universitätfreiburg

Boosting the production of sterile neutrino dark matter with self-interactions

María Dias

Based on arXiv: 2307.15565

In collaboration with: Stefan Vogl SUSY 2024, Madrid

What are sterile neutrinos?

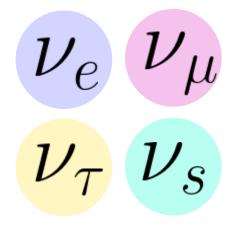
• Singlets under the SM gauge group

universität freiburg

What are sterile neutrinos?

- Singlets under the SM gauge group
- Only interact with the SM through mass mixing

 $|\nu_4\rangle = \cos(\theta)|\nu_s\rangle + \sin(\theta)|\nu_a\rangle$



What are sterile neutrinos?

- Singlets under the SM gauge group
- Only interact with the SM through mass mixing

 $|\nu_4\rangle = \cos(\theta)|\nu_s\rangle + \sin(\theta)|\nu_a\rangle$

Well motivated BSM candidates



What are sterile neutrinos?

- Singlets under the SM gauge group
- Only interact with the SM through mass mixing

 $|\nu_4\rangle = \cos(\theta)|\nu_s\rangle + \sin(\theta)|\nu_a\rangle$

Well motivated BSM candidates

keV sterile neutrinos are good DM candidates

What are sterile neutrinos?

- Singlets under the SM gauge group
- Only interact with the SM through mass mixing

 $|\nu_4\rangle = \cos(\theta)|\nu_s\rangle + \sin(\theta)|\nu_a\rangle$

Well motivated BSM candidates

keV sterile neutrinos are good DM candidates

The Dodelson-Widrow (DW) scenario

 $\nu_e \nu_\mu \nu_\tau \nu_s$

• SN are produced in the early universe through oscillations

What are sterile neutrinos?

- Singlets under the SM gauge group
- Only interact with the SM through mass mixing

 $|\nu_4\rangle = \cos(\theta)|\nu_s\rangle + \sin(\theta)|\nu_a\rangle$

- Well motivated BSM candidates
 - keV sterile neutrinos are good DM candidates

The Dodelson-Widrow (DW) scenario

 $\nu_e \nu_\mu \nu_\tau \nu_s$

- SN are produced in the early universe through oscillations
- The mixing with the SM also allows for late decay into an X-ray photon

What are sterile neutrinos?

- Singlets under the SM gauge group
- Only interact with the SM through mass mixing

$$|\nu_4\rangle = \cos(\theta)|\nu_s\rangle + \sin(\theta)|\nu_a\rangle$$

- Well motivated BSM candidates
 - keV sterile neutrinos are good DM candidates

The Dodelson-Widrow (DW) scenario

 $\nu_e \nu_\mu \nu_\tau \nu_s$

- SN are produced in the early universe through oscillations
- The mixing with the SM also allows for late decay into an X-ray photon

►→ DW is mostly excluded

What are sterile neutrinos?

- Singlets under the SM gauge group
- Only interact with the SM through mass mixing

$$|\nu_4\rangle = \cos(\theta)|\nu_s\rangle + \sin(\theta)|\nu_a\rangle$$

Well motivated BSM candidates

keV sterile neutrinos are good DM candidates

The Dodelson-Widrow (DW) scenario

 $\nu_e \nu_\mu \nu_\tau \nu_s$

- SN are produced in the early universe through oscillations
- The mixing with the SM also allows for late decay into an X-ray photon

►→ DW is mostly excluded

How to extend DW?

What are sterile neutrinos?

- Singlets under the SM gauge group
- Only interact with the SM through mass mixing

$$|\nu_4\rangle = \cos(\theta)|\nu_s\rangle + \sin(\theta)|\nu_a\rangle$$

- Well motivated BSM candidates
 - keV sterile neutrinos are good DM candidates

The Dodelson-Widrow (DW) scenario

- SN are produced in the early universe through oscillations
- The mixing with the SM also allows for late decay into an X-ray photon

►→ DW is mostly excluded

How to extend DW?

Self-interactions

Johns and Fuller 1903.08296 Bringmann et al. 2206.10630

 $\nu_e \nu_\mu \nu_\tau \nu_s$

```
\mathcal{L}_{\text{int}} = y \ \bar{\nu}_s \nu_s \phi.
```

$$\frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} = \frac{\Gamma_t}{4} \left(\frac{\omega^2 \sin^2(2\theta)}{\omega^2 \sin^2(2\theta) + \frac{\Gamma_t^2}{4} + \left[\omega \cos(2\theta) - V_{\text{eff}}\right]^2} \right) \left[f_a - f_s \right] + \mathcal{C}_s$$

/

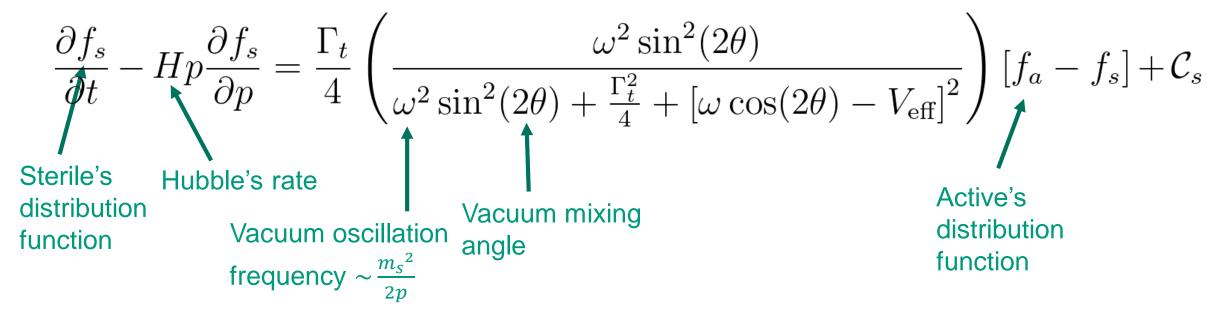
$$\frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} = \frac{\Gamma_t}{4} \left(\frac{\omega^2 \sin^2(2\theta)}{\omega^2 \sin^2(2\theta) + \frac{\Gamma_t^2}{4} + \left[\omega \cos(2\theta) - V_{\text{eff}}\right]^2} \right) [f_a - f_s] + \mathcal{C}_s$$
Sterile's
distribution
function

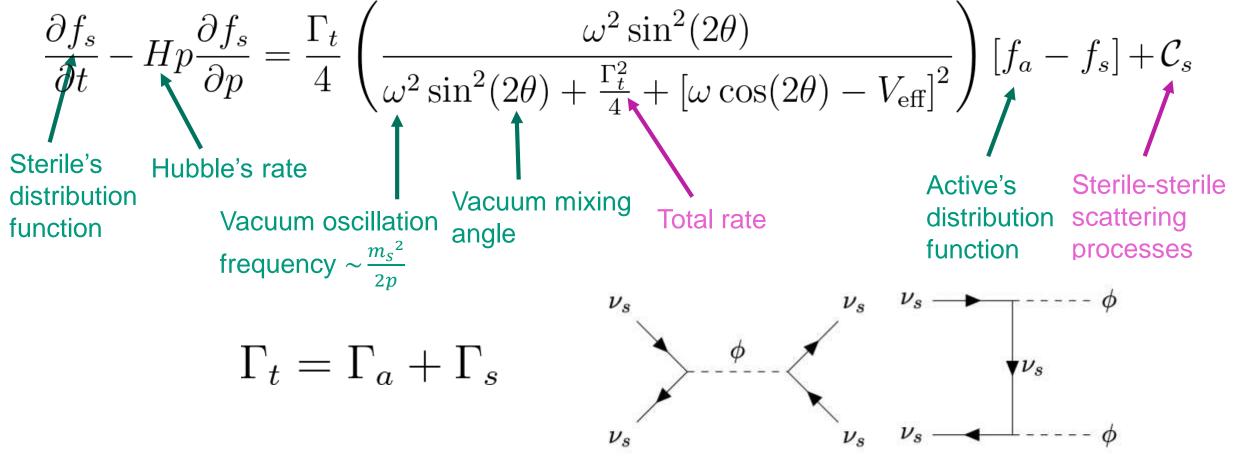
1

$$\frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} = \frac{\Gamma_t}{4} \left(\frac{\omega^2 \sin^2(2\theta)}{\omega^2 \sin^2(2\theta) + \frac{\Gamma_t^2}{4} + \left[\omega \cos(2\theta) - V_{\text{eff}}\right]^2} \right) [f_a - f_s] + \mathcal{C}_s$$
Sterile's Hubble's rate distribution function

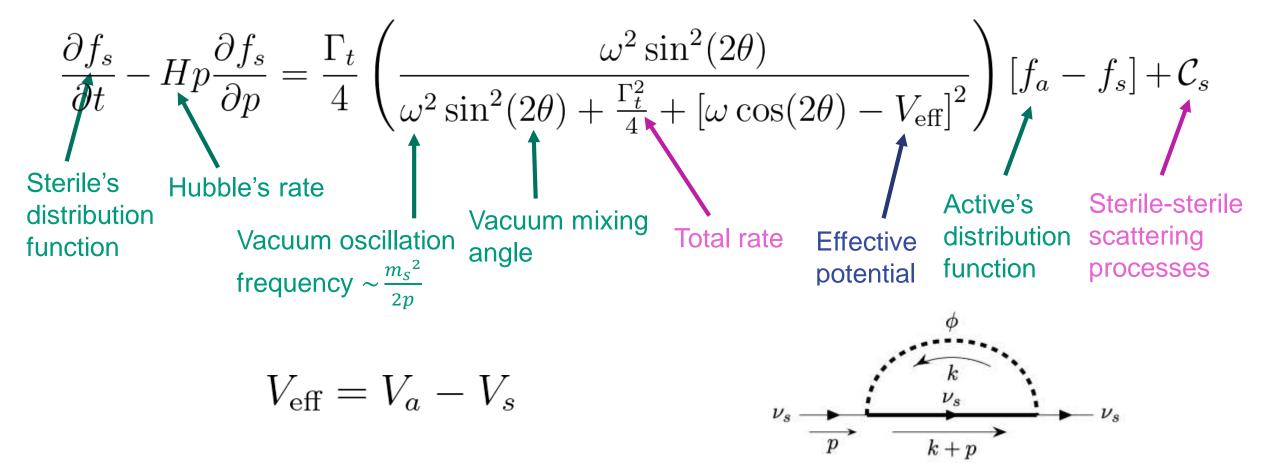
$$\frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} = \frac{\Gamma_t}{4} \left(\frac{\omega^2 \sin^2(2\theta)}{\omega^2 \sin^2(2\theta) + \frac{\Gamma_t^2}{4} + [\omega \cos(2\theta) - V_{\text{eff}}]^2} \right) [f_a - f_s] + \mathcal{C}_s$$
Sterile's Hubble's rate Active's distribution function

$$\frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} = \frac{\Gamma_t}{4} \begin{pmatrix} \omega^2 \sin^2(2\theta) \\ \omega^2 \sin^2(2\theta) + \frac{\Gamma_t^2}{4} + \left[\omega \cos(2\theta) - V_{\text{eff}}\right]^2 \end{pmatrix} \begin{bmatrix} f_a - f_s \end{bmatrix} + \mathcal{C}_s$$
Sterile's
Hubble's rate
Vacuum oscillation
frequency $\sim \frac{m_s^2}{2p}$
Active's
distribution





The evolution of the phase-space density of sterile neutrinos is given by the Boltzmann equation



universität freiburg

/

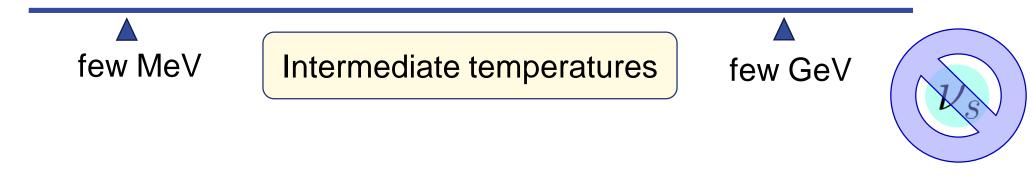
$$\frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} = \frac{\Gamma_t}{4} \left(\frac{\omega^2 \sin^2(2\theta)}{\omega^2 \sin^2(2\theta) + \frac{\Gamma_t^2}{4} + \left[\omega \cos(2\theta) - V_{\text{eff}}\right]^2} \right) [f_a - f_s] + \mathcal{C}_s$$
Transition Probability
$$\left\langle P_m(\nu_a \leftrightarrow \nu_s) \right\rangle$$

$$\frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} = \frac{\Gamma_t}{4} \left(\frac{\omega^2 \sin^2(2\theta)}{\omega^2 \sin^2(2\theta) + \frac{\Gamma_t^2}{4} + \left[\omega \cos(2\theta) - V_{\text{eff}}\right]^2} \right) [f_a - f_s] + \mathcal{C}_s$$
In-medium effective mixing angle
$$\sin^2(2\theta_m)$$

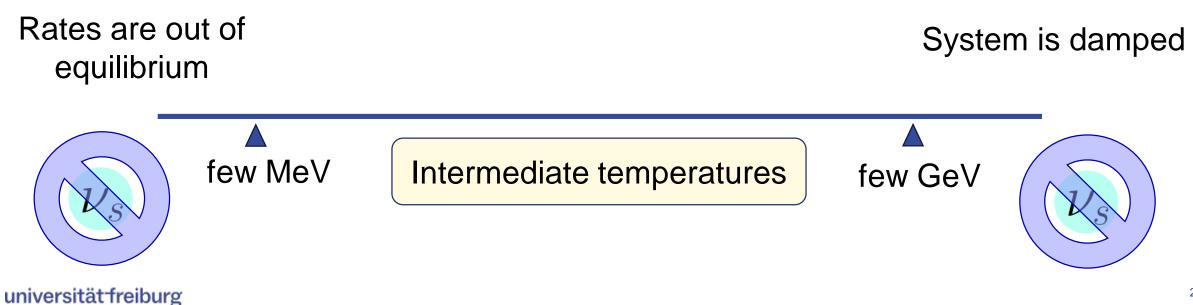
The evolution of the phase-space density of sterile neutrinos is given by the Boltzmann equation

$$\frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} = \frac{\Gamma_t}{4} \left(\frac{\omega^2 \sin^2(2\theta)}{\omega^2 \sin^2(2\theta) + \frac{\Gamma_t^2}{4} + \left[\omega \cos(2\theta) - V_{\text{eff}}\right]^2} \right) \left[f_a - f_s \right] + \mathcal{C}_s$$

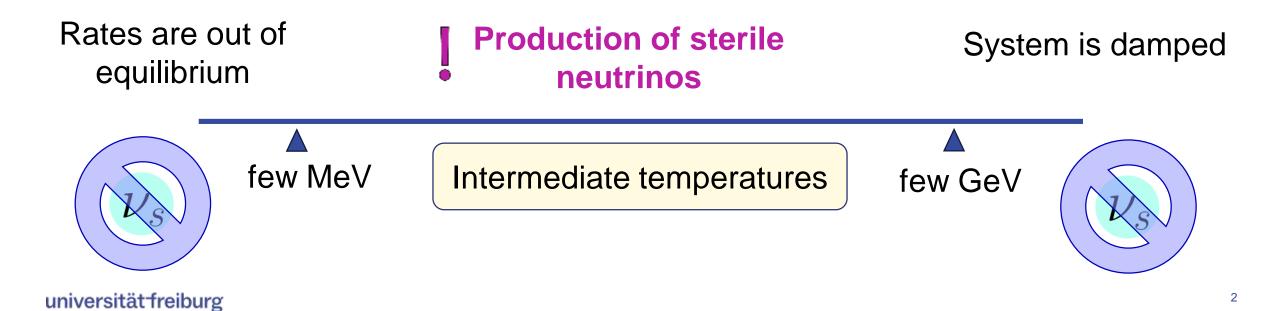
System is damped



$$\frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} = \frac{\Gamma_t}{4} \left(\frac{\omega^2 \sin^2(2\theta)}{\omega^2 \sin^2(2\theta) + \frac{\Gamma_t^2}{4} + \left[\omega \cos(2\theta) - V_{\text{eff}}\right]^2} \right) \left[f_a - f_s \right] + \mathcal{C}_s$$



$$\frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} = \frac{\Gamma_t}{4} \left(\frac{\omega^2 \sin^2(2\theta)}{\omega^2 \sin^2(2\theta) + \frac{\Gamma_t^2}{4} + \left[\omega \cos(2\theta) - V_{\text{eff}}\right]^2} \right) \left[f_a - f_s \right] + \mathcal{C}_s$$



What kind of behaviour can we expect from the system?

$$\frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} = \frac{\Gamma_t}{4} \left(\frac{\omega^2 \sin^2(2\theta)}{\omega^2 \sin^2(2\theta) + \frac{\Gamma_t^2}{4} + \left[\omega \cos(2\theta) - V_{\text{eff}}\right]^2} \right) \left[f_a - f_s \right] + \mathcal{C}_s$$

What kind of behaviour can we expect from the system?

$$\frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} = \frac{\Gamma_t}{4} \left(\frac{\omega^2 \sin^2(2\theta)}{\omega^2 \sin^2(2\theta) + \frac{\Gamma_t^2}{4} + \left[\omega \cos(2\theta) - V_{\text{eff}}\right]^2} \right) [f_a - f_s] + \mathcal{C}_s$$

What kind of behaviour can we expect from the system?

$$\frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} = \frac{\Gamma_t}{4} \left(\frac{\omega^2 \sin^2(2\theta)}{\omega^2 \sin^2(2\theta) + \frac{\Gamma_t^2}{4} + \left[\omega \cos(2\theta) - V_{\text{eff}}\right]^2} \right) [f_a - f_s] + \mathcal{C}_s$$

$$\omega \gg \Gamma_t, V_{\text{eff}}$$

What kind of behaviour can we expect from the system?

$$\frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} = \frac{\Gamma_t}{4} \left(\frac{\omega^2 \sin^2(2\theta)}{\omega^2 \sin^2(2\theta) + \frac{\Gamma_t^2}{4} + \left[\omega \cos(2\theta) - V_{\text{eff}}\right]^2} \right) [f_a - f_s] + \mathcal{C}_s$$

$$\omega \gg \Gamma_t, V_{\text{eff}} \longrightarrow \frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} \sim \Gamma_t \sin^2(2\theta) f_a + \mathcal{C}_s$$

What kind of behaviour can we expect from the system?

$$\frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} = \frac{\Gamma_t}{4} \left(\frac{\omega^2 \sin^2(2\theta)}{\omega^2 \sin^2(2\theta) + \frac{\Gamma_t^2}{4} + \left[\omega \cos(2\theta) - V_{\text{eff}}\right]^2} \right) [f_a - f_s] + \mathcal{C}_s$$

$$\omega \gg \Gamma_t, V_{\text{eff}} \longrightarrow \frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} \sim \Gamma_t \sin^2(2\theta) f_a + \mathcal{C}_s$$
1 DW production

What kind of behaviour can we expect from the system?

$$\frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} = \frac{\Gamma_t}{4} \left(\frac{\omega^2 \sin^2(2\theta)}{\omega^2 \sin^2(2\theta) + \frac{\Gamma_t^2}{4} + \left[\omega \cos(2\theta) - V_{\text{eff}}\right]^2} \right) [f_a - f_s] + \mathcal{C}_s$$

$$\omega \gg \Gamma_t, V_{\text{eff}} \longrightarrow \frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} \sim \Gamma_t \sin^2(2\theta) f_a + C_s$$
1 DW production
$$\stackrel{\text{Initial condition}}{\longrightarrow} 2 \qquad \text{Neutrino-neutrino} \\ \text{scattering} \end{cases}$$

What kind of behaviour can we expect from the system?

$$\frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} = \frac{\Gamma_t}{4} \left(\frac{\omega^2 \sin^2(2\theta)}{\omega^2 \sin^2(2\theta) + \frac{\Gamma_t^2}{4} + \left[\omega \cos(2\theta) - V_{\text{eff}}\right]^2} \right) [f_a - f_s] + \mathcal{C}_s$$

$$\omega \gg \Gamma_t, V_{\text{eff}} \longrightarrow \frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} \sim \Gamma_t \sin^2(2\theta) f_a + \mathcal{C}_s$$
$$\omega \cos(2\theta) - V_a + V_s \approx 0$$

What kind of behaviour can we expect from the system?

$$\frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} = \frac{\Gamma_t}{4} \left(\frac{\omega^2 \sin^2(2\theta)}{\omega^2 \sin^2(2\theta) + \frac{\Gamma_t^2}{4} + \left[\omega \cos(2\theta) - V_{\text{eff}}\right]^2} \right) \left[f_a - f_s \right] + \mathcal{C}_s$$

$$\omega \gg \Gamma_t, V_{\text{eff}} \longrightarrow \frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} \sim \Gamma_t \sin^2(2\theta) f_a + \mathcal{C}_s$$
$$\omega \cos(2\theta) - V_a + V_s \approx 0 \longrightarrow \text{Resonant production}$$

What kind of behaviour can we expect from the system?

$$\frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} = \frac{\Gamma_t}{4} \left(\frac{\omega^2 \sin^2(2\theta)}{\omega^2 \sin^2(2\theta) + \frac{\Gamma_t^2}{4} + \left[\omega \cos(2\theta) - V_{\text{eff}}\right]^2} \right) \left[f_a - f_s \right] + \mathcal{C}_s$$

$$\omega \gg \Gamma_{t}, V_{\text{eff}} \longrightarrow \frac{\partial f_{s}}{\partial t} - Hp \frac{\partial f_{s}}{\partial p} \sim \Gamma_{t} \sin^{2}(2\theta) f_{a} + C_{s}$$
$$\omega \cos(2\theta) - \underbrace{V_{a}}_{(-)} + \underbrace{V_{s}}_{0} \approx 0 \longrightarrow \text{Resonant production}$$
universität freiburg

What kind of behaviour can we expect from the system?

$$\frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} = \frac{\Gamma_t}{4} \left(\frac{\omega^2 \sin^2(2\theta)}{\omega^2 \sin^2(2\theta) + \frac{\Gamma_t^2}{4} + \left[\omega \cos(2\theta) - V_{\text{eff}}\right]^2} \right) \left[f_a - f_s \right] + \mathcal{C}_s$$

The are four parameters controlling the behavior of the system

What kind of behaviour can we expect from the system?

$$\frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} = \frac{\Gamma_t}{4} \left(\frac{\omega^2 \sin^2(2\theta)}{\omega^2 \sin^2(2\theta) + \frac{\Gamma_t^2}{4} + \left[\omega \cos(2\theta) - V_{\text{eff}}\right]^2} \right) \left[f_a - f_s \right] + \mathcal{C}_s$$

The are four parameters controlling the behavior of the system

• The mass of the sterile neutrinos

What kind of behaviour can we expect from the system?

$$\frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} = \frac{\Gamma_t}{4} \left(\frac{\omega^2 \sin^2(2\theta)}{\omega^2 \sin^2(2\theta) + \frac{\Gamma_t^2}{4} + \left[\omega \cos(2\theta) - V_{\text{eff}}\right]^2} \right) \left[f_a - f_s \right] + \mathcal{C}_s$$

The are four parameters controlling the behavior of the system

- The mass of the sterile neutrinos
- The mixing angle

 $m_s \theta m_\phi y$

What kind of behaviour can we expect from the system?

$$\frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} = \frac{\Gamma_t}{4} \left(\frac{\omega^2 \sin^2(2\theta)}{\omega^2 \sin^2(2\theta) + \frac{\Gamma_t^2}{4} + \left[\omega \cos(2\theta) - V_{\text{eff}}\right]^2} \right) \left[f_a - f_s \right] + \mathcal{C}_s$$

The are four parameters controlling the behavior of the system

- The mass of the sterile neutrinos
- The mixing angle
- The mass of the mediator

Production regimes

 $m_s \theta m_\phi y$

What kind of behaviour can we expect from the system?

$$\frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} = \frac{\Gamma_t}{4} \left(\frac{\omega^2 \sin^2(2\theta)}{\omega^2 \sin^2(2\theta) + \frac{\Gamma_t^2}{4} + \left[\omega \cos(2\theta) - V_{\text{eff}}\right]^2} \right) \left[f_a - f_s \right] + \mathcal{C}_s$$

The are four parameters controlling the behavior of the system

- The mass of the sterile neutrinos
- The mixing angle
- The mass of the mediator
- The size of the Yukawa coupling

Production regimes

 $m_s \theta m_\phi y$

What kind of behaviour can we expect from the system?

$$\frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} = \frac{\Gamma_t}{4} \left(\frac{\omega^2 \sin^2(2\theta)}{\omega^2 \sin^2(2\theta) + \frac{\Gamma_t^2}{4} + \left[\omega \cos(2\theta) - V_{\text{eff}}\right]^2} \right) \left[f_a - f_s \right] + \mathcal{C}_s$$

The are four parameters controlling the behavior of the system

- The mass of the sterile neutrinos
- The mixing angle
- The mass of the mediator
- The size of the Yukawa coupling

$$m_{\phi} \gg T$$
 $V_s <$
 $m_{\phi} \ll T$ $V_s >$

$$\frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} = \frac{\Gamma_t}{4} \left(\frac{\omega^2 \sin^2(2\theta)}{\omega^2 \sin^2(2\theta) + \frac{\Gamma_t^2}{4} + \left[\omega \cos(2\theta) - V_{\text{eff}}\right]^2} \right) \left[f_a - f_s \right] + \mathcal{C}_s$$

$$\frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} = \frac{\Gamma_t}{4} \left(\frac{\omega^2 \sin^2(2\theta)}{\omega^2 \sin^2(2\theta) + \frac{\Gamma_t^2}{4} + \left[\omega \cos(2\theta) - V_{\text{eff}}\right]^2} \right) [f_a - f_s] + \mathcal{C}_s$$
$$\left(\Gamma_{\nu_s \nu_s \leftrightarrow \phi \phi} f_s \left(1 - \frac{f_s^2}{f_{\text{eq}}^2} \right) \right)$$

What role does the sterile collision term play?

$$\frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} = \frac{\Gamma_t}{4} \left(\frac{\omega^2 \sin^2(2\theta)}{\omega^2 \sin^2(2\theta) + \frac{\Gamma_t^2}{4} + \left[\omega \cos(2\theta) - V_{\text{eff}}\right]^2} \right) \left[f_a - f_s \right] + \mathcal{C}_s$$

• C_s tries to drive the system towards equilibrium

$$\Gamma_{\nu_s\nu_s\leftrightarrow\phi\phi} f_s \left(1 - \frac{f_s^2}{f_{\rm eq}^2}\right)$$

$$\frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} = \frac{\Gamma_t}{4} \left(\frac{\omega^2 \sin^2(2\theta)}{\omega^2 \sin^2(2\theta) + \frac{\Gamma_t^2}{4} + \left[\omega \cos(2\theta) - V_{\text{eff}}\right]^2} \right) \left[f_a - f_s \right] + \mathcal{C}_s$$

- C_s tries to drive the system towards equilibrium
- The process $\nu_s \nu_s \leftrightarrow \phi \phi$ essentially results in $2\nu_s \rightarrow 4\nu_s$ upon the decay of ϕ

$$\Gamma_{\nu_s\nu_s\leftrightarrow\phi\phi} f_s \left(1 - \frac{f_s^2}{f_{\rm eq}^2}\right)$$

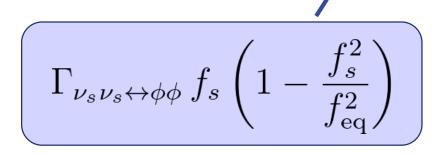
$$\frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} = \frac{\Gamma_t}{4} \left(\frac{\omega^2 \sin^2(2\theta)}{\omega^2 \sin^2(2\theta) + \frac{\Gamma_t^2}{4} + \left[\omega \cos(2\theta) - V_{\text{eff}}\right]^2} \right) \left[f_a - f_s \right] + \mathcal{C}_s$$

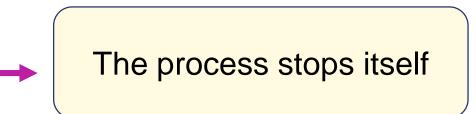
- C_s tries to drive the system towards equilibrium
- The process $v_s v_s \leftrightarrow \phi \phi$ essentially results in $2v_s \rightarrow 4v_s$ upon the decay of ϕ
- The system will cool down

$$\Gamma_{\nu_s\nu_s\leftrightarrow\phi\phi} f_s \left(1 - \frac{f_s^2}{f_{\rm eq}^2}\right)$$

$$\frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} = \frac{\Gamma_t}{4} \left(\frac{\omega^2 \sin^2(2\theta)}{\omega^2 \sin^2(2\theta) + \frac{\Gamma_t^2}{4} + \left[\omega \cos(2\theta) - V_{\text{eff}}\right]^2} \right) \left[f_a - f_s \right] + \mathcal{C}_s$$

- C_s tries to drive the system towards equilibrium
- The process $\nu_s \nu_s \leftrightarrow \phi \phi$ essentially results in $2\nu_s \rightarrow 4\nu_s$ upon the decay of ϕ
- The system will cool down





What role does the sterile collision term play?

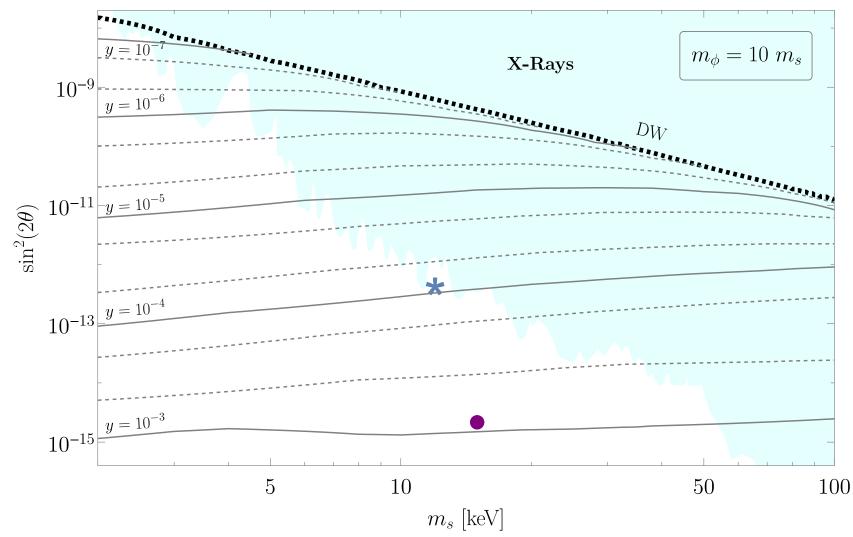
$$\frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} = \frac{\Gamma_t}{4} \left(\frac{\omega^2 \sin^2(2\theta)}{\omega^2 \sin^2(2\theta) + \frac{\Gamma_t^2}{4} + \left[\omega \cos(2\theta) - V_{\text{eff}}\right]^2} \right) \left[f_a - f_s \right] + \mathcal{C}_s$$

- C_s tries to drive the system towards equilibrium
- The process $\nu_s \nu_s \leftrightarrow \phi \phi$ essentially results in $2\nu_s \rightarrow 4\nu_s$ upon the decay of ϕ
- The system will cool down

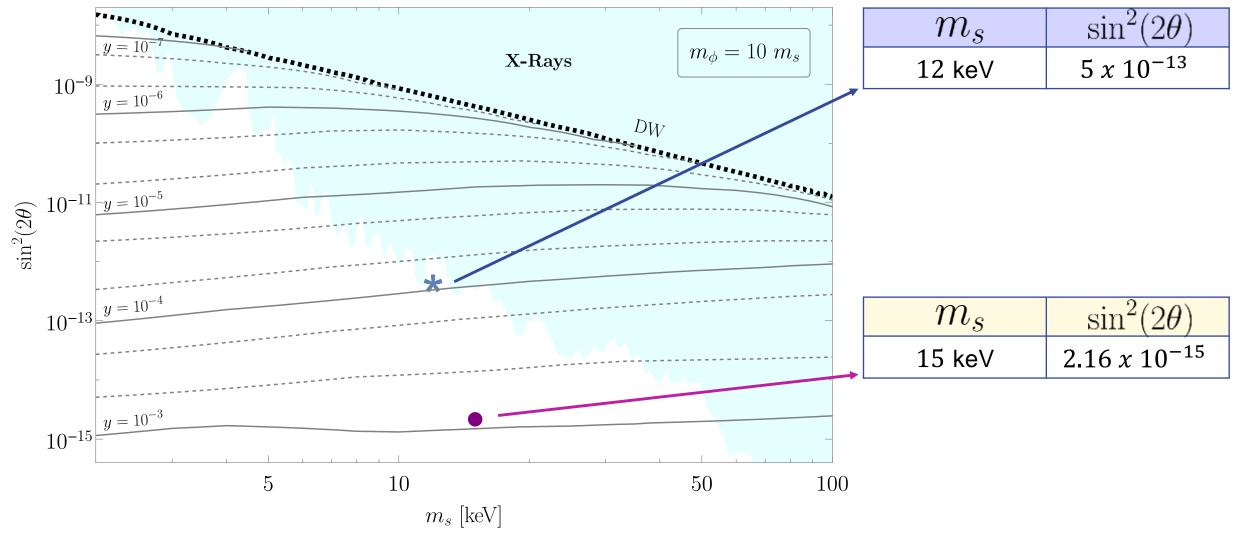
$$\Gamma_{\nu_s\nu_s\leftrightarrow\phi\phi} f_s \left(1 - \frac{f_s^2}{f_{\rm eq}^2}\right)$$

Only important for low and intermediate mediator masses

The parameter space

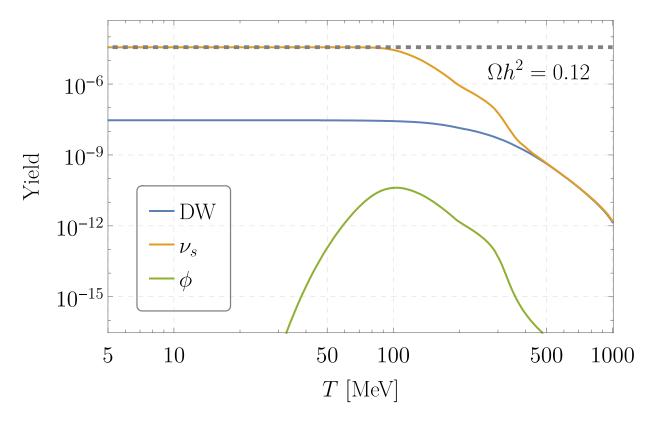


The parameter space

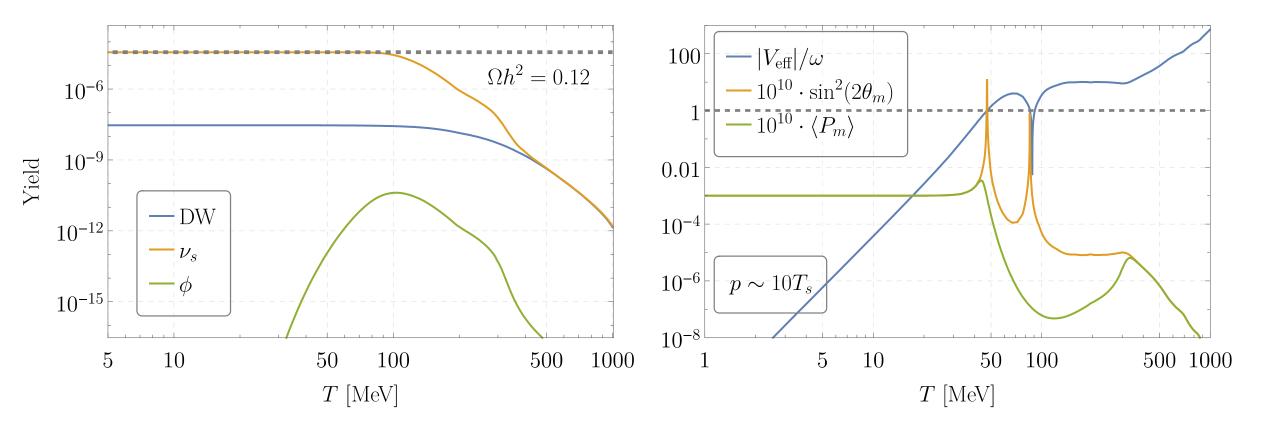


m_s	m_{ϕ}	y	$\sin^2(2\theta)$
12 keV	1.5 GeV	$6.92 \ x \ 10^{-2}$	$5 x 10^{-13}$

m_s	m_{ϕ}	y	$\sin^2(2\theta)$
12 keV	1.5 GeV	$6.92 \ x \ 10^{-2}$	$5 x 10^{-13}$

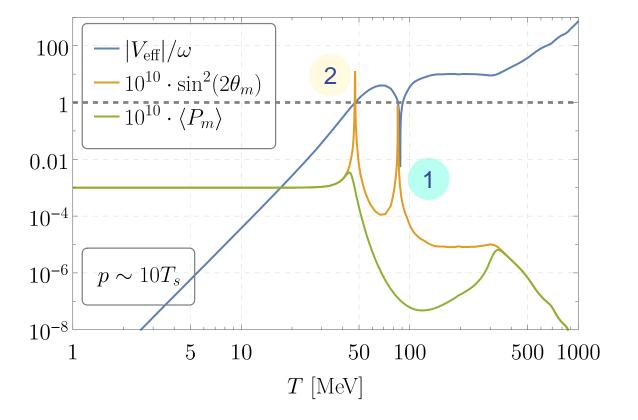


m_s	m_{ϕ}	y	$\sin^2(2\theta)$
12 keV	1.5 GeV	$6.92 \ x \ 10^{-2}$	$5 x 10^{-13}$



m_s	m_{ϕ}	y	$\sin^2(2\theta)$
12 keV	1.5 GeV	$6.92 \ x \ 10^{-2}$	$5 x 10^{-13}$

$$\rightarrow \omega \cos(2\theta) - V_a + V_s \approx 0$$



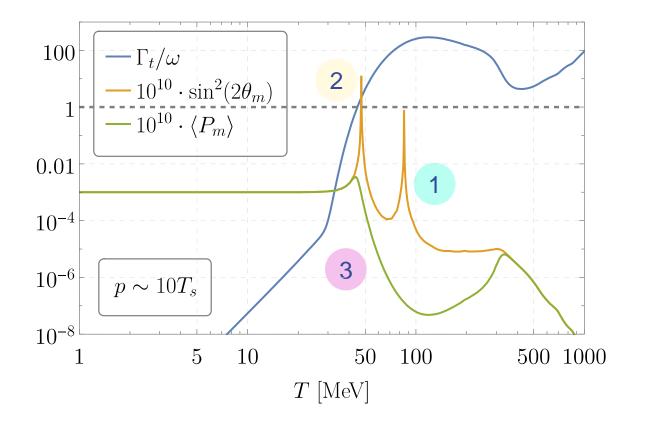
m_s	m_{ϕ}	y	$\sin^2(2\theta)$
12 keV	1.5 GeV	$6.92 \ x \ 10^{-2}$	$5 x 10^{-13}$

$$\longrightarrow \omega \cos(2\theta) - V_a + V_s \approx 0$$

3

The resonances are regulated by quantum damping

$$\frac{\partial f_s}{\partial t} - Hp \frac{\partial f_s}{\partial p} \sim \frac{\omega^2 \sin^2(2\theta)}{\Gamma_t} [f_a - f_s] + \mathcal{C}_s$$

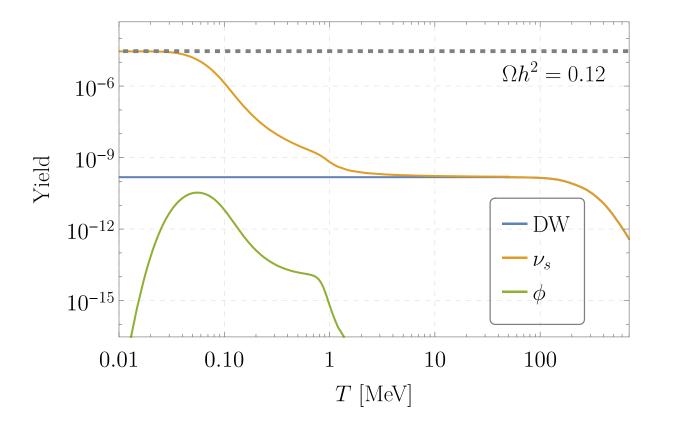


m_s	m_{ϕ}	y	$\sin^2(2\theta)$	
15 keV	150 keV	$9 x 10^{-4}$	$2.16 \ x \ 10^{-15}$	

For lighter mediator masses, we expect the # changing processes to be important

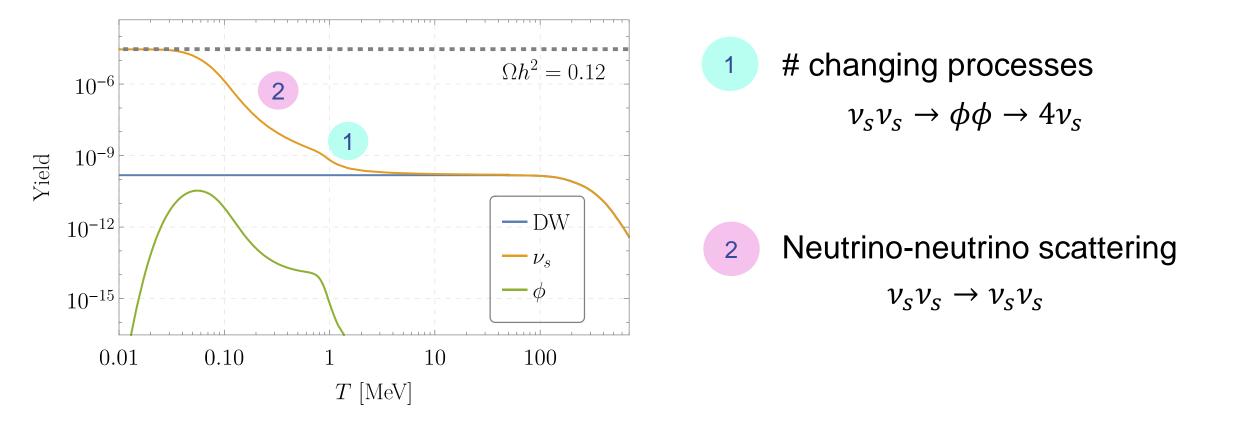
m_s	m_{ϕ}	y	$\sin^2(2\theta)$
10 keV	150 keV	$9 x 10^{-4}$	$2.16 \ x \ 10^{-15}$

For lighter mediator masses, we expect the # changing processes to be important



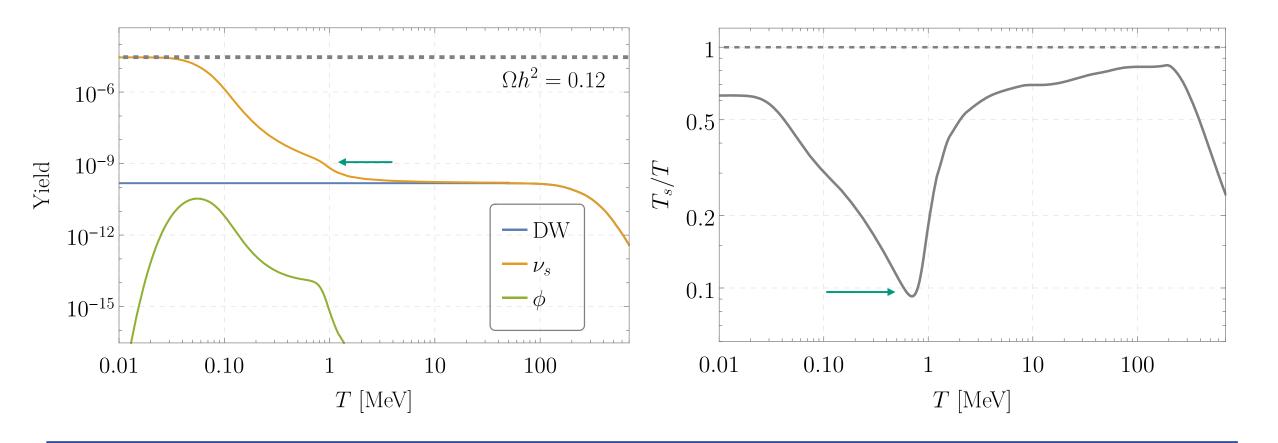
m_s	m_{ϕ}	y	$\sin^2(2\theta)$
10 keV	150 keV	$9 x 10^{-4}$	$2.16 \ x \ 10^{-15}$

For lighter mediator masses, we expect the # changing processes to be important



m_s	m_{ϕ}	y	$\sin^2(2\theta)$
15 keV	150 keV	$9 x 10^{-4}$	$2.16 \ x \ 10^{-15}$

For lighter mediator masses, we expect the # changing processes to be important



Overview of production regimes

$$m_{\phi} \lesssim 100 \; \mathrm{MeV}$$

- Simplified Boltzmann equation
- Initial DW production

Bringmann et al. 2206.10630

$$800 \text{ MeV} \lesssim m_{\phi} \lesssim 3 \text{ GeV}$$

- Full Boltzmann equation
- Regulated resonances

This work 2307.15565

$$100 \text{ MeV} \lesssim m_{\phi} \lesssim 800 \text{ MeV}$$

$$m_\phi \gtrsim 3~{
m GeV}$$

- Full Boltzmann equation
- Quantum damping

This work 2307.15565

• Non-regulated resonances

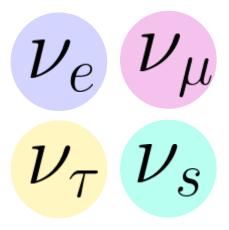
 $> 0 \cap U$

Runaway production

Johns and Fuller 1903.08296

Conclusions

• Sterile neutrinos are attractive BSM candidates



Conclusions

- Sterile neutrinos are attractive BSM candidates
- The canonical DW mechanism is mostly excluded

Conclusions

- Sterile neutrinos are attractive BSM candidates
- The canonical DW mechanism is mostly excluded
- Self-interactions among the sterile neutrinos can open new portions of parameter space

universität freiburg

Thank you for your attention

Observational Constraints

• X-ray searches

• The decay of sterile neutrinos into an active neutrino and a photon is phenomenologically important

$$\Gamma_{\nu_s \to \nu_a \gamma} \sim \left(\frac{\sin^2(2\theta)}{10^{-8}}\right) \left(\frac{m_s}{1 \text{ keV}}\right)^5$$

For keV sterile neutrinos, the resultant photon is in the X-ray band

can be searched for by current and future X-ray telescopes

Observational constraints

Structure formation

- Sterile neutrinos are produced (and decouple) while still relativistic.
- They resemble warm dark Matter (WDM)

Smearing out of structures on scales smaller than the neutrino's free streaming length

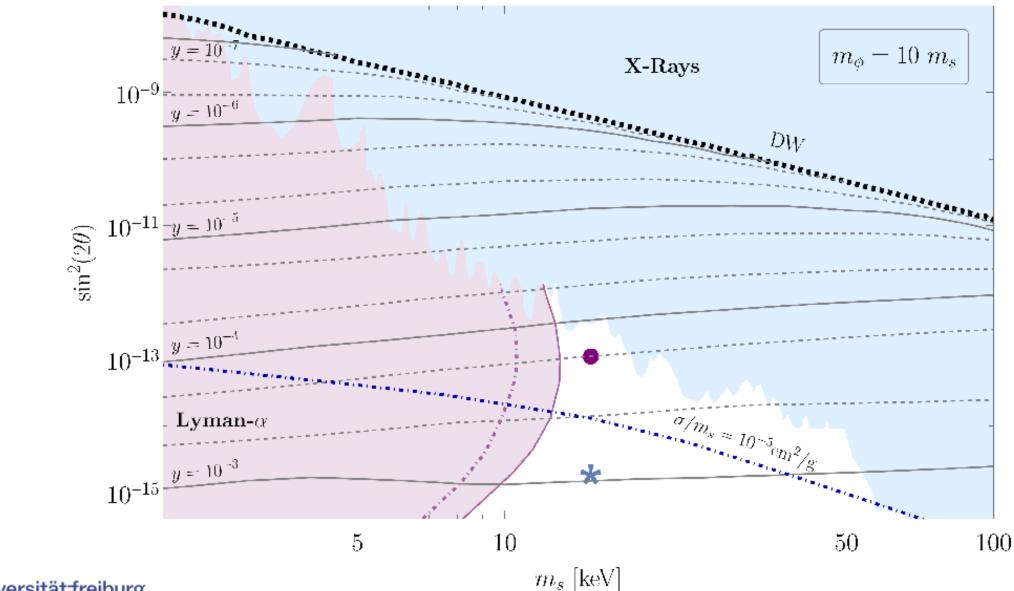
• How far can the DM particles travel before they collapse?

Lyman- α forest observations

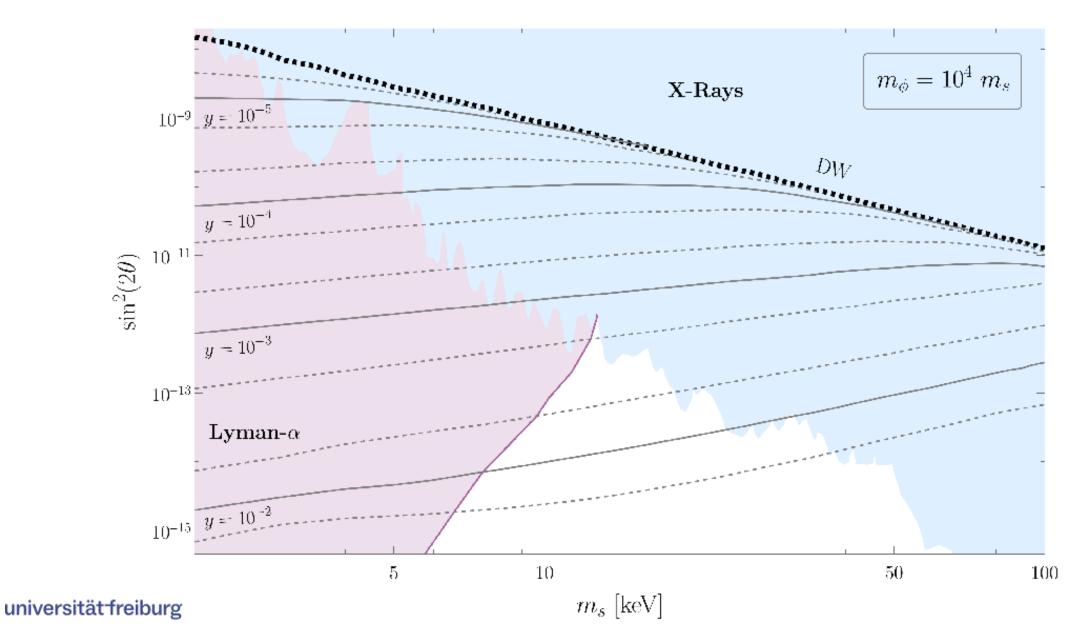
Lower limit on the mass of the sterile neutrinos

 ${\mathcal V}_S$

The light parameter space



The heavy parameter space



8

The rates

The rates are computed in the following way

$$\Gamma_{\nu_s\nu_s\leftrightarrow kk} = \frac{1}{2E_1} \int d\Pi_2 d\Pi_3 d\Pi_4 (2\pi)^4 \delta^4 (p_i - p_f) |\mathcal{M}|^2_{\nu_s\nu_s\leftrightarrow kk} |f_s|^2$$

The nine integrals can usually be reduced to two integrals that must be solved numerically

$$\Gamma_{\nu_s\nu_s\leftrightarrow\nu_s\nu_s} = \begin{cases} \frac{3y^4T_s^2}{2\pi^3 p}e^{\frac{\mu}{T_s}} + \frac{y^2T_sm_{\phi}^2}{2\pi p^2}e^{-\frac{m_{\phi}^2}{4pT_s} + \frac{\mu}{T_s}} & pT_s > \frac{3m_{\phi}^2}{2\sqrt{10}} \\ \frac{20y^4pT_s^4}{3\pi^3 m_{\phi}^4}e^{\frac{\mu}{T_s}} + \frac{y^2T_sm_{\phi}^2}{2\pi p^2}e^{-\frac{m_{\phi}^2}{4pT_s} + \frac{\mu}{T_s}} & pT_s \le \frac{3m_{\phi}^2}{2\sqrt{10}} \end{cases}$$

The potential

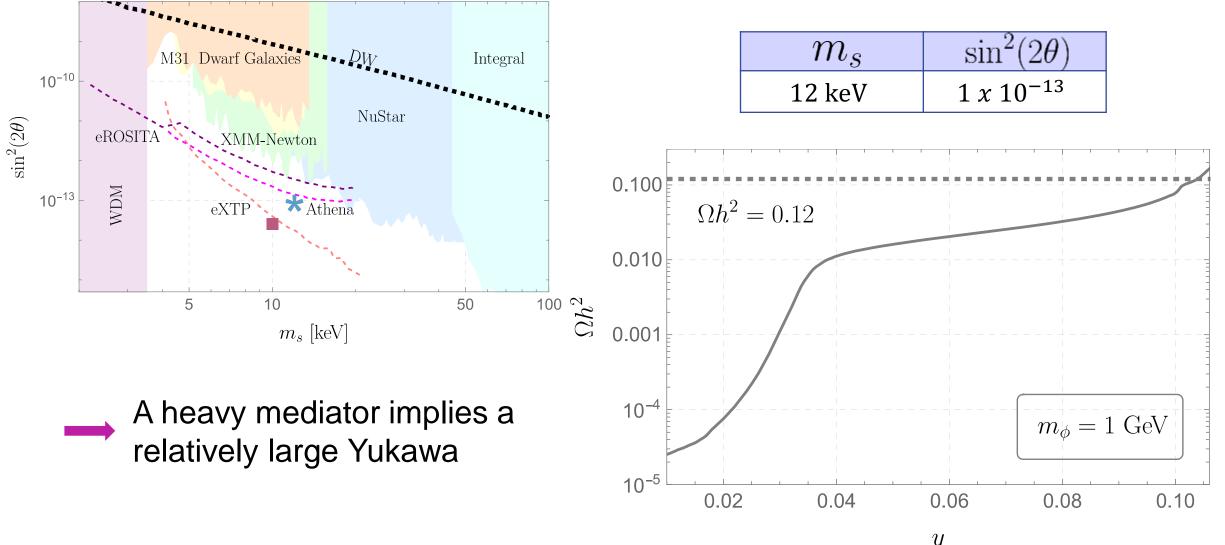
The potential modifies the dispersion relation of the SN

$$E = |\mathbf{p}| + \frac{m^2}{2|\mathbf{p}|} + V_{\text{eff}}$$

In the limiting cases the potential takes the form

$$V_{s}(p) = \begin{cases} \frac{y^{2}T_{s}^{2}}{2\pi^{2}p}e^{\frac{\mu_{s}}{T_{s}}} & T_{s} \gg m_{\phi} \\ -\frac{16y^{2}pT_{s}^{4}}{\pi^{2}m_{\phi}^{4}}e^{\frac{\mu_{s}}{T_{s}}} & T_{s} \ll m_{\phi} \end{cases}$$

The parameter space



universität freiburg

y