

Searches for BSM physics using challenging and long-lived signatures with the ATLAS detector

Alexander Lory on behalf of the ATLAS collaboration

SUSY 2024 - Madrid

Introduction

- Particles of the SM have lifetimes and masses spanning large ranges
- Same for BSM models!
 - Long lifetimes:
 - Small couplings
 - Approximate symmetries
 - Suppressed phase space available for decays

Introduction

- Striking, exotic signatures are expected if LLP particles decay to SM at detector-scale distances
- However, the ATLAS detector, triggers, simulations, reconstruction techniques, ... are typically optimised for signatures observed in the SM

- Long-lived signatures require dedicated / unconventional / challenging
 - Triggers
 - Reconstruction algorithms
 - Background estimates (often data-driven)
 - Signal simulations

Outline

 For an overview of ATLAS SUSY LLP searches see <u>Recent results on long-lived particles in ATLAS - Dr. Vasiliki Mitsou</u> in the SUSY parallel session

Search for light long-lived particles in pp collisions at 13 TeV using displaced vertices in the ATLAS inner detector

arXiv:2403.15332

- Search for neutral LLP decaying hadronically in the ID
 - displaced jets
 - displaced vertices in the inner detector
- First direct application of improved large radius tracking (LRT) Eur. Phys. J. C 83, 1081 (2023)

- Targetting 3 benchmark models:
 - Higgs portal

– Axion-like particle (ALP) coupling to gluons / vector bosons

ALP coupling to up-type quarks leading to exotic top decay

• Previous ATLAS searches

- In the ID:
 - No dedicated trigger available
 - LRT computationally expensive and high fake rate
 - Restricted to ZH production
 - Required at least two displaced vertices due to large background from fake tracks

- This new search uses updated LRT Eur. Phys. J. C 83, 1081 (2023) :
 - Significantly reduced rate of fake tracks
 - LRT can be applied to each event
 - WH and VBF productions now also probed (and topologies used for triggering)

- Displaced vertices ATL-PHYS-PUB-2019-013
 - Dedicated algorithm for LLP searches
 - Using both standard tracks and LRTs
 - Efficient from 2 mm to 300 mm displaced decays
- Main background:
 - Interaction of SM particle with detector material
 - \rightarrow veto vertices on location of detector material
 - 3D map of material is built by reconstructing DVs in a data sample
 - \rightarrow not well applicable to simulation
 - → search uses data-driven background estimate

- Displaced jet reconstruction:
 - BDT trained using 5 jet-level features related to the displacement of tracks within jets
- Events categorized based on $BDT_{j_0} \times BDT_{j_1}$, n_{DV}
 - SR exactly one, or at least two DVs
- Background estimate:
 - Fully data-driven
 - In CR, measure probability for a DV to be reconstructed in the vicinity of a DJ, as a function of DJ characteristics
 - Compute probabilities to obtain given DV mutliplicity in each event based on present DIS
 - Applying these probabilities as event weightsin an inclusive data selection gives the expected number of events in the SRs

0.95

BDT

Search for light long-lived neutral particles from Higgs boson decays via vector-bosonfusion production from pp collisions at s=13 TeV with the ATLAS detector

CERN-EP-2023-226

- Search for a hidden sector with light, long lived dark photons
 - → displaced decays of
 collimated leptons or light
 hadrons in the calorimeters and
 MS
 Dark photon jets (DPJs)

γ_d Branching Ratio

- Targetted signal model
 - Falkowski–Ruderman–Volansky–Zupan (FRVZ) model
 - A hidden sector with dark fermions reached with exotic decay of H
 - Decay to dark photons +
 hidden lightest stable particle (HLSP)
 → ETmiss
 - Dark photons are light (0.017 15 GeV)
 - Collimated decay products
 - Higher dark photon masses (20 60 GeV) probed by the displaced dimuon search
 <u>Phys. Rev. D 99 (2019) 012001</u>

- Previous ATLAS searches
 - Red: Run 1 prompt <u>JHEP 02 (2016) 062</u>
 - **Orange**: EarlyRun 2 displaced <u>Eur. Phys. J. C 80 (2020) 450</u>
 - Blue: Run 2 displaced (ggH + WH) J. High Energ. Phys. 2023, 153 (2023)
- This search extends
 Run 2 ggH + WH
 - Targets also VBF
- Triggering
 - Dedicated LLP muon triggers
 JINST 8 (2013) P07015
 - Missing transverse energy

Muonic dark photon jets (µDPJ)

- Dark photons decaying outside the ID into 2 or more collimated muons
- Muons reconstructed using only MS are clustered using a Cambridge–Aachen algorithm
- Main backgrounds:
 - Cosmic :
 - \rightarrow rejected by DNN which uses
 - Impact parameter z
 - Track direction
 - Timing measurements
 - Rare QCD punch-through

Calorimeter dark photon jets

- Dark photons decaying to electrons or quark pairs in the HCAL
- Standard jets, but with low EM fraction
- Veto jets with > 40% matched tracks compatible with PV
- Timing measurements used to reject cosmic and beam-induced bkgs
- 2 CNNs using calorimeter cell information used to reject
 - Fakes from prompt QCD jets
 - Beam induced background

- Main background (QCD jets) estimated with ABCD method
- No deviations from the background expectations were observed

Selection	CRB	CRC	CRD	SR expected	SR observed
SR _µ	44	22	21	42 ± 14	41
SR _c ^L	224	256	1123	983 ± 95	923
SR_c^H	9	11	35	29 ± 14	46

• Results are combined with the ggH + WH search

Conclusion

- No new physics has been found in signatures of displaced jets and displaced lepton jets
- Reconstruction techniques and analysis strategies still improving to uncover more phase space with Run – 2 data
- What else to search for?

Backup

- Main background for DVs:
 - Interaction of SM particle with detector material
 - → veto vertices on location of detector material
 - 3D map of material is built by reconstructing DVs in a data sample
 - \rightarrow not well applicable to simulation
 - \rightarrow search uses data-driven background estimate
- Remaining background:
 - Light hadron decays (mostly 2 prong)
 - → require at least 3 tracks

- Main background for DVs:
 - Interaction of SM particle with detector material
 → veto vertices on location of detector material
 - 3D map of material is built by reconstructing DVs in a data sample
 - \rightarrow not well applicable to simulation
 - \rightarrow search uses data-driven background estimate
- Remaining background:
 - Light hadron decays (mostly 2 prong)
 - → require at least 3 tracks
- Additional requirements reject
 - Light hadron decays with random crossing
 - Heavy flavour decays

Parameter	Value
Material veto	True
Max. $\chi^2/n_{\rm DoF}$	5
Max. $ z_{\rm DV} $	300 mm
Min. <i>n</i> trk	3
Min. $m/\Delta R_{\rm max}$	4 GeV
Min. $H_{\rm T}$	10 GeV
Min. $d_{0,\max}$	3 mm
Min. $d_{0,\min}$	0.1 mm
Max. ΔR_{jet}	0.6

Triggers:

- Dedicated triggers for LLPs: JINST 8 (2013) P07015
 - Tri-muon MS-only:
 - 3 muons at L1 (6 GeV)
 - confirmed at HLT using only MS
 - Limited sensitivity to collimated leptons
 - Muon narrow-scan:
 - 1 L1 muon (20 GeV)
 - Scan for a second muon within dR = 0.4 at HLT
 - Not required to be matched to ID tracks
- ETmiss (70 110 GeV)

Events categorized base on type of the leading DPJ

- Muonic DPJ:
 - Tri-muon, muon narrow scan, and ETmiss triggers
- Calo DPJ:
 - ETmiss trigger only
- Event selection requirements target VBF production topology and reject QCD background with fake ETmiss from mismeasured jet energies.

Requirement / Region	SR_{μ}	SR _c ^{L/H}
Number of DPJs	≥ 1	≥ 1
Leading DPJ type	μDPJ	caloDPJ
	$E_{\mathrm{T}}^{\mathrm{miss}}$	
Trigger	Tri-muon MS-only	$E_{ m T}^{ m miss}$
	Muon narrow-scan	
$p_{\rm T}({\rm jet})$ [GeV]	> 30	> 30
N _{jet}	≥ 2	≥ 2
m _{jj} [GeV]	≥ 1000	≥ 1000
$ \Delta \eta_{jj} $	> 3	> 3
$ \Delta \phi_{jj} $	< 2.5	< 2.5
N_{ℓ}	0	0
N _{b-jet}	0	0
C _{DPJ}	> 0.7	-
$\Delta \phi_{\min}$	-	> 0.4
Emiss [CoV]	> 100	SR _c ^L : [100, 225]
	> 100	$SR_{c}^{H}: > 225$
µDPJ charge	0	-
caloDPJ tagger	-	> 0.9
$\sum_{\Delta R=0.5} p_{\rm T} [\text{GeV}]$	< 2	< 2

- 2 channels:
 - Calo DPJ
 - Muonic DPJ
- Main backgrounds:
 - QCD jets

