Global analysis and LHC study of a vector-like extension of the Standard Model with extra scalars

Daniele Rizzo

daniele.rizzo@ncbj.gov.pl

Based on

Phys.Rev.D 109 (2024) 3, 035010

in collaboration with

Antonio E. Cárcamo Hernández, Kamila Kowalska, Huchan Lee

SUSY 2024

The 31st International Conference on Supersymmetry and Unification of Fundamental Interactions

Madrid – June 10th 2024

National Center for Nuclear Research, Warsaw, Poland Daniele Rizzo

The model was studied for the first time in S.F.King, JHEP 09, 069 (2018)

1

The model was studied for the first time in S.F.King, IHEP 09, 069 (2018)

1

and then later again with different type of experimental motivations

- A.Cárcamo Hernández, S.F.King, H.Lee, S.J.Rowley, Phys. Rev. D 101, 115016 (2020)

- A.Cárcamo Hernández, S.F.King, H.Lee, Phys. Rev. D 103, 115024 (2021)

- A.C.Hernández, S.F.King, H.Lee, Phys. Rev. D 105, 015021 (2022)

- H.Lee, A.Cárcamo Hernández, 2207.01710 (2022)

The model was studied for the first time in S.F.King, IHEP 09, 069 (2018)

1

and then later again with different type of experimental motivations

- A.Cárcamo Hernández, S.F.King, H.Lee, S.J.Rowley, Phys. Rev. D 101, 115016 (2020)

- A.Cárcamo Hernández, S.F.King, H.Lee, Phys. Rev. D 103, 115024 (2021)

- A.C.Hernández, S.F.King, H.Lee, Phys. Rev. D 105, 015021 (2022)

- H.Lee, A.Cárcamo Hernández, 2207.01710 (2022)

However, many things were not entirely correct ...

The model was studied for the first time in S.F.King, IHEP 09, 069 (2018)

1

and then later again with different type of experimental motivations

- A.Cárcamo Hernández, S.F.King, H.Lee, S.J.Rowley, Phys. Rev. D 101, 115016 (2020)

- A.Cárcamo Hernández, S.F.King, H.Lee, Phys. Rev. D 103, 115024 (2021)

- A.C.Hernández, S.F.King, H.Lee, Phys. Rev. D 105, 015021 (2022)

- H.Lee, A.Cárcamo Hernández, 2207.01710 (2022)

However, many things were not entirely correct ...

In this work, we **re-assess** the previous analysis and add some **new results**.

The model

2

Particle Content

S.F.King, JHEP 09, 069 (2018)

The model

2

Particle Content

Mass of 3rd generation fermions

$$
m_t \approx \frac{1}{\sqrt{2}} \frac{y_{43}^u x_{34}^Q v_\phi v_u}{\sqrt{(x_{34}^Q v_\phi)^2 + 2(M_4^Q)^2}}
$$

Mass of 3rd generation fermions

 $m_t \approx \frac{1}{\sqrt{2}} \frac{y_{43}^u x_{34}^Q v_\phi v_u}{\sqrt{(x_{34}^Q v_\phi)^2 + 2(M_4^Q)^2}}$

3

$$
m_c \approx \frac{y_{24}^u x_{42}^u v_\phi v_u}{2 M_4^u}
$$

Mass of 3rd generation fermions Mass of 2nd generation fermions

$$
m_t \approx \frac{1}{\sqrt{2}} \frac{y_{43}^u x_{34}^Q v_\phi v_u}{\sqrt{(x_{34}^Q v_\phi)^2 + 2(M_4^Q)^2}}
$$

Need to be O(1) to fit
the experimental value

$$
m_c \approx \frac{y_{24}^u x_{42}^u v_\phi v_u}{2\,M_4^u}
$$

Need to be $O(1)$ to fit the experimental value

The 2 contributions need to be of the same order

National Center for Nuclear Research, Warsaw, Poland | | | Daniele Rizzo

3

Mass of 3rd generation fermions Mass of 2nd generation fermions

3

Mass of 3rd generation fermions Mass of 2nd generation fermions

4

$$
V = \mu_u^2 (H_u^{\dagger} H_u) + \mu_d^2 (H_d^{\dagger} H_d) + \mu_\phi^2 (\phi^* \phi) - \frac{1}{2} \mu_{sb}^2 (\phi^2 + \phi^{*2})
$$

+ $\frac{1}{2} \lambda_1 (H_u^{\dagger} H_u)^2 + \frac{1}{2} \lambda_2 (H_d^{\dagger} H_d)^2 + \lambda_3 (H_u^{\dagger} H_u) (H_d^{\dagger} H_d) + \lambda_4 (H_u^{\dagger} H_d) (H_d^{\dagger} H_u)$
- $\frac{1}{2} \lambda_5 (\epsilon_{ij} H_u^i H_d^j \phi^2 + H.c.) + \frac{1}{2} \lambda_6 (\phi^* \phi)^2 + \lambda_7 (\phi^* \phi) (H_u^{\dagger} H_u) + \lambda_8 (\phi^* \phi) (H_d^{\dagger} H_d)$

Spectrum: 3 massive CP-Even 2 massive CP -Odd $+1$ Goldstone 1 massive charged + 1 Goldstone

$$
V = \mu_u^2 (H_u^{\dagger} H_u) + \mu_d^2 (H_d^{\dagger} H_d) + \mu_\phi^2 (\phi^* \phi) - \frac{1}{2} \mu_{sb}^2 (\phi^2 + \phi^{*2})
$$

+ $\frac{1}{2} \lambda_1 (H_u^{\dagger} H_u)^2 + \frac{1}{2} \lambda_2 (H_d^{\dagger} H_d)^2 + \lambda_3 (H_u^{\dagger} H_u) (H_d^{\dagger} H_d) + \lambda_4 (H_u^{\dagger} H_d) (H_d^{\dagger} H_u)$
- $\frac{1}{2} \lambda_5 (\epsilon_{ij} H_u^i H_d^j \phi^2 + H.c.) + \frac{1}{2} \lambda_6 (\phi^* \phi)^2 + \lambda_7 (\phi^* \phi) (H_u^{\dagger} H_u) + \lambda_8 (\phi^* \phi) (H_d^{\dagger} H_d)$

Spectrum: 3 massive CP-Even 2 massive CP-Odd + 1 Goldstone 1 massive charged + 1 Goldstone

Alignment limit:

4

 $\lambda_2 = \lambda_3 + \tan^2 \beta(\lambda_1 - \lambda_3)$ $\lambda_8 = - \tan \beta \left(\lambda_7 \tan \beta + \lambda_5 \right)$

$$
V = \mu_u^2 (H_u^{\dagger} H_u) + \mu_d^2 (H_d^{\dagger} H_d) + \mu_\phi^2 (\phi^* \phi) - \frac{1}{2} \mu_{sb}^2 (\phi^2 + \phi^{*2})
$$

+ $\frac{1}{2} \lambda_1 (H_u^{\dagger} H_u)^2 + \frac{1}{2} \lambda_2 (H_d^{\dagger} H_d)^2 + \lambda_3 (H_u^{\dagger} H_u) (H_d^{\dagger} H_d) + \lambda_4 (H_u^{\dagger} H_d) (H_d^{\dagger} H_u)$
- $\frac{1}{2} \lambda_5 (\epsilon_{ij} H_u^i H_d^j \phi^2 + H.c.) + \frac{1}{2} \lambda_6 (\phi^* \phi)^2 + \lambda_7 (\phi^* \phi) (H_u^{\dagger} H_u) + \lambda_8 (\phi^* \phi) (H_d^{\dagger} H_d)$

Spectrum: 3 massive CP-Even 2 massive CP -Odd $+1$ Goldstone 1 massive charged + 1 Goldstone

Alignment limit:

 $\lambda_2 = \lambda_3 + \tan^2 \beta(\lambda_1 - \lambda_3)$ $\lambda_8 = -\tan\beta(\lambda_7\tan\beta + \lambda_5)$ $\lambda_3 \approx \lambda_1 + \mathcal{O}(1/\tan^2 \beta)$

$$
V = \mu_u^2 (H_u^{\dagger} H_u) + \mu_d^2 (H_d^{\dagger} H_d) + \mu_\phi^2 (\phi^* \phi) - \frac{1}{2} \mu_{sb}^2 (\phi^2 + \phi^{*2})
$$

+ $\frac{1}{2} \lambda_1 (H_u^{\dagger} H_u)^2 + \frac{1}{2} \lambda_2 (H_d^{\dagger} H_d)^2 + \lambda_3 (H_u^{\dagger} H_u) (H_d^{\dagger} H_d) + \lambda_4 (H_u^{\dagger} H_d) (H_d^{\dagger} H_u)$
- $\frac{1}{2} \lambda_5 (\epsilon_{ij} H_u^i H_d^j \phi^2 + H.c.) + \frac{1}{2} \lambda_6 (\phi^* \phi)^2 + \lambda_7 (\phi^* \phi) (H_u^{\dagger} H_u) + \lambda_8 (\phi^* \phi) (H_d^{\dagger} H_d)$

Spectrum: 3 massive CP-Even 2 massive CP -Odd $+1$ Goldstone 1 massive charged + 1 Goldstone

Alignment limit:

 $\lambda_2 = \lambda_3 + \tan^2 \beta(\lambda_1 - \lambda_3)$ $\lambda_8 = - \tan \beta \left(\lambda_7 \tan \beta + \lambda_5 \right)$ $\lambda_7 \sim \mathcal{O}(1/\tan^2 \beta) \quad \lambda_5 \sim \mathcal{O}(1/\tan \beta)$ $\lambda_3 \approx \lambda_1 + \mathcal{O}(1/\tan^2 \beta)$

$$
V = \mu_u^2 (H_u^{\dagger} H_u) + \mu_d^2 (H_d^{\dagger} H_d) + \mu_\phi^2 (\phi^* \phi) - \frac{1}{2} \mu_{sb}^2 (\phi^2 + \phi^{*2})
$$

+ $\frac{1}{2} \lambda_1 (H_u^{\dagger} H_u)^2 + \frac{1}{2} \lambda_2 (H_d^{\dagger} H_d)^2 + \lambda_3 (H_u^{\dagger} H_u)(H_d^{\dagger} H_d) + \lambda_4 (H_u^{\dagger} H_d)(H_d^{\dagger} H_u)$
- $\frac{1}{2} \lambda_5 (\epsilon_{ij} H_u^i H_d^j \phi^2 + H.c.) + \frac{1}{2} \lambda_6 (\phi^* \phi)^2 + \lambda_7 (\phi^* \phi)(H_u^{\dagger} H_u) + \lambda_8 (\phi^* \phi)(H_d^{\dagger} H_d)$

"Boundedness from below"

5

National Center for Nuclear Research, Warsaw, Poland Daniele Rizzo

$$
V = \mu_u^2 (H_u^{\dagger} H_u) + \mu_d^2 (H_d^{\dagger} H_d) + \mu_\phi^2 (\phi^* \phi) - \frac{1}{2} \mu_{sb}^2 (\phi^2 + \phi^{*2})
$$

+ $\frac{1}{2} \lambda_1 (H_u^{\dagger} H_u)^2 + \frac{1}{2} \lambda_2 (H_d^{\dagger} H_d)^2 + \lambda_3 (H_u^{\dagger} H_u) (H_d^{\dagger} H_d) + \lambda_4 (H_u^{\dagger} H_d) (H_d^{\dagger} H_u)$
- $\frac{1}{2} \lambda_5 (\epsilon_{ij} H_u^i H_d^j \phi^2 + H.c.) + \frac{1}{2} \lambda_6 (\phi^* \phi)^2 + \lambda_7 (\phi^* \phi) (H_u^{\dagger} H_u) + \lambda_8 (\phi^* \phi) (H_d^{\dagger} H_d)$

"Boundedness from below"

$$
\lambda_3 + \sqrt{\lambda_2 \lambda_1} > 0
$$

$$
\lambda_3 + \lambda_4 + \sqrt{\lambda_2 \lambda_1} > 0
$$

These were already implemented in previous works

$$
V = \mu_u^2 (H_u^{\dagger} H_u) + \mu_d^2 (H_d^{\dagger} H_d) + \mu_\phi^2 (\phi^* \phi) - \frac{1}{2} \mu_{sb}^2 (\phi^2 + \phi^{*2})
$$

+ $\frac{1}{2} \lambda_1 (H_u^{\dagger} H_u)^2 + \frac{1}{2} \lambda_2 (H_d^{\dagger} H_d)^2 + \lambda_3 (H_u^{\dagger} H_u) (H_d^{\dagger} H_d) + \lambda_4 (H_u^{\dagger} H_d) (H_d^{\dagger} H_u)$
- $\frac{1}{2} \lambda_5 (\epsilon_{ij} H_u^i H_d^j \phi^2 + H.c.) + \frac{1}{2} \lambda_6 (\phi^* \phi)^2 + \lambda_7 (\phi^* \phi) (H_u^{\dagger} H_u) + \lambda_8 (\phi^* \phi) (H_d^{\dagger} H_d)$

"Boundedness from below"

National Center for Nuclear Research, Warsaw, Poland | | Daniele Rizzo

$$
V = \mu_u^2 (H_u^{\dagger} H_u) + \mu_d^2 (H_d^{\dagger} H_d) + \mu_\phi^2 (\phi^* \phi) - \frac{1}{2} \mu_{sb}^2 (\phi^2 + \phi^{*2})
$$

+ $\frac{1}{2} \lambda_1 (H_u^{\dagger} H_u)^2 + \frac{1}{2} \lambda_2 (H_d^{\dagger} H_d)^2 + \lambda_3 (H_u^{\dagger} H_u) (H_d^{\dagger} H_d) + \lambda_4 (H_u^{\dagger} H_d) (H_d^{\dagger} H_u)$
- $\frac{1}{2} \lambda_5 (\epsilon_{ij} H_u^i H_d^j \phi^2 + H.c.) + \frac{1}{2} \lambda_6 (\phi^* \phi)^2 + \lambda_7 (\phi^* \phi) (H_u^{\dagger} H_u) + \lambda_8 (\phi^* \phi) (H_d^{\dagger} H_d)$

5

"Boundedness from below"
 $\lambda_3 + \sqrt{\lambda_2 \lambda_1} > 0$ $\lambda_8 + \sqrt{\lambda_2 \lambda_6} > 0$ $\lambda_9 + \lambda_4 + \sqrt{\lambda_2 \lambda_1} > 0$ $\lambda_9 + \lambda_5 + \sqrt{\lambda_1 \lambda_6} > 0$ $\lambda_9 + \sqrt{\lambda_1 \lambda_6} > 0$ $\lambda_1 + \sqrt{\lambda_1 \lambda_6} > 0$ $\lambda_2 + \sqrt{\lambda_1 \lambda_6} > 0$ $\lambda_3 + \lambda_4 + \sqrt{\lambda_2 \lambda_1} > 0$ $\$ $\lambda_3 + \sqrt{\lambda_2 \lambda_1} > 0$
 $\lambda_3 + \lambda_4 + \sqrt{\lambda_2 \lambda_1} > 0$ $4\lambda_b^2 - (\text{Im}\lambda_5)^2 + \text{Re}\lambda_5 \text{Im}\lambda_5 > 0$ These conditions were These were already implemented in not considered in 2HDM Type II previous works previous work

A.Cárcamo Hernández, S.F.King, H.Lee, Phys. Rev. D 103, 115024 (2021)

A.Cárcamo Hernández, S.F.King, H.Lee, Phys. Rev. D 103, 115024 (2021)

Small vev for the singlet

Big values of tan beta

The scalar potential is not bounded from below

Almost non-perturbative quartic couplings

A.Cárcamo Hernández, S.F.King, H.Lee, Phys. Rev. D 103, 115024 (2021)

Small vev for the singlet

Big values of tan beta

The scalar potential is not bounded from below

Almost non-perturbative quartic couplings

Their perturbativity condition is given by $g, y(NP) < \sqrt{4\pi}$ $\lambda(\text{NP}) < 4\pi$

A.Cárcamo Hernández, S.F.King, H.Lee, Phys. Rev. D 103, 115024 (2021)

$$
\Delta a_{\mu} = \sum_{i,j} \left\{ -\frac{m_{\mu}^{2}}{16\pi^{2}M_{\phi_{i}}^{2}} \left(|y_{L}^{ij}|^{2} + |y_{R}^{ij}|^{2} \right) [Q_{j} \mathcal{F}_{1} (x_{ij}) - Q_{i} \mathcal{G}_{1} (x_{ij})] - \frac{m_{\mu} M_{\psi_{j}}}{16\pi^{2}M_{\phi_{i}}^{2}} \text{Re} \left(y_{L}^{ij} y_{R}^{ij*} \right) [Q_{j} \mathcal{F}_{2} (x_{ij}) - Q_{i} \mathcal{G}_{2} (x_{ij})] \right\}
$$

$$
\Delta a_{\mu} = (2.49 \pm 0.48) \times 10^{-9}
$$

Discrepancy is now at ∼5.1 σ

7

Bennet et al, Phys. Rev. D 73 (2006) 072003 (hep-ex/0602035) Muon g-2 Collaboration, Phys. Rev. Lett. 126 (2021) 141801 Muon g-2 Collaboration, arXiv: 2308.06230

National Center for Nuclear Research, Warsaw, Poland | | Daniele Rizzo

$$
\Delta a_{\mu} = \sum_{i,j} \left\{ -\frac{m_{\mu}^{2}}{16\pi^{2}M_{\phi_{i}}^{2}} \left(|y_{L}^{ij}|^{2} + |y_{R}^{ij}|^{2} \right) [Q_{j} \mathcal{F}_{1}(x_{ij}) - Q_{i} \mathcal{G}_{1}(x_{ij})] - \frac{m_{\mu} M_{\psi_{j}}}{16\pi^{2}M_{\phi_{i}}^{2}} \text{Re}\left(y_{L}^{ij} y_{R}^{ij*}\right) [Q_{j} \mathcal{F}_{2}(x_{ij}) - Q_{i} \mathcal{G}_{2}(x_{ij})] \right\}
$$

$$
\Delta a_{\mu} = (2.49 \pm 0.48) \times 10^{-9}
$$

Discrepancy is now at ~5.1 o
Lattice
2.22

7

Bennet et al, Phys. Rev. D 73 (2006) 072003 (hep-ex/0602035) Muon g-2 Collaboration, Phys. Rev. Lett. 126 (2021) 141801 Muon g-2 Collaboration, arXiv: 2308.06230

National Center for Nuclear Research, Warsaw, Poland | | Daniele Rizzo

National Center for Nuclear Research, Warsaw, Poland Daniele Rizzo *National* **Center for Nuclear Research, Warsaw, Poland**

We define the cutoff energy for the model by requiring that any New Physics wrt the model is at such an energy scale that the corrections to g-2 are negligible.

We define the cutoff energy for the model by requiring that any New Physics wrt the model is at such an energy scale that the corrections to g-2 are negligible.

$$
\Delta a_{\mu}^{\Lambda} \sim \frac{1}{16\pi^2} \frac{m_{\mu} v}{\Lambda^2} y_L(\Lambda) y_R(\Lambda)
$$

National Center for Nuclear Research, Warsaw, Poland Daniele Rizzo

We define the cutoff energy for the model by requiring that any New Physics wrt the model is at such an energy scale that the corrections to g-2 are negligible.

$$
\Delta a_{\mu}^{\Lambda} \sim \frac{1}{16\pi^2} \frac{m_{\mu} v}{\Lambda^2} y_L(\Lambda) y_R(\Lambda)
$$

By requiring that such correction is smaller than 3σ and in the most pessimistic scenario

$$
y_L(\Lambda)=y_R(\Lambda)=\sqrt{4\pi}
$$

We define the cutoff energy for the model by requiring that any New Physics wrt the model is at such an energy scale that the corrections to g-2 are negligible.

$$
\Delta a_{\mu}^{\Lambda} \sim \frac{1}{16\pi^2} \frac{m_{\mu} v}{\Lambda^2} y_L(\Lambda) y_R(\Lambda)
$$

By requiring that such correction is smaller than 3σ and in the most pessimistic scenario

$$
y_L(\Lambda) = y_R(\Lambda) = \sqrt{4\pi}
$$

$$
g, y(\text{NP}) < \sqrt{4\pi}
$$

$$
\lambda(\text{NP}) < 4\pi
$$

 $\rightarrow \Lambda \gtrsim 50 \text{ TeV}$

 $y_L(\Lambda) = y_R(\Lambda) = \sqrt{4\pi}$

We define the cutoff energy for the model by requiring that any New Physics wrt the model is at such an energy scale that the corrections to g-2 are negligible.

$$
\Delta a_{\mu}^{\Lambda} \sim \frac{1}{16\pi^2} \frac{m_{\mu} v}{\Lambda^2} y_L(\Lambda) y_R(\Lambda)
$$

By requiring that such correction is smaller than 3σ and in the most pessimistic scenario

$$
\overline{} \quad \Lambda \gtrsim 50 \,\, \mathrm{TeV}
$$

$$
\begin{array}{c}\n\hline\ng, y(NP) < \sqrt{4\pi} \\
\hline\n\lambda(NP) < 4\pi\n\end{array}
$$
\n $g, y(NP) \leq 1$ \n $\lambda(NP) \leq 2$

All benchmark point from previous works are this way excluded.

Contributions to $\Delta a \times 10^9$

National Center for Nuclear Research, Warsaw, Poland Daniele Rizzo

National Center for Nuclear Research, Warsaw, Poland Daniele Rizzo

Contributions to $\Delta a_{\mu} \times 10^9$

National Center for Nuclear Research, Warsaw, Poland Daniele Rizzo *National* **Center for Nuclear Research, Warsaw, Poland**

Contributions to $\Delta a \times 10^9$

The deviation from the experimental measurement of g-2 can be explained within this model.

The main contribution to g-2 in mediated by **charged scalars** and **neutrinos**!

National Center for Nuclear Research, Warsaw, Poland | Daniele Rizzo 11

VL Quarks

 $U_1 \rightarrow \sim 1500$ GeV $D_1 \rightarrow \sim 1500$ GeV U2 → ∼1700-1900 GeV $D_2 \rightarrow \sim 2900$ -3600 GeV

VL Leptons

 $N_{12} \rightarrow \sim 200$ GeV N_{3.4} → ~500-600 GeV E_1 → ~500-600 GeV E2 → ∼550-650 GeV

CP-Even Scalars

11

CP-Odd Scalars

 $h_1 \rightarrow 125$ GeV h₂ → \sim 400 GeV h₃ → ~600-800 GeV

$a_1 \rightarrow \sim 400$ GeV $a_2 \rightarrow \sim 450 - 600$ GeV

Charged Scalars

h $_+$ → $~\sim$ 400 GeV

VL Leptons

 $N_{12} \rightarrow \sim 200$ GeV N3,4 → ∼500-600 GeV E_1 → ~500-600 GeV E2 → ∼550-650 GeV

CP-Even Scalars

11

CP-Odd Scalars

 $h_1 \rightarrow 125$ GeV h₂ → \sim 400 GeV h₃ → ~600-800 GeV

$a_1 \rightarrow \sim 400$ GeV $a_2 \rightarrow \sim 450 - 600$ GeV

Charged Scalars

 $h_{+} \rightarrow \sim 400$ GeV

Almost degenerative because depend on the mass of the VL doublet

VL Leptons

 $N_{1,2} \rightarrow \sim 200$ GeV N_{3.4} → ~500-600 GeV E_1 → ~500-600 GeV E2 → ∼550-650 GeV

CP-Even Scalars

11

CP-Odd Scalars

 $h_1 \rightarrow 125$ GeV h₂ → \sim 400 GeV h₃ → ~600-800 GeV

$a_1 \rightarrow \sim 400$ GeV a₂ → ~450-600 GeV

Charged Scalars

 h_+ → \sim 400 GeV

Almost degenerative because depend on the mass of the VL doublet

VL Leptons

N_{1,2} → ~200 GeV
N_{3,4} → ~500-600 GeV
E₁ → ~500-600 GeV
$$
\triangleright
$$
 ≈ $\sqrt{(M_4^L)^2 + \frac{1}{2}(v_{\phi}x_{34}^L)^2}$
E₂ → ~550-650 GeV

CP-Even Scalars

 $h_1 \rightarrow 125$ GeV

h₂ → \sim 400 GeV

h₃ → ~600-800 GeV

11

CP-Odd Scalars

 $a_1 \rightarrow \sim 400$ GeV a₂ → ~450-600 GeV

Charged Scalars

h $_+$ → \sim 400 GeV

VL Leptons

CP-Even Scalars

 $h_1 \rightarrow 125$ GeV h₂ → \sim 400 GeV

h₃ → ~600-800 GeV

11

CP-Odd Scalars

 $a_1 \rightarrow \sim 400$ GeV $a_2 \rightarrow \sim 450 - 600$ GeV

 $h_{+} \rightarrow \sim 400$ GeV **Charged Scalars**

VL Leptons

h₂ → \sim 400 GeV

h₃ → ~600-800 GeV

11


```
Can be tested in Run 3
```
Leptons Quarks

Leptons Quarks

Our leptons decay predominantly to muons, but there are **no** dedicated experimental analysis.

Leptons Quarks

Our leptons decay predominantly to muons, but there are **no** dedicated experimental analysis.

The best we can do is study:

ATLAS: JHEP 07, 118 (2023) CMS: Phys. Rev. D 100, 052003 (2019)

Leptons Quarks

Our leptons decay predominantly to muons, but there are **no** dedicated experimental analysis.

The best we can do is study:

12

ATLAS: JHEP 07, 118 (2023) CMS: Phys. Rev. D 100, 052003 (2019)

BR(LL \rightarrow ττ) < 10% and x-section is 3-4 orders of magnitude **smaller** than current bounds.

Leptons Quarks

Our leptons decay predominantly to muons, but there are **no** dedicated experimental analysis.

The best we can do is study:

ATLAS: JHEP 07, 118 (2023) CMS: Phys. Rev. D 100, 052003 (2019)

BR(LL \rightarrow ττ) < 10% and x-section is 3-4 orders of magnitude **smaller** than current bounds.

Can **not** be tested in Run 3

Leptons Quarks

Our leptons decay predominantly to muons, but there are **no** dedicated experimental analysis.

The best we can do is study:

ATLAS: JHEP 07, 118 (2023) CMS: Phys. Rev. D 100, 052003 (2019)

BR(LL \rightarrow ττ) < 10% and x-section is 3-4 orders of magnitude **smaller** than current bounds.

Can **not** be tested in Run 3

12

Two possible channels can be studied:

ATLAS: Eur. Phys. J. C 83, 719 (2023) CMS: JHEP 07, 020 (2023)

Leptons Quarks

Our leptons decay predominantly to muons, but there are **no** dedicated experimental analysis.

The best we can do is study:

ATLAS: JHEP 07, 118 (2023) CMS: Phys. Rev. D 100, 052003 (2019)

BR(LL \rightarrow ττ) < 10% and x-section is 3-4 orders of magnitude **smaller** than current bounds.

Can **not** be tested in Run 3

12

Two possible channels can be studied:

ATLAS: Eur. Phys. J. C 83, 719 (2023) CMS: JHEP 07, 020 (2023)

The x-section is one order of magnitude smaller than the current bounds.

National Center for Nuclear Research, Warsaw, Poland | Daniele Rizzo

Leptons Quarks

Our leptons decay predominantly to muons, but there are **no** dedicated experimental analysis.

The best we can do is study:

ATLAS: JHEP 07, 118 (2023) CMS: Phys. Rev. D 100, 052003 (2019)

BR(LL \rightarrow ττ) < 10% and x-section is 3-4 orders of magnitude **smaller** than current bounds.

Can **not** be tested in Run 3 **Can be tested in Run 3**

Two possible channels can be studied:

ATLAS: Eur. Phys. J. C 83, 719 (2023) CMS: JHEP 07, 020 (2023)

The x-section is one order of magnitude smaller than the current bounds.

Conclusions

- I have discussed a NP model which can explain SM fermion's **mass generation** (and mixings) in a completely new way (SM-like interactions are not allowed).
- We have **re-assessed** findings from previous works. The main result is a thorough study of the **perturbativity** of the model, investigated by requiring that the observable do not get corrections from possible UV completions.
- When imposing conditions on the parameter space (SM masses and couplings, vacuum stability, perturbativity) the number of free parameters gets drastically reduced, preventing the model from having a too big parameter space.
- We have presented (c.f. paper) **three benchmark points** which accommodate all the physical requirements and explain the deviation in the muon g-2.
- Incidentally, the perturbativity of the benchmark points is guaranteed up to a much higher energy scale (1000 TeV) than the theoretical value (50 TeV).
- The main contribution to **g-2** is the loop with **neutrino** and **charged scalar**.
- The benchmark points can be **tested** at the LHC: discovery/exclusion.

CKM Mixing Matrix

Reduced CKM matrix

14

$$
V_{CKM}^{3 \times 3} \approx \begin{pmatrix} 1 - x_{ud}^2/2 & x_{ud} & x_{ud}x_d \\ -x_{ud} & 1 - x_{ud}^2/2 & x_d - x_u \\ -x_ux_{ud} & x_u - x_d & 1 \end{pmatrix}
$$

$$
x_d = \frac{y_{24}^d x_{43}^d M_4^Q}{y_{43}^d x_{34}^Q M_4^d} = 0.017 \qquad x_u = \frac{y_{24}^u x_{43}^u M_4^Q}{y_{43}^u x_{34}^Q M_4^u} \approx -0.023 \qquad x_{ud} = \frac{y_{14}^d}{y_{24}^d} \approx 0.22
$$

$$
\frac{|V_{CKM}^{exp}| - |V_{CKM}^{3 \times 3}|}{\delta |V_{CKM}^{exp}|} = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0.04 & 0 \\ 8.88 & 0.23 & 0.01 \end{array}\right)
$$

With only 1 VL family it is not possible to fit all the elements of the CKM matrix!

15

$$
M_{U_1} \approx \sqrt{(M_4^Q)^2 + \frac{1}{2}(v_\phi x_{34}^Q)^2 - \frac{(M_4^Q y_{43}^u v_u)^2}{(x_{34}^Q v_\phi)^2 + 2(M_4^Q)^2}}
$$

$$
M_{U_2} \approx \sqrt{(M_4^u)^2 + \frac{1}{2}(v_\phi x_{43}^u)^2 + \frac{1}{2}(v_\phi x_{42}^u)^2 + \frac{2(M_4^u y_{43}^u v_u)^2}{2(M_4^u)^2 + (v_\phi x_{43}^u)^2 + (v_\phi x_{42}^u)^2}}
$$

\n
$$
M_{D_1} \approx \sqrt{(M_4^Q)^2 + \frac{1}{2}(v_\phi x_{34}^Q)^2}
$$

\n
$$
M_{D_2} \approx \sqrt{(M_4^d)^2 + \frac{1}{2}(v_\phi x_{43}^d)^2 + \frac{1}{2}(v_\phi x_{43}^d)^2 + \frac{1}{2}(v_\phi x_{42}^d)^2}
$$

\n
$$
M_{E_1} \approx \sqrt{(M_4^L)^2 + \frac{1}{2}(v_\phi x_{34}^L)^2}
$$

\n
$$
M_{E_2} \approx \sqrt{(M_4^e)^2 + \frac{1}{2}(v_\phi x_{43}^e)^2 + \frac{1}{2}(v_\phi x_{42}^e)^2}
$$

\n
$$
M_{N_1} = M_{N_2} \approx M_4^{\nu}
$$

\n
$$
M_{N_3} = M_{N_4} \approx \sqrt{(M_4^L)^2 + \frac{1}{2}(v_\phi x_{34}^L)^2}
$$

Parameter Space

Minimization of a χ^2 function to determine benchmark points.

SM masses, CKM elements, g-2

17

National Center for Nuclear Research, Warsaw, Poland | Daniele Rizzo

Benchmark Points

17

National Center for Nuclear Research, Warsaw, Poland Daniele Rizzo

Mass Spectrum

18

National Center for Nuclear Research, Warsaw, Poland | Daniele Rizzo