

TOM GAULD for NEW SCIENTIST

Searches for DM with CMS experiment

A. Cagnotta for CMS collaboration

Contents

- □ Introduction to Dark Matter problem
- □ Phenomenology
- Latest CMS results
 - Search for dark matter produced in association with a single top quark or a top quark pair in protonproton collisions at $\sqrt{s}= 13$ TeV
 - □ Search for dark matter produced in association with a pair of bottom quarks in proton-proton collisions at $\sqrt{s= 13 \text{ TeV}}$
 - □ Search for dark matter particles in W+W– events with transverse momentum imbalance in protonproton collisions at $\sqrt{s= 13 \text{ TeV}}$
 - □ Search for new physics with emerging jets in proton-proton collisions at \sqrt{s} = 13 TeV

Introduction

Dark Matter evidence from astrophysical observation

- interact gravitationally
- no information about its nature

□ Signatures at colliders

- □ assume week interaction with SM particles
- DM appears as an excess of events in MET tail wrt to SM

Phenomenology

□ Simplified models [<u>link</u>]

- minimal SM extensions
- couplings prioritize third generation
- □ new scalar (pseudoscalar) boson $\phi(a)$ interacting with SM fermions and DM particles (χ)
- \Box 4 additional parameters ($m_{\chi\prime}\,m_{\varphi(a)\prime}\,g_{q\prime}\,g_{\chi})$

2Higgs-Doublet-Model (2HDM) + a [link]

couplings prioritize third generation

- the model contains a scalar Higgs boson, a pair of charged Higgs bosons (H±), a heavy scalar boson (H), a heavy pseudoscalar boson (A), and a light pseudoscalar mediator (a)
- □ 5 free parameters in the model considered in the next slides (m_A , m_a , m_χ , sin θ , tan β)

Phenomenology

Dark Higgs model [link]

DM mass generated via Higgs mechanism in the dark sector

- \Box dark Higgs boson **s**
- □ Z′ gauge boson
- \Box DM χ is a majorana particle
 - □ singlet under U(1) gauge group
 - \square coupling between Z', s, DM χ

Emerging jets theory [link]

- \Box dark sector \rightarrow QCD-like non-abelian gauge symmetry SU(N^{dark}_{color})
- □ dark fermions Q_{dark} interact with SM quarks through a scalar mediator X_{dark} coupling $\kappa_{i\alpha}$
- the dark fermions hadronized in dark baryons and meson and the lightest object is the good DM candidate
- □ Two version considered of this model
 - unflavored, only Yukawa coupling to d quark is non-negligible
 - Generalized, multiple Yukawa couplings have non-negligible value

DM production with top quarks **CMS-EXO-22-014**

□ Simplified Model \rightarrow 3 final states considered

DM production with top quarks

- □ Results interpreted in terms of signal model for scalar and pseudoscalar mediator masses between 50 and 500 GeV, with $m_x = 1$ GeV and $g_q = g_X = 1$
- □ A signal-like excess is observed in data. Because the signal kinematics are not very sensitive to the mass of the mediator, this excess is consistent with all mediator mass hypotheses
- **Excluded** mediator mass below **280(290) GeV** for the **scalar(pseudoscalar) mediator**

DM production in association with a pair of b quark

- The observed exclusion range on the m_a particle is up to 260 GeV for tanβ = 35, sinθ = 0.7, and m_A = 600 GeV
- \Box 2D exclusion plot for m_a- tan β and m_a- sin θ

Dark Higgs (WW) + MET

- Extended the search to a wider DM mass range, up to 300 GeV
- □ The most stringent limit is set for a m_{DM} =200GeV, excluding m_s up to 350 GeV at m_Z , of 700 GeV, and up to m_Z , ≈ 2200 GeV for a m_s = 160 GeV.

SUSY24

A.Cagnotta

Emerging Jets

- Final state
 - \Box High Hadron Transverse (**H**_T)
 - □ 4 high-p_T jets
- □ 2 methods used in both QCD-like DM scenarios
 □ Model-generic → easily re-interpretable
 □ Graph Neural Network → Higher sensitivity

Emerging Jets

- □ Final state
 - □ High Hadron Transverse (H_T)
 - □ 4 high-p_T jet
- □ 2 methods used in both QCD-like DM so
 □ Model-generic → easily re-interpretable
 □ Graph Neural Network → Higher sensitivity

SUSY24

A.Cagnotta

A.Cagnotta - SUSY24

- Results are presented for unflavored and flavor-aligned scenario for Modelgeneric and Graph Neural Network methods
- In the 2D plane
 dark pion lifetime
 X_{dark} mass
- No excess found. Excluded
 m(X_{dark}) up to 1950GeV (unflavored)
 m(X_{dark}) up to 1850GeV (flavored-aligned)

Conclusion

- Four different searches of DM production at collider has been presented, targeting 4 different models
 - □ Simplified model, excluded mediator mass up to 280(290)GeV
 - **2HDM+a**, excluded up to 260 GeV for m_a (with tan β = 35, sin θ = 0.7, and m_A = 600 GeV)
 - □ **Dark Higgs** (first CMS search), extended DM mass range up to 300GeV, excluded m_s up to 350 GeV and m_{Z'} up to 2200GeV
 - □ **QCD-like DM**, explored unflavored and flavor-aligned scenarios with two different methods optimized for each coupling scenario
- No significant excess found so far. More results coming soon, including data from Run3

SUSY24

A.Cagnotta -

Conclusion

- Four different searches of DM production at collider has been presented, targeting 4 different models
 - Simplified model, excluded mediator mass up to 280(290)GeV
 - **2HDM+a**, excluded up to 260 GeV for m_a (with tan β = 35, sin θ = 0.7, and m_A = 600 GeV)
 - **Dark Higgs** (first CMS search), extended DM mass range up to 300GeV, excluded m_s up to 350 GeV and m_{Z'} up to 2200GeV
 - □ **QCD-like DM**, explored unflavored and flavor-aligned scenarios with two different methods optimized for each coupling scenario
- □ No significant excess found so far. More results co

