Boundedness from below"

5

 $\lambda_{8} + \sqrt{\lambda_{2}\lambda_{6}} > 0 \qquad -\frac{1}{4} \frac{(\operatorname{Re}\lambda_{5})^{2} + (\operatorname{Im}\lambda_{5})^{2}}{\lambda_{a}} + \lambda_{4} > 0$ $\lambda_{7} + \sqrt{\lambda_{1}\lambda_{6}} > 0 \qquad 4\lambda_{b}^{2} - (\operatorname{Re}\lambda_{5})^{2} + \operatorname{Re}\lambda_{5}\operatorname{Im}\lambda_{5} > 0$ $\lambda_3 + \sqrt{\lambda_2 \lambda_1} > 0$ $\lambda_3 + \lambda_4 + \sqrt{\lambda_2 \lambda_1} > 0$ $4\lambda_b^2 - (\mathrm{Im}\lambda_5)^2 + \mathrm{Re}\lambda_5\mathrm{Im}\lambda_5 > 0$ These conditions were These were already implemented in not considered in 2HDM Type II previous works previous work

National Center for Nuclear Research, Warsaw, Poland

Parameter	case A	case B	case C	case D	case E
$v_u = v_1$	245.925	245.936	245.951	245.917	245.948
$v_d = v_2$	6.086	5.595	4.921	6.387	5.077
$v_{\phi} = v_3$	-57.761	-36.470	-57.919	-30.746	-17.146
$\tan\beta = v_u/v_d$	40.410	43.957	49.977	38.503	48.441
λ_1	0.063	0.064	0.066	0.064	0.065
λ_2	-7.978	8.414	-2.000	2.948	10.382
λ_3	-6.344	-2.675	6.242	-1.724	-0.706
λ_4	1.859	2.158	-3.633	10.837	-2.796
λ_5	-11.384	-11.070	9.009	-11.460	-12.000
λ_6	2.888	1.228	0.866	1.351	1.324
λ_7	-0.282	-0.252	0.180	-0.298	-0.248
λ_8	-1.363	-1.346	-10.845	-11.510	7.033

A.Cárcamo Hernández, S.F.King, H.Lee, Phys. Rev. D 103, 115024 (2021)

National Center for Nuclear Research, Warsaw, Poland

Small vev for the singlet	Parameter	case A	case B	case C	case D	case E
Rig values of tap bota	$v_u = v_1$	245.925	245.936	245.951	245.917	245.948
Big values of tall beta	$v_d = v_2$	6.086	5.595	4.921	6.387	5.077
The scalar potential is	$v_{\phi} = v_3$	-57.761	-36.470	-57.919	-30.746	-17.146
not bounded from below	$\tan\beta = v_u/v_d$	40.410	43.957	49.977	38.503	48.441
	λ_1	0.063	0.064	0.066	0.064	0.065
	λ_2	-7.978	8.414	-2.000	2.948	10.382
	λ_3	-6.344	-2.675	6.242	-1.724	-0.706
	λ_4	1.859	2.158	-3.633	10.837	-2.796
	λ_5	-11.384	-11.070	9.009	-11.460	-12.000
	λ_6	2.888	1.228	0.866	1.351	1.324
	λ_7	-0.282	-0.252	0.180	-0.298	-0.248
	λ_8	-1.363	-1.346	-10.845	-11.510	7.033

A.Cárcamo Hernández, S.F.King, H.Lee, Phys. Rev. D 103, 115024 (2021)

National Center for Nuclear Research, Warsaw, Poland

6

Small vev for the singlet

Big values of tan beta

The scalar potential is not bounded from below

Almost non-perturbative quartic couplings

Parameter	case A	case B	case C	case D	case E
$v_u = v_1$	245.925	245.936	245.951	245.917	245.948
$v_d = v_2$	6.086	5.595	4.921	6.387	5.077
$v_{\phi} = v_3$	-57.761	-36.470	-57.919	-30.746	-17.146
$\tan\beta = v_u/v_d$	40.410	43.957	49.977	38.503	48.441
λ_1	0.063	0.064	0.066	0.064	0.065
λ_2	-7.978	8.414	-2.000	2.948	10.382
λ_3	-6.344	-2.675	6.242	-1.724	-0.706
λ_4	1.859	2.158	-3.633	10.837	-2.796
λ_5	-11.384	-11.070	9.009	-11.460	-12.000
λ_6	2.888	1.228	0.866	1.351	1.324
λ_7	-0.282	-0.252	0.180	-0.298	-0.248
λ_8	-1.363	-1.346	-10.845	-11.510	7.033

A.Cárcamo Hernández, S.F.King, H.Lee, Phys. Rev. D 103, 115024 (2021)

National Center for Nuclear Research, Warsaw, Poland

Small vev for the singlet

Big values of tan beta

The scalar potential is not bounded from below

Almost non-perturbative quartic couplings

Their perturbativity condition is given by $g, y(\mathrm{NP}) < \sqrt{4\pi}$ $\lambda(\mathrm{NP}) < 4\pi$

Parameter	case A	case B	case C	case D	case E
$v_u = v_1$	245.925	245.936	245.951	245.917	245.948
$v_d = v_2$	6.086	5.595	4.921	6.387	5.077
$v_{\phi} = v_3$	-57.761	-36.470	-57.919	-30.746	-17.146
$\tan\beta = v_u/v_d$	40.410	43.957	49.977	38.503	48.441
λ_1	0.063	0.064	0.066	0.064	0.065
λ_2	-7.978	8.414	-2.000	2.948	10.382
λ_3	-6.344	-2.675	6.242	-1.724	-0.706
λ_4	1.859	2.158	-3.633	10.837	-2.796
λ_5	-11.384	-11.070	9.009	-11.460	-12.000
λ_6	2.888	1.228	0.866	1.351	1.324
λ_7	-0.282	-0.252	0.180	-0.298	-0.248
λ_8	-1.363	-1.346	-10.845	-11.510	7.033

A.Cárcamo Hernández, S.F.King, H.Lee, Phys. Rev. D 103, 115024 (2021)

National Center for Nuclear Research, Warsaw, Poland

$$\Delta a_{\mu} = \sum_{i,j} \left\{ -\frac{m_{\mu}^2}{16\pi^2 M_{\phi_i}^2} \left(|y_L^{ij}|^2 + |y_R^{ij}|^2 \right) [Q_j \mathcal{F}_1(x_{ij}) - Q_i \mathcal{G}_1(x_{ij})] - \frac{m_{\mu} M_{\psi_j}}{16\pi^2 M_{\phi_i}^2} \operatorname{Re} \left(y_L^{ij} y_R^{ij*} \right) [Q_j \mathcal{F}_2(x_{ij}) - Q_i \mathcal{G}_2(x_{ij})] \right\}$$

$$\Delta a_{\mu} = (2.49 \pm 0.48) \times 10^{-9}$$

Discrepancy is now at $\sim 5.1 \sigma$

7

Bennet et al, Phys. Rev. D 73 (2006) 072003 (hep-ex/0602035) Muon g-2 Collaboration, Phys. Rev. Lett. 126 (2021) 141801 Muon g-2 Collaboration, arXiv: 2308.06230

National Center for Nuclear Research, Warsaw, Poland

$$\Delta a_{\mu} = \sum_{i,j} \left\{ -\frac{m_{\mu}^{2}}{16\pi^{2}M_{\phi_{i}}^{2}} \left(|y_{L}^{ij}|^{2} + |y_{R}^{ij}|^{2} \right) [Q_{j}\mathcal{F}_{1}\left(x_{ij}\right) - Q_{i}\mathcal{G}_{1}\left(x_{ij}\right)] - \frac{m_{\mu}M_{\psi_{j}}}{16\pi^{2}M_{\phi_{i}}^{2}} \operatorname{Re}\left(y_{L}^{ij}y_{R}^{ij*}\right) [Q_{j}\mathcal{F}_{2}\left(x_{ij}\right) - Q_{i}\mathcal{G}_{2}\left(x_{ij}\right)] \right\}$$

$$\Delta a_{\mu} = (2.49 \pm 0.48) \times 10^{-9}$$
Discrepancy is now at ~5.1 σ

$$\downarrow$$
Lattice
???

7

Bennet et al, Phys. Rev. D 73 (2006) 072003 (hep-ex/0602035) Muon g-2 Collaboration, Phys. Rev. Lett. 126 (2021) 141801 Muon g-2 Collaboration, arXiv: 2308.06230

Daniele Rizzo

National Center for Nuclear Research, Warsaw, Poland

8

We define the cutoff energy for the model by requiring that any New Physics wrt the model is at such an energy scale that the corrections to g-2 are negligible.

We define the cutoff energy for the model by requiring that any New Physics wrt the model is at such an energy scale that the corrections to g-2 are negligible.

$$\Delta a^{\Lambda}_{\mu} \sim \frac{1}{16\pi^2} \frac{m_{\mu} v}{\Lambda^2} y_L(\Lambda) y_R(\Lambda)$$

We define the cutoff energy for the model by requiring that any New Physics wrt the model is at such an energy scale that the corrections to g-2 are negligible.

$$\Delta a_{\mu}^{\Lambda} \sim \frac{1}{16\pi^2} \frac{m_{\mu} v}{\Lambda^2} y_L(\Lambda) y_R(\Lambda)$$

By requiring that such correction is smaller than 3σ and in the most pessimistic scenario

$$y_L(\Lambda) = y_R(\Lambda) = \sqrt{4\pi}$$

9

We define the cutoff energy for the model by requiring that any New Physics wrt the model is at such an energy scale that the corrections to g-2 are negligible.

$$\Delta a_{\mu}^{\Lambda} \sim \frac{1}{16\pi^2} \frac{m_{\mu} v}{\Lambda^2} y_L(\Lambda) y_R(\Lambda)$$

By requiring that such correction is smaller than 3σ and in the most pessimistic scenario

$$y_L(\Lambda) = y_R(\Lambda) = \sqrt{4\pi}$$

$$g, y(\text{NP}) < \sqrt{4\pi}$$

$$\lambda(\text{NP}) < 4\pi$$

 $\longrightarrow \Lambda \gtrsim 50 \text{ TeV}$

 $y_L(\Lambda) = y_R(\Lambda) = \sqrt{4\pi}$

We define the cutoff energy for the model by requiring that any New Physics wrt the model is at such an energy scale that the corrections to g-2 are negligible.

$$\Delta a_{\mu}^{\Lambda} \sim \frac{1}{16\pi^2} \frac{m_{\mu} v}{\Lambda^2} y_L(\Lambda) y_R(\Lambda)$$

By requiring that such correction is smaller than 3σ and in the most pessimistic scenario

$$\longrightarrow \Lambda \gtrsim 50 \text{ TeV}$$

$$g, y(\text{NP}) < \sqrt{4\pi} \qquad g, y(\text{NP}) \lesssim 1$$
$$\lambda(\text{NP}) < 4\pi \qquad \lambda(\text{NP}) \lesssim 2$$

All benchmark point from previous works are this way excluded.

	Contributions to $\Delta a_{\mu} \times 10^9$													
	Charged	scalars			CP-even	scalars								
Loop	BP1	BP2	BP3	Loop	BP1	BP2	BP3							
$h^{\pm}, N_{1,2}$ $h^{\pm}, N_{3,4}$														
$h^{\pm}, N_{\rm tot}$				h_2, E_1										
	CP-odd	scalars		h_2, E_2										
$a_1, E_1 \\ a_1, E_2$				$ \begin{array}{c c} h_3, E_1 \\ h_3, E_2 \end{array} $										
a_2, E_1				h, E_{tot}										
a_2, E_2					То	tal								
$a, E_{\rm tot}$				Δa_{μ}										

Daniele Rizzo

National Center for Nuclear Research, Warsaw, Poland

10

			Contributions to	$\Delta a_{\mu} \times 10^9$			
	Chargeo	d scalars			CP-eve	n scalars	
Loop	BP1	BP2	BP3	Loop	BP1	BP2	BP3
$h^{\pm}, N_{1,2}$ $h^{\pm}, N_{3,4}$				h_1, E_1 h_1, E_2			
$h^{\pm}, N_{\rm tot}$				h_2, E_1			
	CP-odd	scalars		h_{2}, E_{2}			
$a_1, E_1 \\ a_1, E_2$				h_3, E_1 h_3, E_2			
a_2, E_1				$h, E_{\rm tot}$			
a_2, E_2					Πγ	<u>stal</u>	γ
$a, E_{\rm tot}$				Δa_{μ}			, , , , ,
Contril diagra alread	outions ms have y in prev	given b e been o vious wo	y these computec orks) +	E 1		

National Center for Nuclear Research, Warsaw, Poland

10

		(Contributions t	to $\Delta a_{\mu} \times 10^9$			
	Charged	l scalars			CP-ever	ı scalars	
Loop	BP1	BR2	ВР3 ∥	Loop	BP1	BP2	BP3
$h^{\pm}, N_{1,2}$ $h^{\pm}, N_{3,4}$				$egin{array}{l} h_1, E_1 \ h_1, E_2 \end{array}$			
$h^{\pm}, N_{\rm tot}$				h_2, E_1			
	CP-odd	scalars		h_2, E_2			
$a_1, E_1 \\ a_1, E_2$			\downarrow	h_3, E_1 h_3, E_2			
a_2, E_1				$h, E_{ m tot}$			
a_2, E_2					To	tal	γ
$a, E_{\rm tot}$				Δa_{μ}	\backslash		، ب
Contril diagra consid	outions m have ered in j	given by not bee previous	/ this en s works		μ	N1 2	

National Center for Nuclear Research, Warsaw, Poland

10

Daniele Rizzo

 μ

Contributions to $\Delta a_{\mu} \times 10^9$													
	Charge	d scalars		CP-even scalars									
Loop	BP1	BP2	BP3	Loop	BP1	BP2	BP3						
$h^{\pm}, N_{1,2}$	-1.076	-0.792	-0.942	$\ h_1, E_1$	-0.003	-0.001	-0.009						
$h^{\pm}, N_{3,4}$	3.300	2.898	3.153	h_1, E_2	0.003	0.001	0.009						
$h^{\pm}, N_{\rm tot}$	2.225	2.106	2.211	h_2, E_1	-0.409	-0.520	-0.969						
	CP-odd	scalars		h_2, E_2	0.437	0.548	0.994						
a_1, E_1	0.425	0.528	0.938	$\ h_3, E_1$	0.018	0.115	0.076						
a_1, E_2	-0.544	-0.611	-1.529	h_3, E_2	-0.017	-0.127	-0.076						
a_2, E_1	-0.033	-0.135	-0.071	$h, E_{\rm tot}$	0.032	0.027	0.025						
a_2, E_2	0.110	0.196	0.621	Total									
$a, E_{\rm tot}$	-0.015	-0.023	-0.041	Δa_{μ}	2.215	2.101	2.196						

The deviation from the experimental measurement of g-2 can be explained within this model.

The main contribution to g-2 in mediated by **charged scalars** and **neutrinos**!

Daniele Rizzo

10

11 National Center for Nuclear Research, Warsaw, Poland

VL Quarks

 $U_1 \rightarrow \sim 1500 \qquad \text{GeV}$ $D_1 \rightarrow \sim 1500 \qquad \text{GeV}$ $U_2 \rightarrow \sim 1700\text{-}1900 \qquad \text{GeV}$ $D_2 \rightarrow \sim 2900\text{-}3600 \qquad \text{GeV}$

VL Leptons

 $\begin{array}{l} N_{1,2} \rightarrow \sim 200 \quad \text{GeV} \\ N_{3,4} \rightarrow \sim 500\text{-}600 \quad \text{GeV} \\ E_1 \quad \rightarrow \sim 500\text{-}600 \quad \text{GeV} \\ E_2 \quad \rightarrow \sim 550\text{-}650 \quad \text{GeV} \end{array}$

CP-Even Scalars

CP-Odd Scalars

 $a_1 \rightarrow \sim 400 \quad \text{GeV}$ $a_2 \rightarrow \sim 450\text{-}600 \quad \text{GeV}$

Charged Scalars

h_± → ~400 GeV

$\begin{array}{ll} h_1 \rightarrow & 125 & \text{GeV} \\ h_2 \rightarrow \sim 400 & \text{GeV} \end{array}$

11

h₃ → ~600-800 GeV

National Center for Nuclear Research, Warsaw, Poland

VL Leptons

 $\begin{array}{l} N_{1,2} \rightarrow \sim 200 \quad \text{GeV} \\ N_{3,4} \rightarrow \sim 500\text{-}600 \quad \text{GeV} \\ E_1 \quad \rightarrow \sim 500\text{-}600 \quad \text{GeV} \\ E_2 \quad \rightarrow \sim 550\text{-}650 \quad \text{GeV} \end{array}$

CP-Even Scalars

11

CP-Odd Scalars

 $h_1 \rightarrow 125$ GeV $a_1 \rightarrow \sim 400$ GeV $h_2 \rightarrow \sim 400$ GeV $a_2 \rightarrow \sim 450-600$ GeV $h_3 \rightarrow \sim 600-800$ GeV $a_2 \rightarrow \sim 450-600$ GeV

Charged Scalars

h_± → ~400 GeV

National Center for Nuclear Research, Warsaw, Poland

Almost degenerative because depend on the mass of the VL doublet

VL Leptons

 $\begin{array}{l} N_{1,2} \rightarrow \sim 200 \quad \text{GeV} \\ N_{3,4} \rightarrow \sim 500\text{-}600 \quad \text{GeV} \\ E_1 \quad \rightarrow \sim 500\text{-}600 \quad \text{GeV} \\ E_2 \quad \rightarrow \sim 550\text{-}650 \quad \text{GeV} \end{array}$

CP-Even Scalars

11

CP-Odd Scalars

 $h_1 \rightarrow 125$ GeV $h_2 \rightarrow \sim 400$ GeV $h_3 \rightarrow \sim 600-800$ GeV $a_1 \rightarrow \sim 400 \quad \text{GeV}$ $a_2 \rightarrow \sim 450\text{-}600 \quad \text{GeV}$

Charged Scalars

h_± → ~400 GeV

Almost degenerative because depend on the mass of the VL doublet

VL Leptons

$$\begin{array}{ccc} \mathsf{N}_{1,2} \to \sim 200 & \text{GeV} \\ \mathsf{N}_{3,4} \to \sim 500\text{-}600 & \text{GeV} \\ \mathsf{E}_1 \to \sim 500\text{-}600 & \text{GeV} \\ \mathsf{E}_2 \to \sim 550\text{-}650 & \text{GeV} \end{array} \right\} \approx \sqrt{(M_4^L)^2 + \frac{1}{2}(v_\phi x_{34}^L)^2}$$

GeV

CP-Even Scalars

 $h_2 \rightarrow \sim 400$ GeV

h₃ → ~600-800 GeV

 $h_1 \rightarrow 125$

11

CP-Odd Scalars

 $a_1 \rightarrow \sim 400 \quad \text{GeV}$ $a_2 \rightarrow \sim 450\text{-}600 \quad \text{GeV}$

Charged Scalars

h_± → ~400 GeV

VL Leptons

CP-Even Scalars

 $h_1 \rightarrow 125$ GeV

 $h_2 \rightarrow \sim 400$ GeV

h₃ → ~600-800 GeV

11

CP-Odd Scalars

 $\begin{array}{ll} a_1 \rightarrow \sim 400 & \text{GeV} \\ a_2 \rightarrow \sim 450\text{-}600 & \text{GeV} \end{array}$

Charged Scalars $h_+ \rightarrow \sim 400 \text{ GeV}$

National Center for Nuclear Research, Warsaw, Poland

Daniel<u>e Rizzo</u>

VL Leptons

11

Can be tested in Run 3

National Center for Nuclear Research, Warsaw, Poland

Leptons

Quarks

Leptons

Quarks

Our leptons decay predominantly to muons, but there are **no** dedicated experimental analysis.

Leptons

Quarks

Daniele Rizzo

Our leptons decay predominantly to muons, but there are **no** dedicated experimental analysis.

The best we can do is study:

ATLAS: JHEP 07, 118 (2023) CMS: Phys. Rev. D 100, 052003 (2019)

Leptons

Quarks

Daniele Rizzo

Our leptons decay predominantly to muons, but there are **no** dedicated experimental analysis.

The best we can do is study:

12

ATLAS: JHEP 07, 118 (2023) CMS: Phys. Rev. D 100, 052003 (2019)

BR(LL $\rightarrow \tau \tau$) < 10% and x-section is 3-4 orders of magnitude **smaller** than current bounds.

Leptons

Quarks

Daniele Rizzo

Our leptons decay predominantly to muons, but there are **no** dedicated experimental analysis.

The best we can do is study:

ATLAS: JHEP 07, 118 (2023) CMS: Phys. Rev. D 100, 052003 (2019)

BR(LL $\rightarrow \tau \tau$) < 10% and x-section is 3-4 orders of magnitude **smaller** than current bounds.

Can **not** be tested in Run 3

Leptons

Our leptons decay predominantly to muons, but there are **no** dedicated experimental analysis.

The best we can do is study:

ATLAS: JHEP 07, 118 (2023) CMS: Phys. Rev. D 100, 052003 (2019)

BR(LL $\rightarrow \tau \tau$) < 10% and x-section is 3-4 orders of magnitude **smaller** than current bounds.

Can not be tested in Run 3

12

Quarks

Two possible channels can be studied:

ATLAS: Eur. Phys. J. C 83, 719 (2023) CMS: JHEP 07, 020 (2023)

Daniele Rizzo

Leptons

Our leptons decay predominantly to muons, but there are **no** dedicated experimental analysis.

The best we can do is study:

ATLAS: JHEP 07, 118 (2023) CMS: Phys. Rev. D 100, 052003 (2019)

BR(LL $\rightarrow \tau \tau$) < 10% and x-section is 3-4 orders of magnitude **smaller** than current bounds.

Can not be tested in Run 3

12

Quarks

Two possible channels can be studied:

ATLAS: Eur. Phys. J. C 83, 719 (2023) CMS: JHEP 07, 020 (2023)

The x-section is one order of magnitude smaller than the current bounds.

Daniele Rizzo

Leptons

Our leptons decay predominantly to muons, but there are **no** dedicated experimental analysis.

The best we can do is study:

ATLAS: JHEP 07, 118 (2023) CMS: Phys. Rev. D 100, 052003 (2019)

BR(LL $\rightarrow \tau\tau$) < 10% and x-section is 3-4 orders of magnitude **smaller** than current bounds.

Can not be tested in Run 3

Quarks

Two possible channels can be studied:

ATLAS: Eur. Phys. J. C 83, 719 (2023) CMS: JHEP 07, 020 (2023)

The x-section is one order of magnitude smaller than the current bounds.

Can be tested in Run 3

Daniele Rizzo

Conclusions

- I have discussed a NP model which can explain SM fermion's **mass generation** (and mixings) in a completely new way (SM-like interactions are not allowed).
- We have re-assessed findings from previous works. The main result is a thorough study of the perturbativity of the model, investigated by requiring that the observable do not get corrections from possible UV completions.
- When imposing conditions on the parameter space (SM masses and couplings, vacuum stability, perturbativity) the number of free parameters gets drastically reduced, preventing the model from having a too big parameter space.
- We have presented (c.f. paper) **three benchmark points** which accommodate all the physical requirements and explain the deviation in the muon g-2.
- Incidentally, the perturbativity of the benchmark points is guaranteed up to a much higher energy scale (1000 TeV) than the theoretical value (50 TeV).
- The main contribution to **g-2** is the loop with **neutrino** and **charged scalar**.

Daniele Rizzo

• The benchmark points can be **tested** at the LHC: discovery/exclusion.

CKM Mixing Matrix

Reduced CKM matrix

14

$$V_{\rm CKM}^{3\times3} \approx \begin{pmatrix} 1 - x_{ud}^2/2 & x_{ud} & x_{ud}x_d \\ -x_{ud} & 1 - x_{ud}^2/2 & x_d - x_u \\ -x_u x_{ud} & x_u - x_d & 1 \end{pmatrix}$$

$$x_d = \frac{y_{24}^d x_{43}^d M_4^Q}{y_{43}^d x_{34}^Q M_4^d} = 0.017 \qquad x_u = \frac{y_{24}^u x_{43}^u M_4^Q}{y_{43}^u x_{34}^Q M_4^u} \approx -0.023 \qquad x_{ud} = \frac{y_{14}^d}{y_{24}^d} \approx 0.22$$

$$\frac{|V_{CKM}^{exp}| - |V_{CKM}^{3 \times 3}|}{\delta |V_{CKM}^{exp}|} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0.04 & 0 \\ 8.88 & 0.23 & 0.01 \end{pmatrix}$$

With only 1 VL family it is not possible to fit all the elements of the CKM matrix!

National Center for Nuclear Research, Warsaw, Poland

15

$$M_{U_1} \approx \sqrt{(M_4^Q)^2 + \frac{1}{2}(v_\phi x_{34}^Q)^2 - \frac{(M_4^Q y_{43}^u v_u)^2}{(x_{34}^Q v_\phi)^2 + 2(M_4^Q)^2}}$$

$$M_{U_2} \approx \sqrt{(M_4^u)^2 + \frac{1}{2}(v_\phi x_{43}^u)^2 + \frac{1}{2}(v_\phi x_{42}^u)^2 + \frac{2(M_4^u y_{43}^u v_u)^2}{2(M_4^u)^2 + (v_\phi x_{43}^u)^2 + (v_\phi x_{42}^u)^2}}$$

$$M_{D_1} \approx \sqrt{(M_4^Q)^2 + \frac{1}{2}(v_\phi x_{34}^Q)^2} \qquad M_{D_2} \approx \sqrt{(M_4^d)^2 + \frac{1}{2}(v_\phi x_{43}^d)^2 + \frac{1}{2}(v_\phi x_{42}^d)^2}}$$

$$M_{E_1} \approx \sqrt{(M_4^L)^2 + \frac{1}{2}(v_\phi x_{34}^L)^2} \qquad M_{E_2} \approx \sqrt{(M_4^e)^2 + \frac{1}{2}(v_\phi x_{43}^e)^2 + \frac{1}{2}(v_\phi x_{42}^e)^2}}$$

$$M_{N_1} = M_{N_2} \approx M_4^\nu \qquad M_{N_3} = M_{N_4} \approx \sqrt{(M_4^L)^2 + \frac{1}{2}(v_\phi x_{34}^L)^2}$$

National Center for Nuclear Research, Warsaw, Poland

Parameter Space

					Scalar sector				
$\boxed{\frac{\tan\beta}{\lambda_4}}$	[2, 50] [-2.0, +2.0]	$egin{array}{c} v_{\phi} \ \lambda_{5} \end{array}$	[1000, 1500] [-0.2, 0.0]	$\begin{vmatrix} \mu_{sb}^2 \\ \lambda_6 \end{vmatrix}$	$[4, 64] \times 10^4$ [-2.0, +2.0]	$\begin{vmatrix} \lambda_2 \\ \lambda_7 \end{vmatrix}$	[-2.0, +2.0] [-0.01, +0.01]	$\begin{vmatrix} \lambda_3 \\ \lambda_8 \end{vmatrix}$	[0.24, 0.28] [-1.0, +1.0]
				•	Lepton sector			1	
$\begin{vmatrix} y^{e}_{24} \\ y^{e}_{34} \\ x^{L}_{34} \end{vmatrix}$	$\begin{array}{c} [-0.7,+0.7] \\ [-1.0,+1.0] \\ [-1.0,+1.0] \end{array}$	$\begin{vmatrix} y^{e}_{43} \\ x^{e}_{42} \\ x^{e}_{43} \end{vmatrix}$	$\begin{array}{c} [-1.0,+1.0] \\ [-1.0,+1.0] \\ [-1.0,+1.0] \end{array}$	$\begin{array}{c} y_{14}^{\nu} \\ y_{24}^{\nu} \\ y_{34}^{\nu} \end{array}$	$[-1.0, +1.0] \times 10^{-10}$ $[-1.0, +1.0] \times 10^{-10}$ $[-1.0, +1.0] \times 10^{-10}$	$egin{array}{c c} y_{14}^{\prime u} \ y_{24}^{\prime u} \ y_{34}^{\prime u} \end{array}$	$\begin{array}{c} [-1.0,+1.0] \\ [-1.0,+1.0] \\ [-1.0,+1.0] \end{array}$	$\begin{vmatrix} M_4^e \\ M_4^\nu \\ M_4^L \end{vmatrix}$	$\pm [200, 1000]$ $\pm [200, 1000]$ $\pm [200, 1000]$
					Quark sector				
$\begin{vmatrix} y_{24}^{u} \\ y_{34}^{u} \\ x_{34}^{Q} \end{vmatrix}$	$\begin{array}{c} [-1.0,+1.0] \\ [-1.4,+1.4] \\ [-1.0,+1.0] \end{array}$	$\begin{vmatrix} y_{43}^{u} \\ x_{42}^{u} \\ x_{43}^{u} \end{vmatrix}$	$\begin{array}{c} [-1.4,+1.4] \\ [-1.0,+1.0] \\ [-1.4,+1.4] \end{array}$	$y^d_{14}\\y^d_{24}\\y^d_{34}$	$egin{array}{l} [-0.7,+0.7] \ [-1.0,+1.0] \ [-1.0,+1.0] \end{array}$	$\begin{vmatrix} y^d_{43} \\ x^d_{42} \\ x^d_{43} \end{vmatrix}$	$\begin{array}{c} [-1.0,+1.0] \\ [-1.0,+1.0] \\ [-1.0,+1.0] \end{array}$	$\begin{vmatrix} M_4^d \\ M_4^u \\ M_4^Q \end{vmatrix}$	$\begin{array}{c} \pm \left[1200, 4000 \right] \\ \pm \left[1200, 4000 \right] \\ \pm \left[1200, 4000 \right] \end{array}$

Minimization of a χ^2 function to determine benchmark points.

SM masses, CKM elements, g-2

16

National Center for Nuclear Research, Warsaw, Poland

17

Scalar sector													
	BP1	BP2	BP3		BP1	BP2	BP3						
$\tan\beta$	13	8	12	λ_1	0.258	0.258	0.258						
v_u	245.3	244.3	245.2	λ_2	0.514	0.153	0.623						
v_d	18.9	30.5	20.4	λ_3	0.257	0.260	0.256						
v_{ϕ}	1015	1077	1012	λ_4	0.552	0.304	0.167						
μ_u^2	-7.8×10^3	$-6.6 imes10^3$	-7.6×10^3	λ_5	-0.039	-0.072	-0.061						
μ_d^2	$-8.2 imes 10^3$	$-8.6 imes10^4$	$-3.4 imes 10^4$	λ_6	0.370	0.487	0.663						
μ_{ϕ}^2	-4.9×10^4	-9.4×10^4	-2.3×10^5	λ_7	0.001	0.002	0.002						
$\mu_{ m sb}^2$	$1.4 imes 10^5$	$1.9 imes 10^5$	1.1×10^5	λ_8	0.254	0.423	0.417						
			Mass pa	rameters									
	BP1	BP2	BP3		BP1	BP2	BP3						
M_4^u	-1317	1405	1334	M_4^e	-517	-575	533						
M_4^d	-3644	3068	-2882	M_4^{ν}	204	-212	217						
M_4^Q	-1384	1443	1322	M_4^L	-206	-222	-202						

Benchmark Points

17

Quark sector					Lepton sector			
	BP1	BP2	BP3		BP1	BP2	BP3	
y_{24}^u	-0.051	-0.049	0.050	y_{24}^e	0.028	-0.015	0.022	
y_{34}^u	-0.980	1.185	-1.024	y_{34}^{e}	-0.895	0.612	0.790	
x_{34}^{Q}	0.924	-0.842	-0.877	x_{34}^{L}	0.616	-0.729	0.724	
y_{43}^{u}	1.382	1.093	-1.337	y_{43}^{e}	-0.223	0.144	-0.191	
x_{42}^{u}	0.550	0.821	-0.595	x_{42}^{e}	0.156	0.165	0.188	
x_{43}^{u}	1.286	1.261	1.263	x^{e}_{43}	-0.168	0.228	-0.205	
y_{14}^{d}	-0.022	0.035	0.026	y_{14}^{ν}	-2×10^{-11}	5×10^{-11}	3×10^{-11}	
y_{24}^{d}	0.096	0.151	-0.113	y_{24}^{ν}	3×10^{-11}	8×10^{-12}	6×10^{-11}	
y_{34}^{d}	-0.684	0.274	0.267	y_{34}^{ν}	-5×10^{-11}	9×10^{-11}	9×10^{-11}	
y_{43}^{d}	-0.672	-0.489	0.656	$y_{14}^{\prime u}$	-0.824	-0.674	-0.674	
x_{42}^{d}	-0.371	-0.110	0.225	$y_{24}^{\prime u}$	-0.895	-0.874	-0.896	
x^{d}_{43}	-0.160	0.072	-0.127	$y_{34}'^{\nu}$	0.701	0.744	-0.812	

National Center for Nuclear Research, Warsaw, Poland

Mass Spectrum

SM fermions											
	BP1	BP2	BP3		BP1	BP2	BP3				
m_c	1.262	1.282	1.259	m_{μ}	0.110	0.110	0.110				
m_t	172.7	172.8	172.6	$m_{ au}$	1.864	1.756	1.765				
m_s	0.089	0.093	0.091	$m_{\nu_2} \left[10^{-10} \right]$	4.659	6.587	0.252				
m_b	4.169	4.196	4.175	$m_{\nu_3} \left[10^{-10} \right]$	8.253	18.38	20.95				
NP fermions											
Quark sector Lepton sector											
	BP1	BP2	BP3		BP1	BP2	BP3				
M_{U_1}	1495	1561	1440	M_{E_1}	487	596	554				
M_{U_2}	1708	1842	1704	M_{E_2}	543	615	570				
M_{D_1}	1534	1579	1464	$M_{N_{1,2}}$	205	214	218				
M_{D_2}	3655	3070	2888	$M_{N_{3,4}}$	488	598	556				
Scalars											
	BP1	BP2	BP3		BP1	BP2	BP3				
M_{h_1}	125	125	125	M_{a_1}	362	411	433				
M_{h_2}	362	412	435	M_{a_2}	532	614	469				
M_{h_3}	617	752	824	$M_{h^{\pm}}$	384	423	440				

18

National Center for Nuclear Research, Warsaw, Poland