

Hidden sectors with two-particle angular correlations at e+e- colliders

Imanol Corredoira¹, E. Musumeci², V.A. Mitsou^{2,5}, A. Irles², R. Pérez-Ramos³, E. Sarkisyan-Grinbaum⁴, M.A. Sanchis-Lozano²

- ¹IGFAE/University of Santiago de Compostela
- ² IFIC/University of Valencia
- ³ DRII-IPSA and LPTHE/Sorbonne Universitè
- ⁴The University of Texas at Arlington and CERN
- ⁵ National Technical University of Athens,

Outline

I.Hidden Valley models I.Which problems do they solve? 2.Phenomenology 2.Future e+e- colliders: ILC and ILD 3. Particle correlations 4. Exploring HV with 2PC at e+e- colliders 5.Results and sensitivity 6.Conclusions

Particle correlations for Hidden Valley studies in e+e-

2

Hidden valley models (HV)

Family of models with a basic structure

- Another sector (v) is proposed
 - Accessible via higher energy process
- Coupled to SM via mediators
- Consequence:
 - Multi-particle production in the v-sector
 - Exceptionally busy final states

Why the Hidden Valley Scenario?

- Extra sectors often appear in string theory, SUSY breaking, etc
- Dark Matter candidate with weak parameter constrain

<u>Our approach:</u>

- Find HV signatures as generic as possible
- Help detector design at future colliders

The QCD-like SU(3) HV model will be considered in this talk

Implemented in PYTHIA

We can study this with two particle correlations (2PC)

Imanol Corredoira

Particle correlations for Hidden Valley studies in e+e-

What happens in e+e- collisions ?

Future e+e- colliders and experiments

Many interesting ideas for future e^+e^- colliders: CLIC, FCCee, ILC

This talk is focus on the <u>International Linear Collider (ILC)</u>:

- Longitudinally polarized e^+e^-
- Precise study of e^+e^- collisions at $\sqrt{s} = \text{Z-pole}, 250, 500, 1000 \text{ GeV}$

International Linear Detector (ILD):

- Inner silicon vertexing
- Silicon tracking systems
- Continuous 3D tracking and PID
- High granularity calorimeters within a 3.5 T solenoid
- Instrumented flux return used to identify muons

- First year data-taking integrated luminosity, $\mathscr{L}_{int} \simeq 100 \text{ fb}^{-1}$
- Detector effects are studied with fast-simulation of the ILD detector models and the reconstruction tools of ILD software

"The ILD detector at the ILC", ILD Collaboration, arXiv:1912.04601 "The International Linear Collider Technical Design Report". Maura Barone et. al. arXiv: 1306.6352

Imanol Corredoira

Particle correlations for Hidden Valley studies in e+e-

Thrust axis in e+e- collisions

- Thrust axis $(T) \rightarrow Axis$ defined to study particles production in e+e-Align with the average momentum of the particles Well known since ALEPH
- Particle (η, ϕ) coordinates defined w.r.t. thrust axis

$$T = max(\overrightarrow{n}) \frac{\sum_{i} |\overrightarrow{p_{i}} \cdot \overrightarrow{n}|}{\sum_{i} |\overrightarrow{p_{i}}|}$$

Particle correlations for Hidden Valley studies in e+e-

Two particle correlations: Definitions

2PC analysis is based on counting the number of particle pairs within a range of $(\Delta y, \Delta \phi)$

Correlation function:

$$C(\Delta y, \Delta \phi) = \frac{S(\Delta y, \Delta \phi)}{B(\Delta y, \Delta \phi)}$$

where $S(\Delta y, \Delta \phi)$ is the density of particle pairs within the same event

$$S(\Delta y, \Delta \phi) = \frac{1}{N_{pairs}} \frac{d^2 N^2 s_{db}}{d\Delta y_{db}}$$

and $B(\Delta y, \Delta \phi)$ is the density of particle pairs within different events

$$B(\Delta y, \Delta \phi) = \frac{1}{N_{pairs}} \frac{d^2 N^2}{d\Delta y}$$

Imanol Corredoira

 $\Delta \phi$

Particle correlations for Hidden Valley studies in e+e-

Data selection: Improving signal/background

<u>Realistic selection optimization at detector level</u>

- number of PFOs*: charged < 22neutrals < 15
 - Reconstructed ISR photons
 - $|\cos \theta_{\gamma ISR}| < 0.5; E_{\gamma ISR} < 40 \text{ GeV}$
 - Di-jet invariant mass
 - $M_{ii} < 130 \text{ GeV}$
 - Leading jet invariant mass
 - $M_i < 80 \, {\rm GeV}$

TABLE I. Cross-sections for $e^+e^- \rightarrow D_v \bar{D}_v$ processes with different m_{q_v} masses, for $e^+e^- \to q\bar{q}$ and $WW \to 4q$ at $\sqrt{s} =$ 250 GeV. The efficiencies of the selection criteria described in the main text, and the average charged-track multiplicity and its RMS, are shown.

$\sigma_{ m Pythia8} \ [m pb]$	Efficiency [%]	$\langle N_{ m ch} angle$	
0.13	36	12.4 ± 3.7	
0.12	36	12.4 ± 3.7	
0.12	42	11.4 ± 3.5	Grea
0.12	42	6.5 ± 2.1	
48	$\lesssim 0.01$	9.9 ± 3.4	
7.4	$\lesssim 0.001$		
	$\sigma_{ m PYTHIA8}$ [pb] 0.13 0.12 0.12 0.12 0.12 48 7.4	$\sigma_{\rm PYTHIA8}$ Efficiency [pb] [%] 0.13 36 0.12 36 0.12 42 0.12 42 48 $\lesssim 0.01$ 7.4 $\lesssim 0.001$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Imanol Corredoira

Di-jet invariant mass distribution for signal (HV) and background (SM)

Pythia8+SGV (ILC detector)

at efficiency suppressing SM background!

*PFOs: Particle Flow Objects. Detector level particle candidates in ILD software

Particle correlations for Hidden Valley studies in e+e-

SUSY2024

8

Correlation functions

Imanol Corredoira

SUSY2024

9

Yield and signal separation

The Yield, is just the integral of the 2PC function over a y range:

$$Y(\Delta \phi) = \frac{\int_{y_{inf} \le |\Delta y| \le y_{sup}} S(\Delta y, \Delta \phi) dy}{\int_{y_{inf} \le |\Delta y| \le y_{sup}} B(\Delta y, \Delta \phi) dy}$$

Pythia8+SGV (ILC detector)

Imanol Corredoira

Particle correlations for Hidden Valley studies in e+e-

Applying our selection cuts \rightarrow We reduce SM while keeping HV. Yield becomes and observable for HV discovery

Great signal/background separation!

Uncertainties and sensitivity

Uncertainties:

- Statistical from luminosity: $\mathscr{L}_{int} = 100 \text{ fb}^{-1}$
- Parton Shower, Fragmentation and Hadronization : HERWIG vs PYTHIA
- Detector modeling: Efficiencies are partially (totally) cancel in 2PC studies. However, a conservative uncertainty is added

In this scenario, the sensitivity is $> 5\sigma$. However, there is room for improvement Different hidden-quark (qv) masses does affect the sensitivity

Imanol Corredoira

Particle correlations for Hidden Valley studies in e+e-

Conclusions

- We propose a novel observable for new physics at e+e- colliders
- QCD like Hidden Valley model is studied variating masses using PYTHIA8
- Background studies and selection optimization \rightarrow Filter 0.01% of SM events while keeping 40% of HV
- What about higher energies? An study of cross-section is done for $\sqrt{s} = 500$ GeV and 1 TeV

Process	$\sigma_{\sqrt{s}=500 { m GeV}} \ [{ m pb}]$	$\sigma_{\sqrt{s}=1 { m TeV}} \ [{ m pb}]$	
	$m_{D_v} = 250 \text{ GeV}$	$m_{D_v} = 500 \text{ GeV}$	• Other cha
$e^+e^- \to D_v \bar{D}_v$	2.4×10^{-2}	4.4×10^{-3}	• $t\bar{t}$ proc
	$m_{T_v} = 250 \text{ GeV}$	$m_{T_v} = 500 \text{ GeV}$	• $T \overline{T}$ in
$e^+e^- \to T_v \bar{T}_v$	9.5×10^{-2}	1.8×10^{-2}	
$e^+e^- \to q\bar{q}$ with ISR	11	2.9	 Contribut
$e^+e^- \to t\bar{t}$	0.59	0.19	• A reduction
WW fusion	3.4	1.3	

References:

- "Prospects of searching for (un)particles from Hidden Sectors using rapidity correlations in multi-article production at the LHC". Miguel Angel Sanchis Lozano, International Journal of Modern Physics AVol. 24, No. 24, pp. 4529-4572 (2009)
- "Searching for hidden matter with long-range angular correlations at e+e- colliders". R.Pérez-Ramos, M.A. Sanchis-Lozano, and E.K. Sarkisyan-Grinbaum, Phys. Rev. D 105, 053001 2022
- Sanchis-Lozano. (2023) <u>https://arxiv.org/pdf/2312.06526</u>

Imanol Corredoira

Particle correlations for Hidden Valley studies in e+e-

• Detector effects and sensitivity studies \rightarrow Current knowledge with first year of integrated luminosity give us $> 5\sigma$

annels appear:

- duction and WW fusion from the SM
- the HV sector
- tion from SM decreases with the energy
- on of two orders of magnitude in the HV cross-section at $\sqrt{s} = 1$ TeV

• "Exploring hidden sectors with two-particle angular correlations at future e+e- colliders". E. Musumeci, A. Irles, R. Perez-Ramos, I. Corredoira, E. Sarkisyan-Grinbaum, V.A. Mitsou and M.A.

