
Boosting the production of sterile neutrino 
dark matter with self-interactions

María Dias  

In collaboration with: 

Stefan Vogl

SUSY 2024, Madrid 

Based on arXiv: 2307.15565   



Sterile neutrinos as dark matter 

What are sterile neutrinos? 

• Singlets under the SM gauge group

1



Sterile neutrinos as dark matter 

What are sterile neutrinos? 

• Singlets under the SM gauge group

• Only interact with the SM through 
mass mixing 

1



Sterile neutrinos as dark matter 

What are sterile neutrinos? 

• Singlets under the SM gauge group

• Only interact with the SM through 
mass mixing 

• Well motivated BSM candidates 

1



Sterile neutrinos as dark matter 

What are sterile neutrinos? 

• Singlets under the SM gauge group

• Only interact with the SM through 
mass mixing 

• Well motivated BSM candidates 

keV sterile neutrinos 

are good DM 

candidates

1



Sterile neutrinos as dark matter 

What are sterile neutrinos? The Dodelson-Widrow (DW) scenario

• Singlets under the SM gauge group • SN are produced in the early universe 
through oscillations

• Only interact with the SM through 
mass mixing 

• Well motivated BSM candidates 

keV sterile neutrinos 

are good DM 

candidates

1



Sterile neutrinos as dark matter 

What are sterile neutrinos? The Dodelson-Widrow (DW) scenario

• Singlets under the SM gauge group • SN are produced in the early universe 
through oscillations

• Only interact with the SM through 
mass mixing 

• Well motivated BSM candidates 

keV sterile neutrinos 

are good DM 

candidates

• The mixing with the SM also allows 
for late decay into an X-ray photon 

1



Sterile neutrinos as dark matter 

What are sterile neutrinos? The Dodelson-Widrow (DW) scenario

• Singlets under the SM gauge group • SN are produced in the early universe 
through oscillations

• Only interact with the SM through 
mass mixing 

• Well motivated BSM candidates 

keV sterile neutrinos 

are good DM 

candidates

DW is mostly excluded 

• The mixing with the SM also allows 
for late decay into an X-ray photon 

1



Sterile neutrinos as dark matter 

What are sterile neutrinos? The Dodelson-Widrow (DW) scenario

• Singlets under the SM gauge group • SN are produced in the early universe 
through oscillations

• Only interact with the SM through 
mass mixing 

• Well motivated BSM candidates 

keV sterile neutrinos 

are good DM 

candidates

How to extend DW?

DW is mostly excluded 

• The mixing with the SM also allows 
for late decay into an X-ray photon 

1



Sterile neutrinos as dark matter 

What are sterile neutrinos? The Dodelson-Widrow (DW) scenario

• Singlets under the SM gauge group • SN are produced in the early universe 
through oscillations

• Only interact with the SM through 
mass mixing 

• Well motivated BSM candidates 

keV sterile neutrinos 

are good DM 

candidates

Self-interactions

How to extend DW?

DW is mostly excluded 

• The mixing with the SM also allows 
for late decay into an X-ray photon 
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What role does the sterile collision term play? 

• 𝐶𝑠 tries to drive the system towards equilibrium

• The process 𝜈𝑠𝜈𝑠 ⟷ 𝜙𝜙 essentially results in 

2𝜈𝑠 ⟶ 4𝜈𝑠 upon the decay of 𝜙

• The system will cool down
Only important for low and 
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12 keV 5 𝑥 10−13

15 keV 2.16 𝑥 10−15
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3
The resonances are 

regulated by 

quantum damping
1

2
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# changing processes 

Neutrino-neutrino scattering
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Overview of production regimes  

• Simplified Boltzmann equation 

• Initial DW production 

• Full Boltzmann equation 

• Quantum damping 

• Full Boltzmann equation 

• Regulated resonances

• Non-regulated resonances 

• Runaway production

Bringmann et al. 2206.10630 

Johns and Fuller 1903.08296  

This work 2307.15565  

This work 2307.15565 
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• Sterile neutrinos are attractive BSM candidates 

• The canonical DW mechanism is mostly excluded 

• Self-interactions among the sterile neutrinos can open new portions of parameter 
space 
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Observational constraints 

• X-ray searches

• The decay of sterile neutrinos into an active neutrino and a photon is 
phenomenologically important  

For keV sterile neutrinos, 

the resultant photon is in 

the X-ray band

• This decay can be searched for by current and future X-ray telescopes  

Upper limit on 

the mixing angle

 NuStar 

 Integral

 XMM-Newton

 Others…

No signal

Observational Constraints 



Observational constraints 

Structure formation

• Sterile neutrinos are produced (and decouple) while still relativistic. 

• They resemble warm dark Matter (WDM) 

Smearing out of structures on scales smaller than 

the neutrino’s free streaming length  

• How far can the DM particles travel before they collapse?   

Lower limit on the mass 

of the sterile neutrinos

Lyman-𝛼 forest 
observations 
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The rates 

The nine integrals can usually be reduced to two integrals that must 

be solved numerically

The rates are computed in the following way



The potential 

In the limiting cases the potential takes the form 

The potential modifies the dispersion relation of the SN



The parameter space 

12 keV 1 𝑥 10−13

A heavy mediator implies a 

relatively large Yukawa


