Small Instanton Effects on Composite Axion Mass

Takafumi Aoki

ICRR, the University of Tokyo

arXiv:2404.19342 [hep-ph] with M. Ibe, S. Shirai and K. Watanabe.

Introduction

Strong CP problem

• CP-violating $\theta F \tilde{F}$ term in QCD: $|\theta| \leq 10^{-10}$

Peccei-Quinn (PQ) mechanism

- 1. PQ symmetry, $U(1)_{PQ}$, is a global U(1) symmetry anomalous under QCD.
- 2. Spontaneous breaking of $U(1)_{PQ} \rightarrow$ pseudo-Goldstone boson is called **Axion**.
- **3.** $\theta \sim 0$, dynamically.

Energy scale of U(1)_{PQ}-breaking

 Observational constraint on decay constant: *f_a* ≥ 10⁹ GeV (axion as dark matter ← even larger *f_a* is preferred)

A Challenge in Axion Models from Particle-physics Viewpoint: **"Axion Quality Problem**"

"Axion Quality Problem"

Known global symmetries are **accidentally** realized to preserve gauge symmetries (e.g. Baryon number etc).

With the accidental U(1)PQ,

• Higher-dimensional operators which explicitly break U(1)PQ

 \rightarrow Non-zero effective θ -angle, easily exceeding the experimental upper bound.

Axion potential from anomaly.

Additional PQ-breaking $\rightarrow \theta \neq 0$. 4/18

Axion quality problem \rightarrow **Need for hidden dynamics** to solve the strong CP problem?

Introduction

Axion quality problem \rightarrow **Need for hidden dynamics** to solve the strong CP problem?

Introduction

Axion quality problem \rightarrow **Need for hidden dynamics** to solve the strong CP problem?

In axion models...

- 1. How is **spontaneous U(1)**_{PQ}-breaking realized in a scale around $f_a \gtrsim 10^9$ GeV? (In this talk: **composite axion models**)
- 2. How is $U(1)_{PQ}$ realized accidentaly, also avoiding axion quality problem?

3. Is axion mass enhanced?

Mass enhancement in simplified models **not addressing the quality problem**: P. Agrawal and K. Howe (2018). C. Csáki, M. Ruhdorfer and Y. Shirman (2020) "Composite axion models"

1. A new, strong-coupling gauge interactions $G_{\rm ST}$ confine at a scale $\Lambda \sim f_a$.

2. U(1)_{PQ}: axial rotation of new massless fermions charged under G_{ST}

3. Confinement of $G_{\text{ST}} \rightarrow$ **Spontaneous U(1)**_{PQ} breaking, leaving the axion.

A **Simple** Composite Axion Model before Addressing the Quality Problem

A Simplest Example (with $G_{ST} = SU(N)$) [Choi & Kim (1985)] :

<u>Note</u>: $U(1)_{PQ} \subset U(4)_N \times U(4)_{\bar{N}}$ is realized only when mass terms are forbidden by hand. i.e. $U(1)_{PQ}$ is NOT accidental in this simple model.

Composite Axion Models

Axion Mass in This Simple Composite Axion Model

- $SU(3)_{QCD} \rightarrow mass$ from anomaly (coupling to $F\tilde{F}$) as usual.
- $G_{ST} \rightarrow \text{mass}$ is not affected. (:: U(1)_{PQ} is not anomalous with respect to G_{ST})

Axion Mass Can Be Enhanced?

 \rightarrow Let us discuss a model in which $\mathrm{U}(1)_{PQ}$ is anomalous NOT ONLY by QCD

Model

The Simple Model (Not addressing Quality Problem)

 $\begin{cases} G_{ST} = SU(N) \\ G_{W} = SU(3)_{QCD} \end{cases}$

A Model Addressing the Quality Problem [M.Redi & R. Sato (2016)] $\begin{cases} G_{ST} = SU(N)_1 \times SU(N)_2 \\ G_W = SU(3)_W \times SU(4)_W \end{cases}$ SU(3)

Model

A Model Addressing the Quality Problem

[M. Redi & R. Sato (2016)]

New fermions

The Simple Model

	SU(N)	SU(3) _{QCD}
ψ_1	Ν	3
ψ_1'	Ν	1
ψ_2	N	3
ψ_2'	N	1

New fermions

	$SU(N)_{ST_2}$	SU(3) <mark>₩</mark>	$SU(N)_{ST1}$	$SU(4)_W$
ψ_1	Ν	3		
ψ'_1	Ν	1		
ψ_2		3	N	
ψ_2'		1	N	
ψ_3			Ν	4
ψ_4	N			4

Model

	SU(N) _{ST2}	SU(3)₩	$SU(N)_{ST1}$	SU(4)	v
ψ_1	Ν	<u></u> 3}.	TT(4) ^N		
ψ_1'	Ν	1)	0.02		
ψ_2		3	Νļ	τ τ(4)	
ψ_2'		1	N	0(()1	
ψ_3			Ν	4	} U(4)1
ψ_4	N			4	} V(4)

Maximal Flavor Symmetry (in vanishing coupling limit of $SU(3)_W$ and $SU(4)_W$)

 $\mathbf{U}(4)_1^N \times \mathbf{U}(4)_1^{\bar{N}} \times \mathbf{U}(4)_2^N \times \mathbf{U}(4)_2^{\bar{N}} = \mathrm{SU}(3)_{W} \times \mathrm{SU}(4)_{W} \times [\mathbf{U}(1)]^4$

 \times (SU(3)_W, SU(4)_W-colored part)

 $\times (SU(N)_{ST}$ -anomalous $[U(1)]^2$)

Accidental [U(1)]⁴ Global Symmetry

 $\mathbf{U(4)_1^N} \times \mathbf{U(4)_1^{\bar{N}}} \times \mathbf{U(4)_2^N} \times \mathbf{U(4)_2^{\bar{N}}} \supset \mathrm{SU(3)_W} \times \mathrm{SU(4)_W} \times [\mathbf{U(1)}]^4$

 $= SU(3)_{\mathbf{W}} \times SU(4)_{\mathbf{W}} \times \mathbf{U}(1)_{\mathbf{PQ}} \times \mathbf{U}(1)_{\mathbf{1}} \times \mathbf{U}(1)_{\mathbf{2}} \times \mathbf{U}(1)_{\mathbf{3}}$

	$SU(N)_{ST_2}$	SU(3) _W	$SU(N)_{ST1}$	SU(4)₩	$U(1)_{PQ}^{(SSB)}$	U(1) ₁	U(1) ₂	U(1) ₃
ψ_1	Ν	3			1	1	1	1
ψ_1'	Ν	1			-3	1	-3	1
ψ_2		3	N		1	1	-1	-1
ψ_2'		1	N		-3	1	3	-1
ψ_3			Ν	<u>4</u>	0	-1	0	1
ψ_4	N			4	0	-1	0	-1

Two θ -angles of SU(3)_W and SU(4)_W \leftarrow "nullified" by two anomalous U(1)'s.

Axion mass not only from QCD? (from SU(3), SU(4), instantons?)

→ Axion Mass Enhancement?

★ $SU(3)_W$ and $SU(4)_W$ instanton effects seems non-negligible because...

$$\frac{1}{g_{\rm QCD}^2(\Lambda)} = \frac{1}{g_{\rm SU(3)_W}^2(\Lambda)} + \frac{1}{g_{\rm SU(4)_W}^2(\Lambda)} \quad (\Lambda: "dynamical scale of SU(N)_{\rm ST}" = "breaking scale")$$
$$\rightarrow g_{\rm SU(3)_W} \text{ or } g_{\rm SU(4)_W} \text{ can be much larger than } g_{\rm QCD}.$$

However... <u>conclusion</u>: Mass enhancement is **absent**.

No Axion Mass Enhancement!

A rough explanation: Ambiguous $\mathrm{U}(1)_{PQ}$ vs Unambiguous Goldstone Boson Mass

• Combination of anomalous symetries: $U(1)_{PQ}$ and $U(1)_1 \rightarrow$ redefined $U(1)_{PQ}$

	$SU(N)_{ST_2}$	SU(3)₩	$SU(N)_{ST1}$	SU(4)₩	$U(1)_{PQ}^{(SSB)}$	U(1) ₁
ψ_1	N	3			1 + <i>α</i>	1
ψ'_1	Ν	1			-3 + <i>a</i>	1
ψ_2		3	N		1 + <i>α</i>	1
ψ'_2		1	N		-3 + <i>α</i>	1
ψ_3			Ν	4	0 - <i>a</i>	-1
ψ_4	N			4	0 – <i>a</i>	-1

<u>Q</u>. $g_{SU(3)_W} \gg g_{SU(4)_W} \sim g_{QCD} \rightarrow Axion mass enhancement by SU(3)_W instantons?$ $<u>A</u>. No, since such enhancement is absent with choosing <math>\alpha = -1$.

 $U(1)_1$ suppresses small instanton effects on the axion mass. (while $U(1)_1$ is necessary for solving the strong CP problem by nullifying one of θ parameters).

Summary

- 1. **Quality problem** \rightarrow A motivation for models with hidden dynamics.
- 2. Expectation: Is axion mass enhanced by hidden dynamics, in some models?
- 3. <u>Such model ("at first sight")</u>: Composite axion model by M. Redi and R. Sato (2016) Axion mass enhancement "seems" possible.
- 4. However, anomalous (and unbroken) U(1) symmetry nullifying one of θ parameters, also suppresses small instanton effects on the axion mass.

(More specifically, small instanton effects on the axion mass come only from configurations where total winding numbers of $SU(3)_W$ and $SU(4)_W$ coincide. See 2404.19342 [hep-ph].)

BACKUP

Comments on the Quality of U(1)PQ

- 1. $U(1)_{PQ}$ is "accidental" = "guaranteed (for renormalizable terms) by gauge symmetries".
- 2. $U(1)_{PQ}$ is "high-quality" = "guaranteed up to high mass dimensions of operators" (In the present model, the quality is NOT sufficient)
- 3. Sufficiently high-quality U(1)_{PQ} needs further extension of gauge symmetries: $[SU(N)_{ST}]^2 \times SU(4)_W \times SU(3)_W$

 $\rightarrow \quad [\mathrm{SU}(N)_{\mathrm{ST}}]^{n} \times [\mathrm{SU}(4)_{\mathrm{W}}]^{n-1} \times \mathrm{SU}(3)_{\mathrm{W}} \quad (n > 2)$

In this talk: n = 2 for simplicity. The same arguments are applicable to n > 2.

Larger Model with Higher Quality

Composite accidental axion model [Redi & Sato (2016)].

 $G_{\text{CONFINE}} = [SU(N)_{\text{ST}}]^n$ $G = SU(3)_{\text{W}} \times [SU(4)_{\text{W}}]^{n-1}$

 $[SU(N)_{ST}]^n$ confine at a scale $\Lambda (\sim f_a) \gg \Lambda_{QCD}$.

(In this talk, $\underline{n=2}$ as an example.)

Larger Model (n=3)

	$SU(N)_{ST_3}$	SU(3)₩	$SU(N)_{ST1}$	$SU(4)_{W1}$	$SU(N)_{ST_2}$	$SU(4)_{W2}$
ψ_1	N	3				
ψ'_1	Ν	1				
ψ_2		3	N			
ψ'_2		1	N			
ψ_3			Ν	4		
ψ_4				4	N	
ψ_5					Ν	4
ψ_6	N					4

		$U(1)_{PQ}^{(SSB)}$	U(1) ₁	U(1) ₂	U(1) ₃	U(1) ₄
ψ_1]	1	1	1	1	0
ψ'_1		-3	1	-3	1	0
ψ_2	1	1	1	-1	-1	0
ψ'_2		-3	1	3	-1	0
ψ_3		0	-1	0	1	0
ψ_4]	0	0	0	-1	-1
ψ_5		0	0	0	1	1
ψ_6		0	-1	0	-1	0

- Only U(1)_{PQ} is spontaneously broken, also for larger *n*.
- Additional n 2 <u>anomalous</u> (and unbroken) U(1)s, cancelling the additional θ angles.

No Axion Mass Enhancement!

Another explanation of the same thing: Influence of anomalous unbroken U(1)1

• Axion potential ← obtained from vacuum amplitude:

$$W(a) = \int \prod DA D\psi^{\dagger} \mathcal{D}\psi \exp\left(-S_{\text{Euclidean}}(A,\psi,\psi^{\dagger},a)\right)$$

• Contribution from "SU(3)_W, SU(4)_W winding number = (m, n)": $W(a)|_{(m,n)}$

By U(1)₁ rotation of fermions in path integral: (See 2404.19342[hep-ph]) $W(a)|_{(m,n)} = \exp [2i\alpha(m-n)] \times W(a)|_{(m,n)}$

 \rightarrow Vanishing unless m = n !

Especially, single $SU(3)_W$ or $SU(4)_W$ instanton cannot enhance the axion mass.

 $U(1)_1$ suppresses small instanton effects on the axion mass. (while being necessary for solving the strong CP problem by nullifying one of θ parameters).