UNTERSTÜTZT VON / SUPPORTED BY

Complete One-loop Renormalization-group Equations in the Seesaw Effective Field Theories

Di Zhang (张迪) Technical University of Munich

Based on JHEP 05 (2023) 044 in collaboration with Y.-L. Wang and S. Zhou

The 31st International Conference on Supersymmetry and Unification of Fundamental Interactions (SUSY 2024), Madrid

14 June 2024

Seesaw Mechanisms

Global-fit results for neutrino oscillation parameters:

The origin of neutrino masses is quite different from that of charged fermions Xing, 2020

Seesaw mechanisms extending the Standard Model with **fermion singlets**, **scalar triplet**, or **fermion triplets** Minkowski, 1977; Yanagida, 1979; ... Konetschny and Kummer, 1977; ... Foot et al., 1989: Ma, 1998 The **simplest** and the **most natural** ways to explain **tiny neutrino masses** Fukugita and Yanagida, 1986

A bonus is to account for the matter-antimatter asymmetry of the Universe via leptogenesis

GeV

sμ

V_{CKM}

tb

TeV

Seesaw Effective Field Theories

Seesaw Effective Field Theories

The type-I seesaw mechanism extending the SM with three singlet right-handed neutrinos

$$\mathcal{L}_{\mathrm{SS}} = \mathcal{L}_{\mathrm{SM}} + \overline{N_{\mathrm{R}}} \mathrm{i} \partial \!\!\!/ N_{\mathrm{R}} - \left(\frac{1}{2} \overline{N_{\mathrm{R}}^{\mathrm{c}}} M_{\mathrm{R}} N_{\mathrm{R}} + \overline{\ell_{\mathrm{L}}} Y_{\nu} \widetilde{H} N_{\mathrm{R}} + \mathrm{h.c.} \right)$$

Minkowski, 1977; Yanagida, 1979; Gell-Mann et al., 1979; Glashow, 1980; Mohapatra, Senjanovic, 1980

> The one-loop matching DZ, Zhou, 2021a;2021b; Coy, Frigerio, 2019; Ohlsson, Pernow, 2022;

Du, Li, and Yu, 2022

Integrating out **heavy** right-handed neutrinos at the **tree level** (i.e., the tree-level matching)

The tree-level seesaw EFT up to $O(1/\Lambda_{SS}^2)$: Broncano, Gavela and Jenkins, 2003a; 2003b; Abada et al, 2007

$$\mathcal{L}_{\rm SEFT} = \mathcal{L}_{\rm SM} + \frac{1}{2} \left(C_5^{\alpha\beta} \mathcal{O}_{\alpha\beta}^{(5)} + \text{h.c.} \right) + C_{H\ell}^{(1)\alpha\beta} \mathcal{O}_{H\ell}^{(1)\alpha\beta} + C_{H\ell}^{(3)\alpha\beta} \mathcal{O}_{H\ell}^{(3)\alpha\beta}$$

• Dim-5 operator $\mathcal{O}_{\alpha\beta}^{(5)} = \overline{\ell_{\alpha L}} \widetilde{H} \widetilde{H}^{T} \ell_{\beta L}^{c}$

The Weinberg operator S. Weinberg, 1979

• Dim-6 operators $\mathcal{O}_{\alpha\beta}^{(1)}$ The Warsaw basis **Grzadkowski, 2010** $\mathcal{O}_{\alpha\beta}^{(3)}$

$$\mathcal{O}_{\alpha\beta}^{(1)} = \left(\overline{\ell_{\alpha L}}\gamma^{\mu}\ell_{\beta L}\right) \left(H^{\dagger}i\overleftrightarrow{D}_{\mu}H\right) \\
 \mathcal{O}_{\alpha\beta}^{(3)} = \left(\overline{\ell_{\alpha L}}\gamma^{\mu}\sigma^{I}\ell_{\beta L}\right) \left(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H\right)$$
S.

Unitarity violation of the lepton flavor mixing Broncano, Gavela and Jenkins, 2003a; 2003b; 2005; Antusch et al., 2006; Abada et al., 2007

Neutrino masses

The corresponding Wilson coefficients at the matching scale $\mu_M \sim \Lambda_{SS} = O(M_R)$

$$C_{5}(\mu_{\rm M}) = Y_{\nu} M_{\rm R}^{-1} Y_{\nu}^{\rm T} \qquad \qquad C_{H\ell}^{(1)}(\mu_{\rm M}) = -C_{H\ell}^{(3)}(\mu_{\rm M}) =$$

The general structure of the RGEs up to $O(1/\Lambda_{SS}^2)$

Wang, DZ, and Zhou, 2023

$$16\pi^2 \mu \frac{\mathrm{d}C_i^{(5)}}{\mathrm{d}\mu} = \gamma'_{ij} C_j^{(5)} \qquad 16\pi^2 \mu \frac{\mathrm{d}C_i^{(6)}}{\mathrm{d}\mu} = \gamma_{ij} C_j^{(6)} + \widehat{\gamma}_{jk}^i C_j^{(5)} C_k^{(5)}$$

Two types of contributions:

Flavor dependent

Flavor independent

The SM couplings: Wang, DZ, and Zhou, 2023 $16\pi^2 \mu \frac{\mathrm{d}g_1}{\mathrm{d}\mu} = \frac{41}{6}g_1^3 \,,$ $16\pi^2 \mu \frac{\mathrm{d}g_2}{\mathrm{d}\mu} = -\frac{19}{6}g_2^3 , \qquad T \equiv \mathrm{tr}\left(Y_l Y_l^{\dagger} + 3Y_\mathrm{u} Y_\mathrm{u}^{\dagger} + 3Y_\mathrm{d} Y_\mathrm{d}^{\dagger}\right)$ $16\pi^2 \mu \frac{\mathrm{d}g_s}{\mathrm{d}u} = -7g_s^3 \; .$ $16\pi^2 \mu \frac{\mathrm{d}Y_l}{\mathrm{d}\mu} = \left[-\frac{15}{4}g_1^2 - \frac{9}{4}g_2^2 + T + \frac{3}{2}Y_l Y_l^{\dagger} - 2m^2 \left(C_{H\ell}^{(1)} + 3C_{H\ell}^{(3)} \right) \right] Y_l ,$ $16\pi^{2}\mu\frac{\mathrm{d}Y_{\mathrm{u}}}{\mathrm{d}\mu} = \left[-\frac{17}{12}g_{1}^{2} - \frac{9}{4}g_{2}^{2} - 8g_{s}^{2} + T + \frac{3}{2}\left(Y_{\mathrm{u}}Y_{\mathrm{u}}^{\dagger} - Y_{\mathrm{d}}Y_{\mathrm{d}}^{\dagger}\right)\right|Y_{\mathrm{u}},$ $16\pi^2 \mu \frac{\mathrm{d}Y_{\mathrm{d}}}{\mathrm{d}\mu} = \left| -\frac{5}{12}g_1^2 - \frac{9}{4}g_2^2 - 8g_s^2 + T - \frac{3}{2}\left(Y_{\mathrm{u}}Y_{\mathrm{u}}^{\dagger} - Y_{\mathrm{d}}Y_{\mathrm{d}}^{\dagger}\right) \right| Y_{\mathrm{d}} ,$ $16\pi^{2}\mu \frac{\mathrm{d}m^{2}}{\mathrm{d}\mu} = \left(-\frac{3}{2}g_{1}^{2} - \frac{9}{2}g_{2}^{2} + 12\lambda + 2T\right)m^{2}$ $16\pi^{2}\mu\frac{\mathrm{d}\lambda}{\mathrm{d}\mu} = 24\lambda^{2} - 3\lambda\left(g_{1}^{2} + 3g_{2}^{2}\right) + \frac{3}{8}\left(g_{1}^{2} + g_{2}^{2}\right)^{2} + \frac{3}{4}g_{2}^{4} + 4\lambda T$ $-2\mathrm{tr}\left|\left(Y_{l}Y_{l}^{\dagger}\right)^{2}+3\left(Y_{\mathrm{u}}Y_{\mathrm{u}}^{\dagger}\right)^{2}+3\left(Y_{\mathrm{d}}Y_{\mathrm{d}}^{\dagger}\right)^{2}\right|$ $+ m^2 \mathrm{tr} \left(2C_5 C_5^{\dagger} - \frac{8}{3} g_2^2 C_{H\ell}^{(3)} + 8C_{H\ell}^{(3)} Y_l Y_l^{\dagger} \right) .$

The Weinberg operator:

$$16\pi^{2}\mu\frac{\mathrm{d}C_{5}}{\mathrm{d}\mu} = \left(-3g_{2}^{2} + 4\lambda + 2T\right)C_{5} - \frac{3}{2}Y_{l}Y_{l}^{\dagger}C_{5} - \frac{3}{2}C_{5}\left(Y_{l}Y_{l}^{\dagger}\right)^{T}$$

Dim-6 operators:

 $16\pi^{2}\mu \frac{\mathrm{d}C_{H\ell}^{(1)}}{\mathrm{d}\mu} = \left[-\frac{3}{2}C_{5}C_{5}^{\dagger} + \frac{2}{3}g_{1}^{2}\mathrm{tr}\left(C_{H\ell}^{(1)}\right)\mathbb{1}\right]$ $+ \left| \frac{1}{3} g_1^2 + 2 \mathrm{tr} \left(Y_l Y_l^{\dagger} + 3 Y_{\mathrm{u}} Y_{\mathrm{u}}^{\dagger} + 3 Y_{\mathrm{d}} Y_{\mathrm{d}}^{\dagger} \right) \right| C_{H\ell}^{(1)}$ $+\frac{1}{2}\left[\left(4C_{H\ell}^{(1)}+9C_{H\ell}^{(3)}\right)Y_{l}Y_{l}^{\dagger}+Y_{l}Y_{l}^{\dagger}\left(4C_{H\ell}^{(1)}+9C_{H\ell}^{(3)}\right)\right],$ $16\pi^{2}\mu \frac{\mathrm{d}C_{H\ell}^{(3)}}{\mathrm{d}\mu} = C_{5}C_{5}^{\dagger} + \frac{2}{3}g_{2}^{2}\mathrm{tr}\left(C_{H\ell}^{(3)}\right)\mathbb{1}$ $+ \left| -\frac{17}{3}g_2^2 + 2\mathrm{tr}\left(Y_lY_l^{\dagger} + 3Y_\mathrm{u}Y_\mathrm{u}^{\dagger} + 3Y_\mathrm{d}Y_\mathrm{d}^{\dagger}\right) \right| C_{H\ell}^{(3)}$ $+\frac{1}{2}\left[\left(3C_{H\ell}^{(1)}+2C_{H\ell}^{(3)}\right)Y_{l}Y_{l}^{\dagger}+Y_{l}Y_{l}^{\dagger}\left(3C_{H\ell}^{(1)}+2C_{H\ell}^{(3)}\right)\right],$

Dim-6 operators:

	H^6 and H^4D^2		$\psi^2 H^3$	$(\overline{\mathrm{LL}})(\overline{\mathrm{LL}})$		
\mathcal{O}_{H}	$\left(H^{\dagger}H ight)^{3}$	${\cal O}_{eH}^{lphaeta}$	$\left(\overline{\ell_{lpha \mathrm{L}}}HE_{eta \mathrm{R}} ight)\left(H^{\dagger}H ight)$	$\mathcal{O}_{\ell\ell}^{lphaeta\gamma\lambda}$	$\left(\overline{\ell_{lpha \mathrm{L}}}\gamma^{\mu}\ell_{eta \mathrm{L}} ight)\left(\overline{\ell_{\gamma \mathrm{L}}}\gamma_{\mu}\ell_{\lambda \mathrm{L}} ight)$	
${\cal O}_{H\square}$	$\left(H^{\dagger}H ight) \Box \left(H^{\dagger}H ight)$	${\cal O}_{uH}^{lphaeta}$	$\left(\overline{Q_{lpha \mathrm{L}}}\widetilde{H} U_{eta \mathrm{R}} ight) \left(H^{\dagger} H ight)$	${\cal O}_{\ell q}^{(1)lphaeta\gamma\lambda}$	$\left(\overline{\ell_{lpha \mathrm{L}}}\gamma^{\mu}\ell_{eta \mathrm{L}} ight)\left(\overline{Q_{\gamma \mathrm{L}}}\gamma_{\mu}Q_{\lambda \mathrm{L}} ight)$	
\mathcal{O}_{HD}	$\left(H^{\dagger}D^{\mu}H ight)^{*}\left(H^{\dagger}D_{\mu}H ight)$	$\mathcal{O}_{dH}^{lphaeta}$	$\left(\overline{Q_{lpha \mathrm{L}}}HD_{eta \mathrm{R}} ight)\left(H^{\dagger}H ight)$	${\cal O}_{\ell q}^{(3)lphaeta\gamma\lambda}$	$\left(\overline{\ell_{lpha \mathrm{L}}}\gamma^{\mu}\sigma^{I}\ell_{eta \mathrm{L}} ight)\left(\overline{Q_{\gamma \mathrm{L}}}\gamma_{\mu}\sigma^{I}Q_{\lambda \mathrm{L}} ight)$	
	ψ^2	H^2D		$(\overline{\mathrm{L}}\mathrm{L})(\overline{\mathrm{R}}\mathrm{R})$		
$\mathcal{O}_{H\ell}^{(1)lphaeta}$	$\left(\overline{\ell_{\alpha \mathrm{L}}} \gamma^{\mu} \ell_{\beta \mathrm{L}}\right) \left(H^{\dagger} \mathrm{i} \overleftrightarrow{D}_{\mu} H\right)$	$\mathcal{O}_{Hq}^{(3)lphaeta}$	$\left(\overline{Q_{lpha \mathrm{L}}}\gamma^{\mu}\sigma^{I}Q_{eta \mathrm{L}} ight)\left(H^{\dagger}\mathrm{i}\overleftrightarrow{D}_{\mu}^{I}H ight)$	$\mathcal{O}_{\ell e}^{lphaeta\gamma\lambda}$	$\left(\overline{\ell_{lpha \mathrm{L}}}\gamma^{\mu}\ell_{eta \mathrm{L}} ight)\left(\overline{E_{\gamma \mathrm{R}}}\gamma_{\mu}E_{\lambda \mathrm{R}} ight)$	
$\mathcal{O}_{H\ell}^{(3)lphaeta}$	$\left(\overline{\ell_{\alpha \mathrm{L}}}\gamma^{\mu}\sigma^{I}\ell_{\beta \mathrm{L}}\right)\left(H^{\dagger}\mathrm{i}\overleftrightarrow{D}_{\mu}^{I}H\right)$	$\mathcal{O}_{Hu}^{lphaeta}$	$\left(\overline{U_{\alpha \mathrm{R}}}\gamma^{\mu}U_{\beta \mathrm{R}}\right)\left(H^{\dagger}\mathrm{i}\overleftrightarrow{D}_{\mu}H\right)$	$\mathcal{O}_{\ell u}^{lphaeta\gamma\lambda}$	$\left(\overline{\ell_{lpha \mathrm{L}}}\gamma^{\mu}\ell_{eta \mathrm{L}} ight)\left(\overline{U_{\gamma \mathrm{R}}}\gamma_{\mu}U_{\lambda \mathrm{R}} ight)$	
${\cal O}_{He}^{lphaeta}$	$\left(\overline{E_{lpha \mathrm{R}}}\gamma^{\mu}E_{eta \mathrm{R}} ight)\left(H^{\dagger}\mathrm{i}\overleftrightarrow{D}_{\mu}H ight)$	$\mathcal{O}_{Hd}^{lphaeta}$	$\left(\overline{D_{lpha \mathrm{R}}}\gamma^{\mu}D_{eta \mathrm{R}} ight)\left(H^{\dagger}\mathrm{i}\overleftrightarrow{D}_{\mu}H ight)$	$\mathcal{O}_{\ell d}^{lphaeta\gamma\lambda}$	$\left(\overline{\ell_{lpha \mathrm{L}}}\gamma^{\mu}\ell_{eta \mathrm{L}} ight)\left(\overline{D_{\gamma \mathrm{R}}}\gamma_{\mu}D_{\lambda \mathrm{R}} ight)$	
$\mathcal{O}_{Hq}^{(1)lphaeta}$	$\left(\overline{Q_{lpha \mathrm{L}}}\gamma^{\mu}Q_{eta \mathrm{L}} ight)\left(H^{\dagger}\mathrm{i}\overleftrightarrow{D}_{\mu}H ight)$					

- In the type-I seesaw EFT, **17** dim-6 operators can be generated via their one-loop RGEs apart from the 2 treelevel ones
- Contributions from single insertions of the dim-5 and dim-6 operators are consistent with results in the literature Antusch et al., 2001; Jenkins et al., 2013
- □ The contribution from **double insertions** of the dim-5 operator to the RGE of quartic Higgs coupling λ is **new**, while those to RGEs of $\mathcal{O}_{H\Box}$, \mathcal{O}_{HD} , \mathcal{O}_{H} , \mathcal{O}_{eH} , \mathcal{O}_{uH} , \mathcal{O}_{dH} missed a factor of 1/2 in **Davidson et al.**, 2018, now are **corrected** and **completed**
- Contributions from double insertions of the dim-5 operator are generic and thus valid not only for the seesaw EFTs but also for the SMEFT in general
- □ Results for the type-II and type-III seesaw EFTs are also achieved and included in Wang, DZ, and Zhou, 2023

One-loop RGEs of Flavor Mixing Parameters

After spontaneous symmetry breaking

 $N \equiv (1 - \eta'/2) \cdot U \cdot Q$ Flavor-changing NC

$$\begin{split} \mathcal{L}_{\text{SEFT}}^{l} &= -\left[\overline{l_{\alpha \text{L}}} \left(M_{l}\right)_{\alpha\beta} l_{\beta \text{R}} + \frac{1}{2} \overline{\nu_{\alpha \text{L}}} \left(M_{\nu}\right)_{\alpha\beta} \nu_{\beta \text{L}}^{\text{c}} + \text{h.c.}\right] \\ &+ \left[\frac{g_{2}}{\sqrt{2}} \overline{l_{\alpha \text{L}}} \gamma^{\mu} \left(\delta_{\alpha\beta} - \tilde{\eta}_{\alpha\beta}\right) \nu_{\beta \text{L}} W_{\mu}^{-} + \text{h.c.}\right] + \frac{g_{2}}{2c_{\text{W}}} \overline{\nu_{\alpha \text{L}}} \gamma^{\mu} \left(\delta_{\alpha\beta} - \tilde{\eta}_{\alpha\beta}'\right) \nu_{\beta \text{L}} Z_{\mu} \\ &- \frac{g_{2}}{2c_{\text{W}}} \overline{l_{\alpha \text{L}}} \gamma^{\mu} \left[\left(1 - 2s_{\text{W}}^{2}\right) \delta_{\alpha\beta} + \left(\tilde{\eta}' - 2\tilde{\eta}\right)_{\alpha\beta}\right] l_{\beta \text{L}} Z_{\mu} + \frac{g_{2}}{c_{\text{W}}} s_{\text{W}}^{2} \overline{l_{\alpha \text{R}}} \gamma^{\mu} l_{\alpha \text{R}} Z_{\mu} , \\ &= -\left(\overline{l_{\text{L}}} \widehat{M}_{l} l_{\text{R}} + \frac{1}{2} \overline{\nu_{\text{L}}} \widehat{M}_{\nu} \nu_{\text{L}}^{\text{c}} + \text{h.c.}\right) + \frac{g_{2}}{2c_{\text{W}}} \overline{\nu_{\text{L}}} \gamma^{\mu} N^{\dagger} N \nu_{\text{L}} Z_{\mu} \\ &+ \left(\frac{g_{2}}{\sqrt{2}} \overline{l_{\text{L}}} \gamma^{\mu} V \nu_{\text{L}} \overline{W_{\mu}^{-}} + \text{h.c.}\right) + \frac{g_{2}}{2c_{\text{W}}} \overline{\nu_{\text{L}}} \gamma^{\mu} N^{\dagger} N \nu_{\text{L}} Z_{\mu} \\ &- \frac{g_{2}}{2c_{\text{W}}} \overline{l_{\text{L}}} \gamma^{\mu} \left[\left(1 - 2s_{\text{W}}^{2}\right) + \left(\eta' - 2\eta\right)\right] l_{\text{L}} Z_{\mu} + \frac{g_{2}}{c_{\text{W}}} s_{\text{W}}^{2} \overline{l_{\text{R}}} \gamma^{\mu} l_{\text{R}} Z_{\mu} \end{array} \right]$$

 $V \equiv (1 - \eta) \cdot U \cdot Q$ Non-unitary Pontecorvo-Maki-Nakagawa-Sakata matrix

 $M_l = Y_l v / \sqrt{2}$ $M_\nu = -C_5 v^2 / 2$ $\tilde{\eta} \equiv -C_{Hl}^{(3)} v^2 \qquad \tilde{\eta}' \equiv \left(C_{Hl}^{(1)} - C_{Hl}^{(3)}\right) v^2$ $s_{\rm W} \equiv \sin \theta_{\rm W}$ $U_{\nu}^{\dagger}M_{\nu}U_{\nu}^{*} = \widehat{M}_{\nu} \equiv \text{diag}\{m_{1}, m_{2}, m_{3}\}$ $U_l^{\dagger} M_l U_l' = \widehat{M}_l \equiv \text{diag}\{m_e, m_{\mu}, m_{\tau}\}$ $V' \equiv U_l^{\dagger} U_{\nu}$ Definition $V' \equiv P \cdot U \cdot Q$ Parametrization $P \equiv \operatorname{diag}\{e^{\mathrm{i}\phi_e}, e^{\mathrm{i}\phi_\mu}, e^{\mathrm{i}\phi_\tau}\}\$ $Q \equiv \operatorname{diag}\{e^{\mathrm{i}\rho}, e^{\mathrm{i}\sigma}, 1\}$ $\eta'\left(\mu_M\right) = 2\eta\left(\mu_M\right)$

$$\eta \equiv P^{\dagger} U_{l}^{\dagger} \tilde{\eta} U_{l} P = \begin{pmatrix} \eta_{ee} & |\eta_{e\mu}| e^{+i\phi_{e\mu}} & |\eta_{e\tau}| e^{+i\phi_{e\tau}} \\ |\eta_{e\mu}| e^{-i\phi_{e\mu}} & \eta_{\mu\mu} & |\eta_{\mu\tau}| e^{+i\phi_{\mu\tau}} \\ |\eta_{e\tau}| e^{-i\phi_{e\tau}} & |\eta_{\mu\tau}| e^{-i\phi_{\mu\tau}} & \eta_{\tau\tau} \end{pmatrix} \quad \eta' \equiv P^{\dagger} U_{l}^{\dagger} \tilde{\eta}' U_{l} P = \begin{pmatrix} \eta'_{ee} & |\eta'_{e\mu}| e^{+i\phi'_{e\mu}} & |\eta'_{e\tau}| e^{+i\phi'_{e\tau}} \\ |\eta'_{e\mu}| e^{-i\phi'_{e\mu}} & \eta'_{\mu\mu} & |\eta'_{\mu\tau}| e^{+i\phi'_{\mu\tau}} \\ |\eta'_{e\tau}| e^{-i\phi'_{e\tau}} & |\eta'_{\mu\tau}| e^{-i\phi'_{\mu\tau}} & \eta'_{\tau\tau} \end{pmatrix} \mathbf{8}$$

One-loop RGEs of Flavor Mixing Parameters

RGEs for **eigenvalues**:

$$\begin{split} \dot{y}_{\alpha} &= \left[\left(-\frac{15}{4}g_1^2 - \frac{9}{4}g_2^2 + T \right) + \frac{3}{2}y_{\alpha}^2 - 2\frac{m^2}{v^2}\left(\eta' - 4\eta\right)_{\alpha\alpha} \right] y_{\alpha} \\ \dot{\kappa}_i &= \left[\left(-3g_2^2 + 4\lambda + 2T \right) - 3\text{Re}\mathcal{S}_{ii} \right] \kappa_i \end{split}$$

RGEs for lepton flavor mixing parameters and those in the NC interactions:

 $\dot{V}_{\alpha i}' = \sum_{\rho} \left(\dot{U}_l^{\dagger} U_l \right)_{\alpha \beta} V_{\beta i}' + \sum_{i} V_{\alpha j}' \left(U_{\nu}^{\dagger} \dot{U}_{\nu} \right)_{j i}$ $=\sum_{\alpha \neq i} 2 \frac{m^2}{v^2} y_{\alpha\beta} \left(\eta' - 4\eta\right)_{\alpha\beta} \mathrm{e}^{\mathrm{i}\left(\phi_{\alpha} - \phi_{\beta}\right)} V_{\beta i}' - \sum_{\alpha \neq i} \frac{3}{2} V_{\alpha j}' \frac{1}{\kappa_i^2 - \kappa_j^2} \left[\left(\kappa_i^2 + \kappa_j^2\right) \mathcal{S}_{ji} + 2\kappa_i \kappa_j \mathcal{S}_{ji}^* \right]$ $\dot{\eta}_{\alpha\beta} = \mathrm{i}\left(\dot{\phi}_{\beta} - \dot{\phi}_{\alpha}\right)\eta_{\alpha\beta} + \sum_{\alpha,\beta} 2\,\frac{m^2}{v^2}y_{\alpha\gamma}\left(\eta' - 4\eta\right)_{\alpha\gamma}\eta_{\gamma\beta} + \sum_{\alpha,\beta} 2\,\frac{m^2}{v^2}y_{\beta\varrho}\,\eta_{\alpha\varrho}\left(\eta' - 4\eta\right)_{\varrho\beta}$ $-\sum_{i}\kappa_{i}^{2}v^{2}U_{\alpha i}U_{\beta i}^{*}+\frac{2}{3}g_{2}^{2}\mathrm{tr}\left(\eta\right)\delta_{\alpha\beta}+\left(-\frac{17}{3}g_{2}^{2}+2T\right)\eta_{\alpha\beta}+\frac{1}{2}\left(y_{\alpha}^{2}+y_{\beta}^{2}\right)\left(5\eta_{\alpha\beta}-3\eta_{\alpha\beta}'\right)$ $\dot{\eta}_{\alpha\beta}' = \mathrm{i}\left(\dot{\phi}_{\beta} - \dot{\phi}_{\alpha}\right)\eta_{\alpha\beta}' + \sum_{\prime} 2\frac{m^2}{v^2}y_{\alpha\gamma}\left(\eta' - 4\eta\right)_{\alpha\gamma}\eta_{\gamma\beta}' + \sum_{\prime,\prime} 2\frac{m^2}{v^2}y_{\beta\varrho}\eta_{\alpha\varrho}'\left(\eta' - 4\eta\right)_{\varrho\beta}$ $+\frac{2}{3}\left(g_{2}^{2}-g_{1}^{2}\right)\operatorname{tr}\left(\eta\right)\delta_{\alpha\beta}+\frac{2}{3}g_{1}^{2}\operatorname{tr}\left(\eta'\right)\delta_{\alpha\beta}-\frac{1}{3}\left(17g_{2}^{2}+g_{1}^{2}\right)\eta_{\alpha\beta}+\left(\frac{1}{3}g_{1}^{2}+2T\right)\eta_{\alpha\beta}'$ $-rac{5}{2}\sum\kappa_i^2 v^2 U_{lpha i} U^*_{eta i}+rac{1}{2}\left(y^2_lpha+y^2_eta
ight)\left(\eta'_{lphaeta}-8\eta_{lphaeta}
ight)\;,$

$$\begin{split} \kappa &\equiv C_5 \\ U_l^{\dagger} Y_l U_l' = \text{diag}\{y_e, y_{\mu}, y_{\tau}\} \\ U_{\nu}^{\dagger} \kappa U_{\nu}^* = \text{diag}\{\kappa_1, \kappa_2, \kappa_3\} \\ \mathcal{S} &\equiv V'^{\dagger} \widehat{Y}_l^2 V' \end{split}$$

The non-unitary PMNS matrix

$$V \equiv (1 - \eta) \cdot U \cdot Q$$

- Lepton masses
- \succ Mixing angles and phases in V'
- Unitarity-violating and FCNC parameters, i.e., magnitude and arguments of η and η'

See, Wang, DZ, and Zhou, 2023

Numerical Analysis

Numerical Analysis

$$\Delta \theta_{13} \sim -\Delta t \left[4 \frac{m^2}{v^2} \eta_{e\tau} \right] c_{23} c_{e\tau+\delta} + \frac{3}{8} \zeta_{23}^{-1} y_{\tau}^2 \sin 2\theta_{12} \sin 2\theta_{23} s_{\rho-\sigma} s_{\delta+\rho+\sigma} d\phi_{13} + \frac{3}{8} \zeta_{23}^{-1} y_{\tau}^2 \sin 2\theta_{12} \sin 2\theta_{23} s_{\rho-\sigma} s_{\delta+\rho+\sigma} d\phi_{13} + \frac{3}{8} \zeta_{23}^{-1} y_{\tau}^2 \sin 2\theta_{12} \sin 2\theta_{23} s_{\rho-\sigma} s_{\delta+\rho+\sigma} d\phi_{13} + \frac{3}{8} \zeta_{23}^{-1} y_{\tau}^2 \sin 2\theta_{12} \sin 2\theta_{13} + \frac{3}{8} \zeta_{23}^{-1} y_{\tau}^2 \sin 2\theta_{13} + \frac{3}{8} \zeta_{23}^{-1} y_{\tau}$$

- Two terms have opposite signs and the absolute value of the first one is slightly larger than that of the second one, thus opposite running directions
- But depends on the initial inputs

- Approximately and analytically, the running behaviors of all these parameters can be well-understood
- The non-unitary parameters may significantly affect the running of leptonic flavor mixing parameters

Summary

- > We derived the **complete** set of **one-loop RGEs** for the SM couplings and Wilson coefficients of operators up to dim-6 and $O(1/\Lambda_{SS}^2)$ in seesaw EFTs
- Besides two tree-level-generated dim-6 operators, 17 dim-6 operators can be generated by the oneloop RGEs in the type-I seesaw EFT
- We gave the explicit expressions of the RGEs of all the parameters involved in the charged- and neutral-current interactions of leptons
- > Together with the one-loop matching results at Λ_{SS} , these one-loop RGEs establish a **self-consistent** EFT framework to investigate **low-energy phenomena** of seesaw models up to $O(1/\Lambda_{SS}^2)$ at the **one-loop level**

THANKS FOR YOUR ATTENTION GRACIAS / DANKE / 谢谢

The Greens basis in the SMEFT Jiang et al., 2019; Gherardi et al., 2020; Carmona et al., 2022

$\psi^2 D^3$			$\psi^2 X D$	$\psi^2 D H^2$		
${\cal R}^{lphaeta}_{qD}$	$rac{\mathrm{i}}{2}\overline{Q_{lpha\mathrm{L}}}\left\{D_{\mu}D^{\mu},D^{\mu} ight\}Q_{\beta\mathrm{L}}$	$\mathcal{R}_{Gq}^{lphaeta}$	$\left(\overline{Q_{lpha \mathrm{L}}}T^A\gamma^\mu Q_{eta \mathrm{L}} ight)D^ u G^A_{\mu u}$	$\mathcal{O}_{Hq}^{(1)lphaeta}$	$\left(\overline{Q_{lpha \mathrm{L}}}\gamma^{\mu}Q_{eta \mathrm{L}} ight)\left(H^{\dagger}\mathrm{i}\overleftrightarrow{D}_{\mu}H ight)$	
${\cal R}_{uD}^{lphaeta}$	$rac{\mathrm{i}}{2}\overline{U_{lpha\mathrm{R}}}\left\{D_{\mu}D^{\mu},D\!\!\!/\right\}U_{eta\mathrm{R}}$	${\cal R}_{Gq}^{\primelphaeta}$	$\frac{1}{2} \left(\overline{Q_{\alpha \mathrm{L}}} T^A \gamma^{\mu} \mathrm{i} \overleftrightarrow{D}^{\nu} Q_{\beta \mathrm{L}} \right) G^A_{\mu\nu}$	$\mathcal{R}_{Hq}^{\prime(1)lphaeta}$	$\left(\overline{Q_{lpha \mathrm{L}}}\mathrm{i}\overleftrightarrow{D} Q_{eta \mathrm{L}} ight)\left(H^{\dagger}H ight)$	
${\cal R}^{lphaeta}_{dD}$	$rac{\mathrm{i}}{2}\overline{D_{lpha\mathrm{R}}}\left\{D_{\mu}D^{\mu},D\!\!\!/\right\}D_{\beta\mathrm{R}}$	$\mathcal{R}^{\primelphaeta}_{\widetilde{G}q}$	$\frac{1}{2} \left(\overline{Q_{\alpha \mathrm{L}}} T^A \gamma^{\mu} \mathrm{i} \overleftrightarrow{D}^{\nu} Q_{\beta \mathrm{L}} \right) \widetilde{G}^A_{\mu\nu}$	${\cal R}_{Hq}^{\prime\prime(1)lphaeta}$	$\left(\overline{Q_{lpha \mathrm{L}}}\gamma^{\mu}Q_{eta \mathrm{L}} ight)\partial_{\mu}\left(H^{\dagger}H ight)$	
${\cal R}_{\ell D}^{lphaeta}$	$rac{\mathrm{i}}{2}\overline{\ell_{lpha\mathrm{L}}}\left\{D_{\mu}D^{\mu},D\!\!\!/\right\}\ell_{\beta\mathrm{L}}$	${\cal R}^{lphaeta}_{Wq}$	$\left(\overline{Q_{lpha \mathrm{L}}} \sigma^{I} \gamma^{\mu} Q_{eta \mathrm{L}} ight) D^{ u} W^{I}_{\mu u}$	${\cal O}_{Hq}^{(3)lphaeta}$	$\left(\overline{Q_{lpha \mathrm{L}}}\gamma^{\mu}\sigma^{I}Q_{\beta \mathrm{L}} ight)\left(H^{\dagger}\mathrm{i}\overleftrightarrow{D}_{\mu}^{I}H ight)$	
${\cal R}_{eD}^{lphaeta}$	$\frac{\mathrm{i}}{2}\overline{E_{\alpha\mathrm{R}}}\left\{D_{\mu}D^{\mu},\not\!\!\!D\right\}E_{\beta\mathrm{R}}$	${\cal R}^{\primelphaeta}_{Wq}$	$\frac{1}{2} \left(\overline{Q_{\alpha \mathrm{L}}} \sigma^{I} \gamma^{\mu} \mathrm{i} \overleftrightarrow{D}^{\nu} Q_{\beta \mathrm{L}} \right) W^{I}_{\mu \nu}$	${\cal R}_{Hq}^{\prime(3)lphaeta}$	$\left(\overline{Q_{lpha \mathrm{L}}}\mathrm{i}\overleftrightarrow{D}^{I}Q_{eta \mathrm{L}} ight)\left(H^{\dagger}\sigma^{I}H ight)$	
$\psi^2 H D^2$		$\mathcal{R}^{\primelphaeta}_{\widetilde{W}q}$	$\frac{1}{2} \left(\overline{Q_{\alpha \mathrm{L}}} \sigma^{I} \gamma^{\mu} \mathrm{i} \overleftrightarrow{D}^{\nu} Q_{\beta \mathrm{L}} \right) \widetilde{W}^{I}_{\mu \nu}$	${\cal R}_{Hq}^{\prime\prime(3)lphaeta}$	$\left(\overline{Q_{lpha \mathrm{L}}} \sigma^{I} \gamma^{\mu} Q_{eta \mathrm{L}} ight) D_{\mu} \left(H^{\dagger} \sigma^{I} H ight)$	
$\mathcal{R}_{uHD1}^{lphaeta}$	$\left(\overline{Q_{lpha \mathrm{L}}} U_{eta \mathrm{R}} ight) D_{\mu} D^{\mu} \widetilde{H}$	${\cal R}^{lphaeta}_{Bq}$	$\left(\overline{Q_{lpha \mathrm{L}}}\gamma^{\mu}Q_{\beta \mathrm{L}} ight)\partial^{ u}B_{\mu u}$	${\cal O}_{Hu}^{lphaeta}$	$\left(\overline{U_{lpha \mathrm{R}}} \gamma^{\mu} U_{eta \mathrm{R}} ight) \left(H^{\dagger} \mathrm{i} \overleftrightarrow{D}_{\mu} H ight)$	
${\cal R}^{lphaeta}_{uHD2}$	$\left(\overline{Q_{\alpha \mathrm{L}}}\mathrm{i}\sigma_{\mu \nu}D^{\mu}U_{\beta \mathrm{R}} ight)D^{ u}\widetilde{H}$	${\cal R}_{Bq}^{\primelphaeta}$	$rac{1}{2}\left(\overline{Q_{lpha \mathrm{L}}}\gamma^{\mu}\mathrm{i}\overleftrightarrow{D}^{ u}Q_{eta \mathrm{L}} ight)B_{\mu u}$	$\mathcal{R}_{Hu}^{\primelphaeta}$	$\left(\overline{U_{lpha \mathrm{R}}}\mathrm{i}\overleftrightarrow{D} U_{eta \mathrm{R}} ight)\left(H^{\dagger}H ight)$	
${\cal R}^{lphaeta}_{uHD3}$	$\left(\overline{Q_{lpha \mathrm{L}}} D_\mu D^\mu U_{eta \mathrm{R}} ight) \widetilde{H}$	${\cal R}^{\primelphaeta}_{\widetilde{B}q}$	$rac{1}{2}\left(\overline{Q_{lpha \mathrm{L}}}\gamma^{\mu}\mathrm{i}\overleftrightarrow{D}^{ u}Q_{eta \mathrm{L}} ight)\widetilde{B}_{\mu u}$	$\mathcal{R}_{Hu}^{\prime\primelphaeta}$	$\left(\overline{U_{lpha \mathrm{R}}}\gamma^{\mu}U_{eta \mathrm{R}} ight)\partial_{\mu}\left(H^{\dagger}H ight)$	
${\cal R}^{lphaeta}_{uHD4}$	$\left(\overline{Q_{lpha \mathrm{L}}} D_{\mu} U_{eta \mathrm{R}} ight) D^{\mu} \widetilde{H}$	$\mathcal{R}_{Gu}^{lphaeta}$	$\left(\overline{U_{lpha \mathrm{R}}}T^A\gamma^\mu U_{\beta \mathrm{R}} ight)D^ u G^A_{\mu u}$	$\mathcal{O}_{Hd}^{lphaeta}$	$\left(\overline{D_{lpha \mathrm{R}}}\gamma^{\mu}D_{eta \mathrm{R}} ight)\left(H^{\dagger}\mathrm{i}\overleftrightarrow{D}_{\mu}H ight)$	
$\mathcal{R}^{lphaeta}_{dHD1}$	$\left(\overline{Q_{lpha \mathrm{L}}} D_{eta \mathrm{R}} ight) D_{\mu} D^{\mu} H$	$\mathcal{R}_{Gu}^{\primelphaeta}$	$\frac{1}{2} \left(\overline{U_{\alpha \mathrm{R}}} T^A \gamma^{\mu} \mathrm{i} \overleftrightarrow{D}^{\nu} U_{\beta \mathrm{R}} \right) G^A_{\mu\nu}$	${\cal R}_{Hd}^{\primelphaeta}$	$\left(\overline{D_{lpha \mathrm{R}}}\mathrm{i} \overleftrightarrow{D}_{eta \mathrm{R}} ight) \left(H^{\dagger} H ight)$	
$\mathcal{R}^{lphaeta}_{dHD2}$	$\left(\overline{Q_{\alpha \mathrm{L}}}\mathrm{i}\sigma_{\mu \nu}D^{\mu}D_{\beta \mathrm{R}} ight)D^{\nu}H$	$\mathcal{R}^{\primelphaeta}_{\widetilde{G}u}$	$\frac{1}{2} \left(\overline{U_{\alpha \mathrm{R}}} T^A \gamma^{\mu} \mathrm{i} \overleftrightarrow{D}^{\nu} U_{\beta \mathrm{R}} \right) \widetilde{G}^A_{\mu\nu}$	$\mathcal{R}^{\prime\primelphaeta}_{Hd}$	$\left(\overline{D_{lpha \mathrm{R}}}\gamma^{\mu}D_{\beta \mathrm{R}} ight)\partial_{\mu}\left(H^{\dagger}H ight)$	
${\cal R}^{lphaeta}_{dHD3}$	$\left(\overline{Q_{lpha \mathrm{L}}} D_\mu D^\mu D_{eta \mathrm{R}} ight) H$	$\mathcal{R}^{lphaeta}_{Bu}$	$\left(\overline{U_{lpha \mathrm{R}}}\gamma^{\mu}U_{eta \mathrm{R}} ight)\partial^{ u}B_{\mu u}$	$\mathcal{O}_{Hud}^{lphaeta}$	$\mathrm{i}\left(\overline{U_{lpha\mathrm{R}}}\gamma^{\mu}D_{\beta\mathrm{R}} ight)\left(\widetilde{H}^{\dagger}D_{\mu}H ight)$	
${\cal R}^{lphaeta}_{dHD4}$	$\left(\overline{Q_{lpha \mathrm{L}}} D_\mu D_{eta \mathrm{R}} ight) D^\mu H$	${\cal R}_{Bu}^{\primelphaeta}$	$rac{1}{2}\left(\overline{U_{lpha \mathrm{R}}}\gamma^{\mu}\mathrm{i}\overleftrightarrow{D}^{ u}U_{eta \mathrm{R}} ight)B_{\mu u}$	$\mathcal{O}_{H\ell}^{(1)lphaeta}$	$\left(\overline{\ell_{lpha \mathrm{L}}} \gamma^{\mu} \ell_{eta \mathrm{L}} ight) \left(H^{\dagger} \mathrm{i} \overleftrightarrow{D}_{\mu} H ight)$	
$\mathcal{R}_{eHD1}^{lphaeta}$	$\left(\overline{\ell_{lpha \mathrm{L}}} E_{eta \mathrm{R}} ight) D_{\mu} D^{\mu} H$	${\cal R}^{\primelphaeta}_{\widetilde{B}u}$	$\frac{1}{2} \left(\overline{U_{\alpha \mathrm{R}}} \gamma^{\mu} \mathrm{i} \overleftrightarrow{D}^{\nu} U_{\beta \mathrm{R}} \right) \widetilde{B}_{\mu\nu}$	$\mathcal{R}_{H\ell}^{\prime(1)lphaeta}$	$\left(\overline{\ell_{lpha \mathrm{L}}}\mathrm{i}\!$	
$\mathcal{R}_{eHD2}^{lphaeta}$	$\left(\overline{\ell_{\alpha \mathrm{L}}}\mathrm{i}\sigma_{\mu \nu}D^{\mu}E_{\beta \mathrm{R}} ight)D^{\nu}H$	$\mathcal{R}_{Gd}^{lphaeta}$	$\left(\overline{D_{lpha \mathrm{R}}}T^A\gamma^\mu D_{\beta \mathrm{R}} ight)D^ u G^A_{\mu u}$	$\mathcal{R}_{H\ell}^{\prime\prime(1)lphaeta}$	$\left(\overline{\ell_{lpha \mathrm{L}}}\gamma^{\mu}\ell_{eta \mathrm{L}} ight)\partial_{\mu}\left(H^{\dagger}H ight)$	
${\cal R}_{eHD3}^{lphaeta}$	$\left(\overline{\ell_{lpha \mathrm{L}}} D_{\mu} D^{\mu} E_{\beta \mathrm{R}} \right) H$	$\mathcal{R}_{Gd}^{\primelphaeta}$	$\frac{1}{2} \left(\overline{D_{\alpha \mathbf{R}}} T^A \gamma^{\mu} \mathbf{i} \overleftrightarrow{D}^{\nu} D_{\beta \mathbf{R}} \right) G^A_{\mu\nu}$	${\cal O}_{H\ell}^{(3)lphaeta}$	$\left(\overline{\ell_{lpha \mathrm{L}}}\gamma^{\mu}\sigma^{I}\ell_{eta \mathrm{L}} ight)\left(H^{\dagger}\mathrm{i}\overleftrightarrow{D}_{\mu}^{I}H ight)$	
${\cal R}^{lphaeta}_{eHD4}$	$\left(\overline{\ell_{lpha \mathrm{L}}} D_{\mu} E_{eta \mathrm{R}} ight) D^{\mu} H$	$\mathcal{R}^{\primelphaeta}_{\widetilde{G}d}$	$\frac{1}{2} \left(\overline{D_{\alpha \mathbf{R}}} T^A \gamma^{\mu} \mathbf{i} \overleftrightarrow{D}^{\nu} D_{\beta \mathbf{R}} \right) \widetilde{G}^A_{\mu\nu}$	$\mathcal{R}_{H\ell}^{\prime(3)lphaeta}$	$\left(\overline{\ell_{lpha \mathrm{L}}}\mathrm{i} \overleftrightarrow{D}^{I} \ell_{eta \mathrm{L}} ight) \left(H^{\dagger} \sigma^{I} H ight)$	
$\psi^2 X H$		$\mathcal{R}_{Bd}^{lphaeta}$	$\left(\overline{D_{lpha \mathrm{R}}}\gamma^{\mu}D_{eta \mathrm{R}} ight)\partial^{ u}B_{\mu u}$	${\cal R}^{\prime\prime(3)lphaeta}_{H\ell}$	$\left(\overline{\ell_{lpha \mathrm{L}}} \sigma^{I} \gamma^{\mu} \ell_{eta \mathrm{L}} ight) D_{\mu} \left(H^{\dagger} \sigma^{I} H ight)$	
${\cal O}_{uG}^{lphaeta}$	$\left(\overline{Q_{\alpha \mathrm{L}}} \sigma^{\mu \nu} T^A U_{\beta \mathrm{R}}\right) \widetilde{H} G^A_{\mu \nu}$	${\cal R}^{\primelphaeta}_{Bd}$	$\frac{1}{2} \left(\overline{D_{\alpha \mathrm{R}}} \gamma^{\mu} \mathrm{i} \overleftrightarrow{D}^{\nu} D_{\beta \mathrm{R}} \right) B_{\mu \nu}$	$\mathcal{O}_{He}^{lphaeta}$	$\left(\overline{E_{\alpha \mathbf{R}}}\gamma^{\mu}E_{\beta \mathbf{R}}\right)\left(H^{\dagger}\mathrm{i}\overleftrightarrow{D}_{\mu}H\right)$	
$\mathcal{O}_{uW}^{lphaeta}$	$\left(\overline{Q_{lpha \mathrm{L}}} \sigma^{\mu u} U_{eta \mathrm{R}} ight) \sigma^{I} \widetilde{H} W^{I}_{\mu u}$	${\cal R}^{\primelphaeta}_{\widetilde{B}d}$	$\frac{1}{2} \left(\overline{D_{\alpha \mathrm{R}}} \gamma^{\mu} \mathrm{i} \overleftrightarrow{D}^{\nu} D_{\beta \mathrm{R}} \right) \widetilde{B}_{\mu \nu}$	${\cal R}_{He}^{\primelphaeta}$	$\left(\overline{E_{lpha \mathrm{R}}}\mathrm{i}\!$	
$\mathcal{O}_{uB}^{lphaeta}$	$\left(\overline{Q_{lpha \mathrm{L}}} \sigma^{\mu u} U_{eta \mathrm{R}} ight) \widetilde{H} B_{\mu u}$	$\mathcal{R}^{lphaeta}_{W\ell}$	$\left(\overline{\ell_{lpha \mathrm{L}}} \sigma^{I} \gamma^{\mu} \ell_{eta \mathrm{L}} ight) D^{ u} W^{I}_{\mu u}$	${\cal R}^{\prime\primelphaeta}_{He}$	$\left(\overline{E_{lpha \mathrm{R}}}\gamma^{\mu}E_{\beta \mathrm{R}} ight)\partial_{\mu}\left(H^{\dagger}H ight)$	

$\mathcal{O}_{dG}^{lphaeta}$	$\left(\overline{Q_{lpha \mathrm{L}}} \sigma^{\mu u} T^A D_{\beta \mathrm{R}} \right) H G^A_{\mu u}$	${\cal R}^{\primelphaeta}_{W\ell}$	$rac{1}{2}\left(\overline{\ell_{lpha \mathrm{L}}}\sigma^{I}\gamma^{\mu}\mathrm{i}\overleftrightarrow{D}^{ u}\ell_{eta \mathrm{L}} ight)W^{I}_{\mu u}$		$\psi^2 H^3$
$\mathcal{O}_{dW}^{lphaeta}$	$\left(\overline{Q_{lpha \mathrm{L}}} \sigma^{\mu u} D_{eta \mathrm{R}} ight) \sigma^{I} H W^{I}_{\mu u}$	$\mathcal{R}^{\primelphaeta}_{\widetilde{W}\ell}$	$\tfrac{1}{2} \left(\overleftarrow{\ell_{\alpha \mathrm{L}}} \sigma^{I} \gamma^{\mu} \mathrm{i} \overleftrightarrow{D}^{\nu} \ell_{\beta \mathrm{L}} \right) \widetilde{W}^{I}_{\mu \nu}$	${\cal O}_{uH}^{lphaeta}$	$\left(\overline{Q_{lpha \mathrm{L}}}\widetilde{H} U_{eta \mathrm{R}} ight) \left(H^{\dagger} H ight)$
$\mathcal{O}^{lphaeta}_{dB}$	$\left(\overline{Q_{lpha \mathrm{L}}} \sigma^{\mu u} D_{eta \mathrm{R}} ight) H B_{\mu u}$	$\mathcal{R}^{lphaeta}_{B\ell}$	$\left(\overline{\ell_{lpha \mathrm{L}}}\gamma^{\mu}\ell_{eta \mathrm{L}} ight)\partial^{ u}B_{\mu u}$	$\mathcal{O}_{dH}^{lphaeta}$	$\left(\overline{Q_{lpha \mathrm{L}}}HD_{eta \mathrm{R}} ight)\left(H^{\dagger}H ight)$
${\cal O}_{eW}^{lphaeta}$	$\left(\overline{\ell_{lpha \mathrm{L}}} \sigma^{\mu u} E_{eta \mathrm{R}} ight) \sigma^{I} H W^{I}_{\mu u}$	${\cal R}^{\primelphaeta}_{B\ell}$	$rac{1}{2}\left(\overline{\ell_{lpha \mathrm{L}}}\gamma^{\mu}\mathrm{i}\overleftrightarrow{D}^{ u}\ell_{eta \mathrm{L}} ight)B_{\mu u}$	$\mathcal{O}_{eH}^{lphaeta}$	$\left(\overline{\ell_{lpha \mathrm{L}}}HE_{eta \mathrm{R}} ight)\left(H^{\dagger}H ight)$
$\mathcal{O}_{eB}^{lphaeta}$	$\left(\overline{\ell_{lpha \mathrm{L}}} \sigma^{\mu u} E_{\beta \mathrm{R}} ight) H B_{\mu u}$	${\cal R}^{\primelphaeta}_{\widetilde{B}\ell}$	$\tfrac{1}{2} \left(\overline{\ell_{\alpha \mathrm{L}}} \gamma^{\mu} \mathrm{i} \overleftrightarrow{D}^{\nu} \ell_{\beta \mathrm{L}} \right) \widetilde{B}_{\mu \nu}$		
		${\cal R}^{lphaeta}_{Be}$	$\left(\overline{E_{lpha \mathrm{R}}}\gamma^{\mu}E_{\beta \mathrm{R}} ight)\partial^{\nu}B_{\mu u}$		
		${\cal R}^{\primelphaeta}_{Be}$	$rac{1}{2}\left(\overline{E_{lpha \mathrm{R}}}\gamma^{\mu}\mathrm{i}\overleftrightarrow{D}^{ u}E_{eta \mathrm{R}} ight)B_{\mu u}$		
		${\cal R}^{\primelphaeta}_{\widetilde{B}e}$	$\frac{1}{2} \left(\overline{E_{\alpha \mathbf{R}}} \gamma^{\mu} \mathbf{i} \overleftrightarrow{D}^{\nu} E_{\beta \mathbf{R}} \right) \widetilde{B}_{\mu\nu}$		

Table A.1: Two-fermion operators in the Green's basis in the SMEFT.

	X^3		X^2H^2	H^2D^4		
\mathcal{O}_{3G}	$f^{ABC}G^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	\mathcal{O}_{HG}	$G^A_{\mu u}G^{A\mu u}H^\dagger H$	\mathcal{R}_{DH}	$(D_{\mu}D^{\mu}H)^{\dagger}(D_{\nu}D^{\nu}H)$	
$\mathcal{O}_{\widetilde{3G}}$	$f^{ABC}\widetilde{G}^{A u}_{\mu}G^{B ho}_{ u}G^{C\mu}_{ ho}$	$\mathcal{O}_{H\widetilde{G}}$	$\widetilde{G}^A_{\mu\nu}G^{A\mu\nu}H^{\dagger}H$		H^4D^2	
\mathcal{O}_{3W}	$\epsilon^{IJK} W^{I\nu}_\mu W^{J\rho}_\nu W^{K\mu}_\rho$	\mathcal{O}_{HW}	$W^I_{\mu\nu}W^{I\mu\nu}H^\dagger H$	$\mathcal{O}_{H\Box}$ $\left(H^{\dagger}H\right)\Box\left(H^{\dagger}H\right)$		
$\mathcal{O}_{\widetilde{3W}}$	$\epsilon^{IJK}\widetilde{W}^{I u}_{\mu}W^{J ho}_{ u}W^{K\mu}_{ ho}$	$\mathcal{O}_{H\widetilde{W}}$	$\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}H^{\dagger}H$	\mathcal{O}_{HD}	$\left(H^{\dagger}D^{\mu}H ight)^{*}\left(H^{\dagger}D_{\mu}H ight)$	
	X^2D^2	${\cal O}_{HB} \qquad B_{\mu u}B^{\mu u}H^{\dagger}H$		\mathcal{R}'_{HD}	$\left(H^{\dagger}H\right)\left(D_{\mu}H\right)^{\dagger}\left(D^{\mu}H\right)$	
\mathcal{R}_{2G}	$-rac{1}{2}\left(D_{\mu}G^{A\mu u} ight)\left(D^{ ho}G^{A}_{ ho u} ight)$	$\mathcal{O}_{H\widetilde{B}}$	$\widetilde{B}_{\mu u}B^{\mu u}H^{\dagger}H$	$\mathcal{R}_{HD}^{\prime\prime} \mid (H^{\dagger}H) D_{\mu} \left(H^{\dagger} \mathrm{i} \overleftrightarrow{D}_{\mu} H \right)$		
\mathcal{R}_{2W}	$-rac{1}{2}\left(D_{\mu}W^{I\mu u} ight)\left(D^{ ho}W^{I}_{ ho u} ight)$	\mathcal{O}_{HWB}	$W^{I}_{\mu u}B^{\mu u}\left(H^{\dagger}\sigma^{I}H ight)$		H^6	
\mathcal{R}_{2B}	$-rac{1}{2}\left(\partial_{\mu}B^{\mu u} ight)\left(\partial^{ ho}B_{ ho u} ight)$	$\mathcal{O}_{H\widetilde{W}B}$	$\widetilde{W}^{I}_{\mu u}B^{\mu u}\left(H^{\dagger}\sigma^{I}H ight)$	\mathcal{O}_H	$\left(H^{\dagger}H ight)^{3}$	
		$H^2 X D^2$				
		\mathcal{R}_{WDH}	$D_{\nu}W^{I\mu u}\left(H^{\dagger}\mathrm{i}\overleftrightarrow{D}_{\mu}^{I}H ight)$			
		$\mathcal{R}_{BDH} \left[\partial_{\nu}B^{\mu\nu} \left(H^{\dagger} \mathrm{i} \overleftrightarrow{D}_{\mu} H \right)^{\prime} \right]$				

Backup

The Greens basis in the SMEFT Jiang et al., 2019; Gherardi et al., 2020; Carmona et al., 2022

Four-quark			Four-lepton	Semileptonic				
${\cal O}_{qq}^{(1)lphaeta\gamma\lambda}$	$\left(\overline{Q_{lpha \mathrm{L}}}\gamma^{\mu}Q_{eta \mathrm{L}} ight)\left(\overline{Q_{\gamma \mathrm{L}}}\gamma_{\mu}Q_{\lambda \mathrm{L}} ight)$	$\mathcal{O}_{\ell\ell}^{lphaeta\gamma\lambda}$	$\left(\overline{\ell_{lpha \mathrm{L}}}\gamma^{\mu}\ell_{eta \mathrm{L}} ight)\left(\overline{\ell_{\gamma \mathrm{L}}}\gamma_{\mu}\ell_{\lambda \mathrm{L}} ight)$	$\mathcal{O}_{\ell q}^{(1)lphaeta\gamma\lambda}$	$\left(\overline{\ell_{lpha \mathrm{L}}}\gamma^{\mu}\ell_{eta \mathrm{L}} ight)\left(\overline{Q_{\gamma\mathrm{L}}}\gamma_{\mu}Q_{\lambda\mathrm{L}} ight)$			
${\cal O}_{qq}^{(3)lphaeta\gamma\lambda}$	$\left(\overline{Q_{lpha \mathrm{L}}}\gamma^{\mu}\sigma^{I}Q_{eta \mathrm{L}} ight)\left(\overline{Q_{\gamma \mathrm{L}}}\gamma_{\mu}\sigma^{I}Q_{\lambda \mathrm{L}} ight)$	$\mathcal{O}_{ee}^{lphaeta\gamma\lambda}$	$\left(\overline{E_{lpha \mathrm{R}}}\gamma^{\mu}E_{\beta \mathrm{R}} ight)\left(\overline{E_{\gamma \mathrm{R}}}\gamma_{\mu}E_{\lambda \mathrm{R}} ight)$	$\mathcal{O}_{\ell q}^{(3)lphaeta\gamma\lambda}$	$\left(\left(\overline{\ell_{\alpha \mathrm{L}}} \gamma^{\mu} \sigma^{I} \ell_{\beta \mathrm{L}} \right) \left(\overline{Q_{\gamma \mathrm{L}}} \gamma_{\mu} \sigma^{I} Q_{\lambda \mathrm{L}} \right) \right)$			
$\mathcal{O}_{uu}^{lphaeta\gamma\lambda}$	$\left(\overline{U_{lpha \mathrm{R}}}\gamma^{\mu}U_{eta \mathrm{R}} ight)\left(\overline{U_{\gamma \mathrm{R}}}\gamma_{\mu}U_{\lambda \mathrm{R}} ight)$	$\mathcal{O}_{\ell e}^{lphaeta\gamma\lambda}$	$\left(\overline{\ell_{lpha \mathrm{L}}}\gamma^{\mu}\ell_{eta \mathrm{L}} ight)\left(\overline{E_{\gamma \mathrm{R}}}\gamma_{\mu}E_{\lambda \mathrm{R}} ight)$	$\mathcal{O}_{eu}^{lphaeta\gamma\lambda}$	$\left(\overline{E_{lpha \mathrm{R}}}\gamma^{\mu}E_{eta \mathrm{R}} ight)\left(\overline{U_{\gamma \mathrm{R}}}\gamma_{\mu}U_{\lambda \mathrm{R}} ight)$			
$\mathcal{O}_{dd}^{lphaeta\gamma\lambda}$	$\left(\overline{D_{lpha \mathrm{R}}}\gamma^{\mu}D_{eta \mathrm{R}} ight)\left(\overline{D_{\gamma \mathrm{R}}}\gamma_{\mu}D_{\lambda \mathrm{R}} ight)$			$\mathcal{O}_{ed}^{lphaeta\gamma\lambda}$	$\left(\overline{E_{lpha \mathrm{R}}}\gamma^{\mu}E_{eta \mathrm{R}} ight)\left(\overline{D_{\gamma \mathrm{R}}}\gamma_{\mu}D_{\lambda \mathrm{R}} ight)$			
${\cal O}_{ud}^{(1)lphaeta\gamma\lambda}$	$\left(\overline{U_{lpha \mathrm{R}}}\gamma^{\mu}U_{eta \mathrm{R}} ight)\left(\overline{D_{\gamma \mathrm{R}}}\gamma_{\mu}D_{\lambda \mathrm{R}} ight)$			$\mathcal{O}_{qe}^{lphaeta\gamma\lambda}$	$\left(\overline{Q_{lpha \mathrm{L}}}\gamma^{\mu}Q_{eta \mathrm{L}} ight)\left(\overline{E_{\gamma \mathrm{R}}}\gamma_{\mu}E_{\lambda \mathrm{R}} ight)$			
${\cal O}_{ud}^{(8)lphaeta\gamma\lambda}$	$\left(\overline{U_{\alpha \mathrm{R}}}\gamma^{\mu}T^{A}U_{\beta \mathrm{R}}\right)\left(\overline{D_{\gamma \mathrm{R}}}\gamma_{\mu}T^{A}D_{\lambda \mathrm{R}}\right)$			$\mathcal{O}_{\ell u}^{lphaeta\gamma\lambda}$	$\left(\overline{\ell_{lpha \mathrm{L}}}\gamma^{\mu}\ell_{eta \mathrm{L}} ight)\left(\overline{U_{\gamma \mathrm{R}}}\gamma_{\mu}U_{\lambda \mathrm{R}} ight)$			
${\cal O}_{qu}^{(1)lphaeta\gamma\lambda}$	$\left(\overline{Q_{lpha \mathrm{L}}}\gamma^{\mu}Q_{eta \mathrm{L}} ight)\left(\overline{U_{\gamma \mathrm{R}}}\gamma_{\mu}U_{\lambda \mathrm{R}} ight)$			$\mathcal{O}_{\ell d}^{lphaeta\gamma\lambda}$	$\left(\overline{\ell_{lpha \mathrm{L}}} \gamma^{\mu} \ell_{eta \mathrm{L}} ight) \left(\overline{D_{\gamma \mathrm{R}}} \gamma_{\mu} D_{\lambda \mathrm{R}} ight)$			
${\cal O}_{qu}^{(8)lphaeta\gamma\lambda}$	$\left(\overline{Q_{lpha \mathrm{L}}}\gamma^{\mu}T^{A}Q_{\beta \mathrm{L}} ight)\left(\overline{U_{\gamma \mathrm{R}}}\gamma_{\mu}T^{A}U_{\lambda \mathrm{R}} ight)$			$\mathcal{O}_{\ell e d q}^{lpha eta \gamma \lambda}$	$\left(\overline{\ell_{lpha \mathrm{L}}} E_{eta \mathrm{R}} ight) \left(\overline{D_{\gamma \mathrm{R}}} Q_{\lambda \mathrm{L}} ight)$			
${\cal O}_{qd}^{(1)lphaeta\gamma\lambda}$	$\left(\overline{Q_{lpha \mathrm{L}}}\gamma^{\mu}Q_{eta \mathrm{L}} ight)\left(\overline{D_{\gamma \mathrm{R}}}\gamma_{\mu}D_{\lambda \mathrm{R}} ight)$			$\mathcal{O}_{\ell equ}^{(1)lphaeta\gamma\lambda}$	$\left(\overline{\ell^a_{lpha \mathrm{L}}} E_{eta \mathrm{R}} ight) \epsilon^{ab} \left(\overline{Q^b_{\gamma \mathrm{L}}} U_{\lambda \mathrm{R}} ight)$			
${\cal O}_{qd}^{(8)lphaeta\gamma\lambda}$	$\left(\overline{Q_{lpha \mathrm{L}}}\gamma^{\mu}T^{A}Q_{\beta \mathrm{L}} ight)\left(\overline{D_{\gamma \mathrm{R}}}\gamma_{\mu}T^{A}D_{\lambda \mathrm{R}} ight)$			$\mathcal{O}_{\ell equ}^{(3)lphaeta\gamma\lambda}$	$\left(\left(\overline{\ell^a_{lpha \mathrm{L}}} \sigma^{\mu u} E_{eta \mathrm{R}} ight) \epsilon^{ab} \left(\overline{Q^b_{\gamma \mathrm{L}}} \sigma_{\mu u} U_{\lambda \mathrm{R}} ight)$			
${\cal O}_{quqd}^{(1)lphaeta\gamma\lambda}$	$\left(\overline{Q^a_{lpha \mathrm{L}}} U_{eta \mathrm{R}} ight) \epsilon^{ab} \left(\overline{Q^b_{\gamma \mathrm{L}}} D_{\lambda \mathrm{R}} ight)$							
${\cal O}_{quqd}^{(8)lphaeta\gamma\lambda}$	$\left(\overline{Q^a_{\alpha \mathrm{L}}}T^A U_{\beta \mathrm{R}}\right) \epsilon^{ab} \left(\overline{Q^b_{\gamma \mathrm{L}}}T^A D_{\lambda \mathrm{R}}\right)$							

B- and L -number violating									
$\mathcal{O}_{duq}^{lphaeta\gamma\lambda}$	$\epsilon^{ABC}\epsilon^{ab}\left[\left(D^{A}_{lpha \mathrm{R}} ight)^{T}CU^{B}_{eta \mathrm{R}} ight]\left[\left(Q^{Ca}_{\gamma \mathrm{L}} ight)^{T}C\ell^{b}_{\lambda \mathrm{L}} ight]$								
$\mathcal{O}_{qqu}^{lphaeta\gamma\lambda}$	$\epsilon^{ABC} \epsilon^{ab} \left[\left(Q^{Aa}_{\alpha \mathrm{L}} \right)^T C Q^{Bb}_{\beta \mathrm{L}} \right] \left[\left(U^C_{\gamma \mathrm{R}} \right)^T C E_{\lambda \mathrm{R}} \right]$								
$\mathcal{O}_{qqq}^{lphaeta\gamma\lambda}$	$\epsilon^{ABC} \epsilon^{ad} \varepsilon^{be} \left[\left(Q^{Aa}_{\alpha \mathrm{L}} \right)^T C Q^{Bb}_{\beta \mathrm{L}} \right] \left[\left(Q^{Ce}_{\gamma \mathrm{L}} \right)^T C \ell^d_{\lambda \mathrm{L}} \right]$								
$\mathcal{O}_{duu}^{lphaeta\gamma\lambda}$	$\epsilon^{ABC} \left[\left(D^A_{lpha \mathrm{R}} ight)^T C U^B_{eta \mathrm{R}} ight] \left[\left(U^C_{\gamma \mathrm{R}} ight)^T C E_{\lambda \mathrm{R}} ight]$								

Table A.3: Baryon and lepton number conserving four-fermion operators in the Green's basis (and also in the Warsaw basis) in the SMEFT.

The tree-level Lagrange up to dimension-six for three seesaw mechanisms

$$\mathcal{L}_{\mathrm{I,EFT}}^{\mathrm{tree}} = \mathcal{L}_{\mathrm{SM}} + \left[\frac{1}{2} \left(Y_{\nu} M^{-1} Y_{\nu}^{\mathrm{T}} \right)_{\alpha\beta} \overline{\ell_{a\mathrm{L}}} \widetilde{H} \widetilde{H}^{\mathrm{T}} \ell_{\beta\mathrm{L}}^{e} + \mathrm{h.c.} \right] + \frac{1}{4} \left(Y_{\nu} M^{-2} Y_{\nu}^{\dagger} \right)_{\alpha\beta} \\ \times \left[\left(\overline{\ell_{a\mathrm{L}}} \gamma^{\mu} \ell_{\beta\mathrm{L}} \right) \left(H^{\dagger} \mathrm{i} \overleftrightarrow{D}_{\mu} H \right) - \left(\overline{\ell_{a\mathrm{L}}} \gamma^{\mu} \tau^{I} \ell_{\beta\mathrm{L}} \right) \left(H^{\dagger} \mathrm{i} \overleftrightarrow{D}_{\mu}^{I} H \right) \right] , \qquad (3.58)$$

$$\mathcal{L}_{\mathrm{II,EFT}}^{\mathrm{tree}} = \mathcal{L}_{\mathrm{SM}} + 2\lambda_{\Delta}^{2} \left(1 + \frac{2m^{2}}{M_{\Delta}^{2}} \right) \left(H^{\dagger} H \right)^{2} - \left[\frac{\lambda_{\Delta} \left(Y_{\Delta} \right)_{\alpha\beta}}{M_{\Delta}} \overline{\ell_{a\mathrm{L}}} \widetilde{H} \widetilde{H}^{\mathrm{T}} \ell_{\beta\mathrm{L}}^{e} + \mathrm{h.c.} \right] \\ + \frac{\left(Y_{\Delta} \right)_{\alpha\gamma} \left(Y_{\Delta}^{\dagger} \right)_{\beta\delta}}{4M_{\Delta}^{2}} \left(\overline{\ell_{a\mathrm{L}}} \gamma^{\mu} \ell_{\beta\mathrm{L}} \right) \left(\overline{\ell_{\gamma\mathrm{L}}} \gamma_{\mu} \ell_{\delta\mathrm{L}} \right) + \frac{2 \left(4\lambda - \lambda_{3} + \lambda_{4} - 8\lambda_{\Delta}^{2} \right) \lambda_{\Delta}^{2}}{M_{\Delta}^{2}} \\ \times \left(H^{\dagger} H \right)^{3} + \frac{2\lambda_{\Delta}^{2}}{M_{\Delta}^{2}} \left[\left(H^{\dagger} H \right) \Box \left(H^{\dagger} H \right) + 2 \left(H^{\dagger} D^{\mu} H \right)^{\dagger} \left(H^{\dagger} D_{\mu} H \right) \right] \\ + \frac{2\lambda_{\Delta}^{2}}{M_{\Delta}^{2}} \left[\left(\overline{\ell_{\mathrm{L}}} Y_{l} H E_{\mathrm{R}} + \overline{Q_{\mathrm{L}}} Y_{\mathrm{u}} \widetilde{H} U_{\mathrm{R}} + \overline{Q_{\mathrm{L}}} Y_{\mathrm{d}} H D_{\mathrm{R}} \right) \left(H^{\dagger} H \right) + \mathrm{h.c.} \right] , \quad (3.59) \\ \mathcal{L}_{\mathrm{III,EFT}}^{\mathrm{tree}} = \mathcal{L}_{\mathrm{SM}} + \left[\frac{1}{2} \left(Y_{\Sigma} M_{\Sigma}^{-1} Y_{\Sigma}^{\mathrm{T}} \right)_{\alpha\beta} \overline{\ell_{a\mathrm{L}}} \widetilde{H} \widetilde{H}^{\mathrm{T}} \ell_{\beta\mathrm{L}}^{e} + \mathrm{h.c.} \right] + \frac{1}{4} \left(Y_{\Sigma} M_{\Sigma}^{-2} Y_{\Sigma}^{\dagger} \right)_{\alpha\beta} \\ \times \left[3 \left(\overline{\ell_{a\mathrm{L}}} \gamma^{\mu} \ell_{\beta\mathrm{L}} \right) \left(H^{\dagger} \mathrm{i} \widetilde{D}_{\mu} H \right) + \left(\overline{\ell_{a\mathrm{L}}} \gamma^{\mu} \tau^{I} \ell_{\beta\mathrm{L}} \right) \left(H^{\dagger} \mathrm{i} \widetilde{D}_{\mu}^{I} H \right) \right] \\ + \left[\overline{\ell_{\mathrm{L}}} Y_{\Sigma} M_{\Sigma}^{-2} Y_{\Sigma}^{\dagger} Y_{l} H E_{\mathrm{R}} \left(H^{\dagger} H \right) + \mathrm{h.c.} \right] . \quad (3.60)$$

Examples for RGEs of parameters

$$\begin{split} \dot{\eta}_{\alpha\alpha} &= \sum_{\gamma\neq\alpha} 4 \frac{m^2}{v^2} y_{r\tau} \left[|\eta'_{\alpha\gamma}| \cos\left(\phi'_{\alpha\gamma} - \phi_{\alpha\gamma}\right) - 4 |\eta_{\alpha\gamma}| \right] |\eta_{\alpha\gamma}| + \frac{2}{3} g_2^2 \operatorname{tr}(\eta) \qquad \eta'_{\alpha\alpha} = \sum_{\gamma\neq\alpha} 4 \frac{m^2}{v^2} y_{\alpha\gamma} \left[|\eta'_{\alpha\gamma}| - 4 |\eta_{\alpha\gamma}| \cos\left(\phi_{\alpha\gamma} - \phi'_{\alpha\gamma}\right) \right] |\eta'_{\alpha\gamma}| + \frac{2}{3} g_1^2 \operatorname{tr}(\eta') + \frac{2}{3} (g_2^2 - g_1^2) \operatorname{tr}(\eta) \\ &- \sum_i \kappa_i^2 v^2 |U_{\alpha i}|^2 + y_{\alpha}^2 (5\eta_{\alpha\alpha} - 3\eta'_{\alpha\alpha}) + \left(-\frac{17}{3} g_2^2 + 2T \right) \eta_{\alpha\alpha} , \qquad -\frac{5}{2} \sum_i \kappa_i^2 v^2 |U_{\alpha i}|^2 + y_{\alpha}^2 (\eta'_{\alpha\gamma} - 8\eta_{\alpha\alpha}) + \left(\frac{1}{3} g_1^2 + 2T \right) \eta'_{\alpha\alpha} - \frac{1}{3} (17 g_2^2 + g_1^2) \eta_{\alpha\alpha} , \\ \dot{\phi}_{\mu\tau} &= +\kappa_1^2 v^2 |\eta_{\mu\tau}|^{-1} \left\{ \left[s_{23} c_{23} \left(s_{12}^2 s_{13}^2 - s_{12}^2 \right) + s_{12} c_{12} s_{13} \left(c_{23}^2 - s_{23}^2 \right) c_{\delta} \right] s_{\mu\tau} + s_{12} c_{12} s_{13} s_{\delta} c_{\mu\tau} \right\} \\ &+ \kappa_2^2 v^2 |\eta_{\mu\tau}|^{-1} \left\{ \left[s_{23} c_{23} \left(s_{12}^2 s_{13}^2 - c_{12}^2 \right) - s_{12} c_{12} s_{13} \left(c_{23}^2 - s_{23}^2 \right) c_{\delta} \right] s_{\mu\tau} - s_{12} c_{12} s_{13} s_{\delta} c_{\mu\tau} \right\} \\ &+ \kappa_2^2 v^2 |\eta_{\mu\tau}|^{-1} \left\{ \left[s_{23} c_{23} c_{23} s_{\mu\tau} + \frac{3}{2} \left(y_{\mu}^2 + y_{\tau}^2 \right) |\eta'_{\mu\tau}| \right] |\eta_{\mu\tau}|^{-1} \sin \left(\phi_{\mu\tau} - \phi'_{\mu\tau} \right) \right] \right\} \\ &+ \kappa_2^2 v^2 |\eta_{\mu\tau}|^{-1} \left\{ y_{\mu\tau} \left(\eta_{\tau\tau} - \eta_{\mu\mu} \right) |\eta'_{\mu\tau}| \sin \left(\phi'_{\mu\tau} - \phi_{\mu\tau} \right) \right\} \\ &+ 2 \frac{m^2}{v^2} |\eta_{\mu\tau}|^{-1} \left\{ y_{\mu\tau} \left(\eta_{\tau\tau} - \eta_{\mu\mu} \right) |\eta'_{\mu\tau}| \sin \left(\phi'_{\mu\tau} - \phi_{\mu\tau} \right) \right\} \\ &- 2 \frac{m^2}{v^2} s_{13} c_{13}^{-1} \left[y_{\mu\tau} s_{11} \left(s_{12} s_{23} - s_{23} \right) \left(\eta'_{\mu\tau} + s_{12} \sin \left(s_{12} s_{12} - s_{12} s_{13} s_{23} \right) \right] \right\} \\ &- 2 \frac{m^2}{v^2} s_{13} c_{13}^{-1} \left(s_{23} - s_{23}^2 \right) \left(\eta'_{\mu\tau} + s_{\mu\tau} + s_{\mu\tau} \right] \\ &- 2 \frac{m^2}{v^2} s_{13} c_{13}^{-1} \left(s_{12} s_{12} - s_{12} s_{13} s_{13} s_{12} \right) \left(s_{\mu\tau} + s_{\mu\tau} + s_{\mu\tau} \right) \\ &- 2 \frac{m^2}{v^2} s_{13} c_{13}^{-1} \left(s_{23} - s_{23}^2 \right) \left(\eta'_{\mu\tau} + s_{\mu\tau} - 4 \left| \eta_{\mu\tau} \right| s_{\mu\tau} \right] \\ &- 2 \frac{m^2}{v^2} s_{\mu\tau} s_{13} s_{13}^{-1} \left(s_{12} \left(s_{\mu\tau} + s_{\mu\tau} + s_{\mu\tau} + s_{\mu\tau} \right) \\ &- 2 \frac{m^2}{v^2} s_{\mu\tau} s_{13} s_{13}^{-1} \left(s_{12} s_{12} - s_{12} s_{13} s_{13}^{-1} s_{12}^{-1} \left(s_{12} s_{12} - s_{12}^2 s_{12} s_{12}^{-1} s_{12} s_{12}^{-1} s_{12} s_{12} s_{12}^{-1} s_$$

The standard parametrization of the mixing matrix Workman et al. [Particle Data Group], 2022

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta} & +c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \\ +s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta} & c_{13}c_{23} \end{pmatrix}$$

Inputs for parameters

$m_u/{ m MeV}$	1.2504	$m_e/{ m MeV}$	0.5239	g_1	0.3589	η_{ee}	1.25×10^{-3}
$m_d/{\rm MeV}$	2.7176	$m_{\mu}/{ m GeV}$	0.1104	g_2	0.6468	$\eta_{\mu\mu}$	2.21×10^{-4}
$m_s/{ m MeV}$	54.120	$m_{ au}/{ m GeV}$	1.8748	g_s	1.1525	$\eta_{ au au}$	2.81×10^{-3}
$m_c/{ m GeV}$	0.6299	$m_1/{ m eV}$	0.05	λ	0.1235	$ \eta_{e\mu} $	1.20×10^{-5}
$m_b/{ m GeV}$	2.8731	$m_2/{ m eV}$	0.05074	$m^2/{ m GeV}^2$	-8672.61	$ \eta_{e au} $	1.35×10^{-3}
$m_t/{ m GeV}$	173.075	$m_3/{ m eV}$	0.07079	$\delta^{ ext{q}}$	1.144	$ \eta_{\mu au} $	6.13×10^{-4}
$\sin heta_{12}^{ ext{q}}$	0.2250	$\sin\theta_{12}$	0.5505	δ	3.438	$\phi_{e\mu}$	$\pi/3$
$\sin heta_{23}^{ ext{q}}$	0.04182	$\sin\theta_{23}$	0.7563	ρ	$\pi/6$	$\phi_{e au}$	$\pi/3$
$\sin heta_{13}^{ ext{q}}$	0.00369	$\sin\theta_{13}$	0.1484	σ	$\pi/4$	$\phi_{\mu au}$.	$\pi/3$

Alam and Martin, 2023

Workman et al, 2022

Esteban et al, 2020

Fernandez-Martinez, Hernandez-Garcia and Lopez-Pavon, 2016

 $\eta'\left(\mu_M\right) = 2\eta\left(\mu_M\right)$

$$v = \sqrt{-m^2/\lambda}$$

Underlying symmetries

Table 2: Summary of the input values of all the relevant parameters at the benchmark energy scale $\mu_{\rm B} = 200$ GeV. See the main text for further explanations.

 $\mu_M = O(M_R) = 10^4 \text{ GeV but } O(Y_v) \sim 1$ Sizable η and η'

See, e.g., Kersten and Smirnov, 2007; Abada et al., 2007