SUSY

Theory meets Experiment

Madrid, 10 - 14 June 2024 Pre-SUSY school: 3 – 7 June 2024 https://indico.cern.ch/e/susy2024

International Advisory Committee

Csaba Balazs Marcela Carena

Monoranjan Guchait Pyungwon Ko

Apostolos Pilaftsis Fernando Quevedo Mariano Quirós Barbara Szczerbinska Begoña de la Cruz

Luca Merlo Guillermo Ballesteros Sven Heinemeyer (chair) Jesús Moreno

Tianjun Li

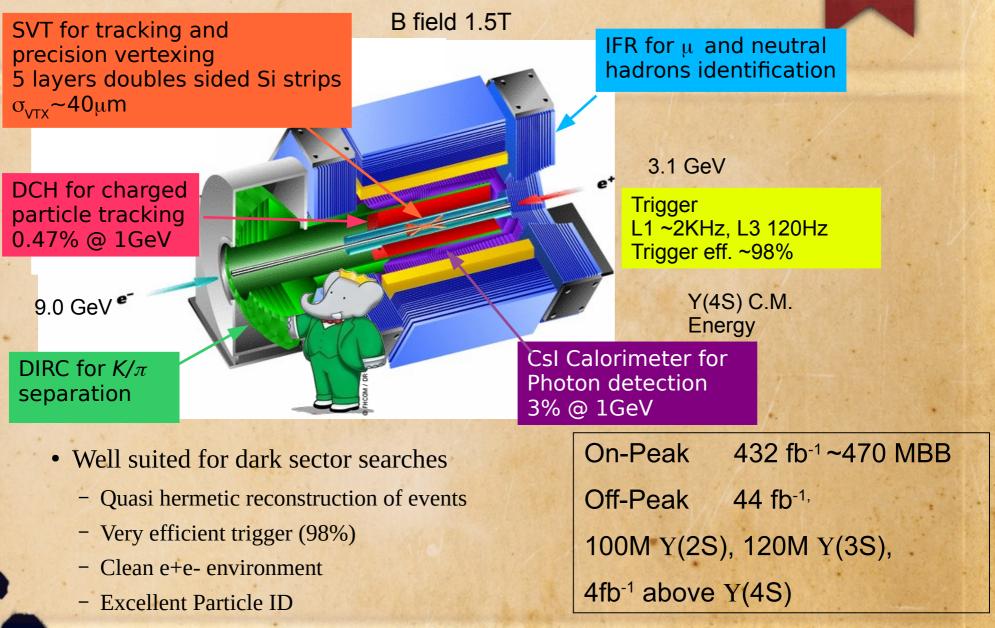
Joseph D. Lykken

Rabindra N. Mohapatra

Mario Martinez

Stefano Moretti Pran Nath

Recent Dark Matter searches at BaBar and implications on some SUSY models


Gabriele Simi University of Padova and INFN On behalf of the BaBar collaboration

Overview

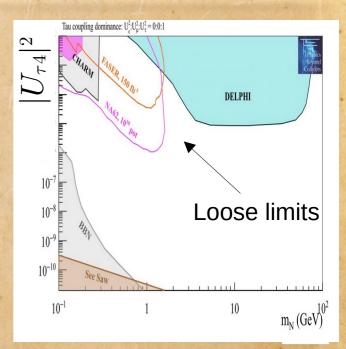
- BaBar experiment
- Introduction
- Search for Heavy Neutral Leptons in tau decays
 - Phys.Rev.D 107 (2023) 5, 052009 (BABAR)
- Search for Baryogenesis and Dark Matter
 - Phys.Rev.Lett. 131 (2023) 20, 201801 (BABAR)
 - Phys.Rev.D 107 (2023) 9, 092001 (BABAR)
- Implications for some SUSY models
 - JHEP 2023, 224 (2023)
 - Phys. Rev.Lett. 131 (2023) 20, 201801 (BABAR)

BABAR Experiment at PEPII

- Accurate Missing Energy reconstruction

Nucl. Instrum. Meth. A 729, 615 (2013)

G. Simi - SUSY24


Dark Matter (DM) Portals

- To understand the nature of dark matter an effective theory approach provides several portals
- At B-Factories DM can be produced in e⁺e⁻ interactions or in B meson decays
- Searches can access different operators, constrain masses and couplings

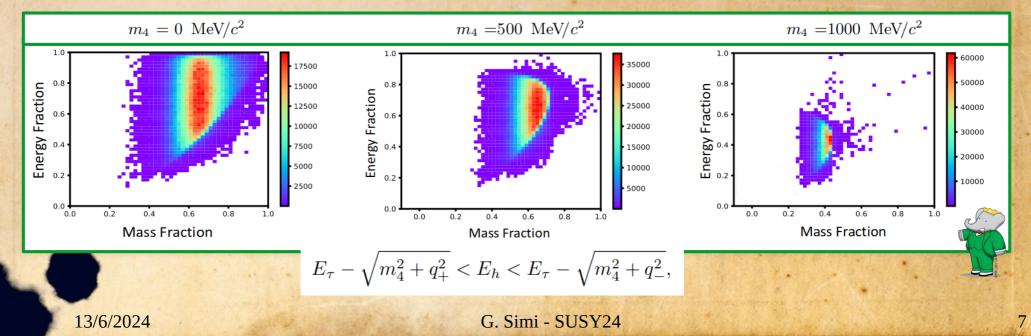
Search For HNL: Motivation

- Several Beyond Standard Model theories introduce Heavy Neutral Leptons (HNL)
- HNL are massive additional neutrino states which have no other charges, and can explain several phenomena
 - Neutrino small mass (seesaw mechanism) and oscillations
 - Baryon asymmetry in the universe
 - The origin of dark matter
- The ν -MSM has three HNL in the keV-GeV range
- HNL can be produced in lepton decays and the τ sector is the less constrained
- BaBar produces copious amounts of τ in a clean environment
 - _ $\mathcal{L}{=}424\,fb^{-1}$, $N_{\tau\tau}{=}400M$
 - $\sigma (e^+e^-) \rightarrow \tau^+\tau^- = 0.92 \, nb, \ \sigma_{tot} \simeq 5.4 \, nb + bhabha$
- BaBar can search for a HNL that is capable of mixing with *τ* with strength |U_{τ4}|² in the mass range 100 MeV/c² < m₄ < 1300 MeV/c²

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \\ \nu_L \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{L1} & U_{L2} & U_{L3} & U_{L4} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \\ \nu_4 \end{pmatrix}$$

Serach for HNL: strategy

Selection


- Signal side: three prong pionic decay ($\tau \rightarrow \pi \pi \pi \nu_{\tau}$)
- Tag side one prong τ decay to reduce bkg
- Signal and tag identified in different hemispheres (3+1 topology), thrust>0.85
- P_T , $P^{miss}_{CM} > 0.9\% \sqrt{S}$ to suppress non tau bkg
- DIRC acceptance and PID requirements for e and μ
- Neutral and conversion veto for tag side
- Signal extraction: same strategy used in previous analysis in BaBar using only variables sensitive to the kinematics
 - if the decay products of the τ have recoiled against a heavy neutrino, the phase space and the kinematics of the visible particles would be modified with respect to SM τ decay with a massless neutrino: no model assumptions

HNL Signal

- Consider the process as a two body decay $au
 ightarrow h^-(E_h, m_h)
 u_{ au}$
- The signal is searched in the 2D plane of the hadron mass and energy (m_h, E_h)
- Tau decay gets separate contributions from SM and BSM decay

$$\frac{\Gamma(\tau^- \to \nu h^-)}{\mathrm{d}m_h dE_h} \bigg|_{\mathrm{Total}} = \left| U_{\tau 4} \right|^2 \frac{\mathrm{d}\Gamma(\tau^- \to \nu h^-)}{\mathrm{d}m_h \mathrm{d}E_h} \bigg|_{\mathrm{HNL}} + (1 - |U_{\tau 4}|^2) \frac{\mathrm{d}\Gamma(\tau^- \to \nu h^-)}{\mathrm{d}m_h \mathrm{d}E_h} \bigg|_{\mathrm{SM}}.$$

- 2D templates are built for each different m_4 mass. The hadronic system available phase space reduces as m_4 increases
- Signal samples from modified KK2F+TAUOLA+GEANT4 in the range $100 MeV/c^2 < m_4 < 1300 Mev/c^2$

HNL: Signal extraction

- Background from MC simulation
 - Misidentified SM τ decays
 - SM non τ bkg: B decays, light quarks, $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$
- Signal (ν_{HNL}) extracted from binned ML fit assuming each bin has Poisson distribution with mean $\nu_{HNL} + \nu_{\tau-SM} + \nu_{BKG}$

 $u_{HNL} \propto |U_{ au 4}|^2, \
u_{ au - SM} \propto (1 - |U_{ au 4}|^2)$

- Limits include nuisance parameters
- Dominant systematic from shape uncertainty

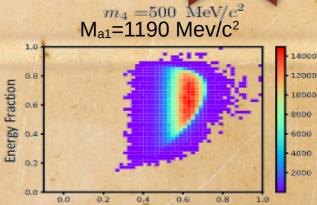
Mass [MeV/ c^2]	No Sys.	With Sys.
100	1.58×10^{-2}	2.31×10^{-2}
200	1.33×10^{-2}	1.95×10^{-2}
300	6.91×10^{-3}	9.67×10^{-3}
400	1.57×10^{-3}	2.14×10^{-3}
500	4.65×10^{-4}	5.85×10^{-4}
600	5.06×10^{-4}	6.22×10^{-4}
700	3.82×10^{-4}	4.85×10^{-4}
800	3.12×10^{-4}	3.85×10^{-4}
900	4.70×10^{-5}	5.38×10^{-5}
1000	8.34×10^{-5}	9.11×10^{-5}
1100	4.49×10^{-5}	4.78×10^{-5}
1200	4.70×10^{-6}	5.04×10^{-6}
1300	3.85×10^{-5}	4.09×10^{-5}

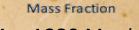
$$\mathcal{L} = \prod_{ij} f(n_{ij}; n_{\text{obs}}, \vec{\theta}) = \prod_{ij} \frac{(\nu_{\text{HNL}} + \nu_{\tau-\text{SM}} + \nu_{\text{BKG}})_{ij}^{(n_{\text{obs}})_{ij}} e^{-(\nu_{\text{HNL}} + \nu_{\text{BKG}} + \nu_{\tau-\text{SM}})_{ij}}}{(n_{\text{obs}})_{ij}!} \times \prod_{k} f(\theta_k, \tilde{\theta}_k),$$

• For each mass re-weighted 2D templates for signal are used

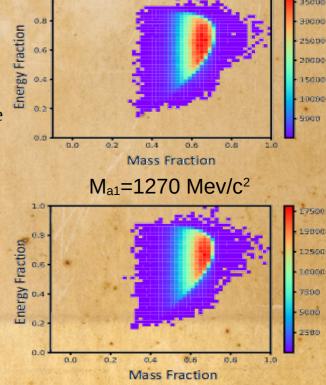
Nuisance parameters

13/6/2024

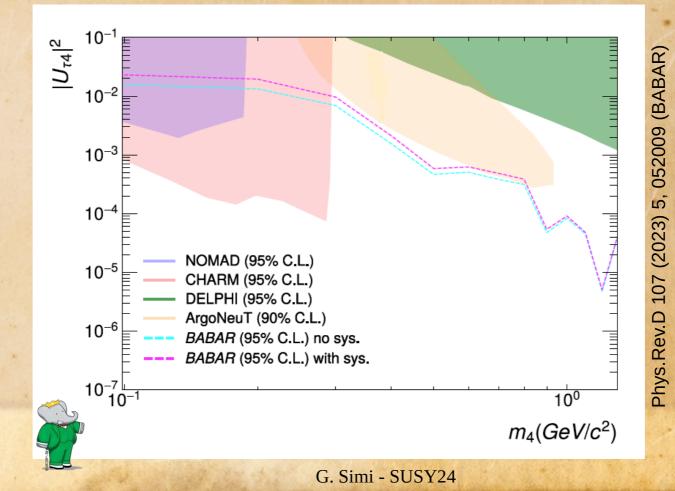

(2023) 5, 052009


Rev. D 107

HNL: systematic uncertainties


- Normalization uncertainties
 - Affect all bins uniformly
 - Have small effect on the yield (<3%)
 - Biggest contribution from PID efficiency
 - Characterized by Gaussian nuisance parameters
- Shape uncertainties
 - − τ → 3-prong BF through a_1 resonance = 97%
 - Large uncertainties on a_1 parameters mass (+/-3%) and Γ_{a1} (250 MeV/c² 600 MeV/c²)
 - Modeling of signal and bkg shape in TAUOLA affected by these uncertainties
 - To account for this looked at templates with mass and width varied to these extremes (re-weighted MC) and re-calculated the likelihood
 - Γ_{a1} has the largest effect, especially on the RMS of m_h

	E _h	m _h
RMS shift	1%-3%	6%-7%
Mean shift	1%-2%	1%-2%



^ohys.Rev.D 107 (2023) 5, 052009 (BABAR)

G. Simi - SUSY24

HNL: Results

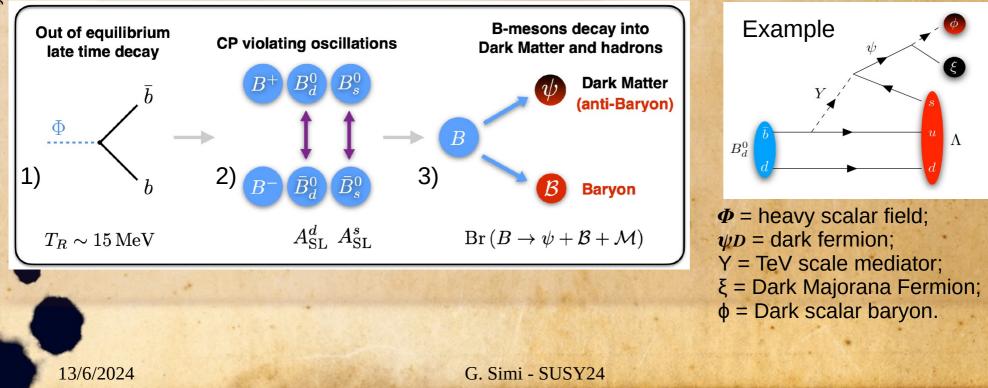
- Result is expressed as an upper limit on $|U_{ au 4}|^2 vs m_4$
- Covers nicely region around 1 GeV/c²
- World leading constraint at time of publication

Baryogenesys and dark matter: Introduction

- A new dark sector anti-baryon has been proposed to simultaneously explain both the dark matter (DM) abundance and the Baryon Asymmetry in the Universe (BAU)
- Baryon asymmetry generated via
 - 1) Production of bb pairs

- 2) CPV in B oscillations generates more B⁰ than anti-B⁰
- 3) B meson decay into a baryon \mathcal{B} (= Λ or

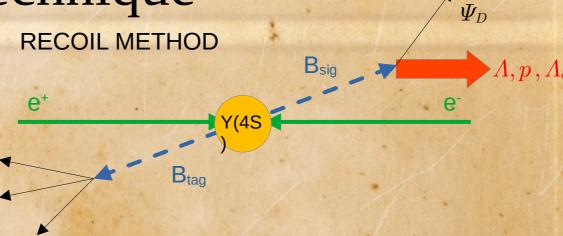
p in this search) and a dark sector antibaryon (Ψ_D) + additional mesons (\mathcal{M})


D 99, 035031 (2019)

Rev.

Phys.

11


generated visible asymmetry

Operators sensitivity and Reconstruction Technique

- Decay described by effective operators O_{ij} corresponding to transitions $b \rightarrow q_i q_j$ where i=u,cj=d,s
- Different decay channels are sensitive to different effective operators

In this talk		In preparation	
Meson	Decay	Operato r	M _{max} [MeV]
B^0	$\varPsi_{D} + \varLambda$	O_{us}	4163.95
B^+	$\varPsi_{D} + p$	O_{ud}	4341.05
B^+	$\varPsi_D{+}\Lambda_c$	O_{cd}	2992.86

- B_{tag}: fully reconstructed hadronic B-decays (mostly charmed)
- B_{sig}: the rest of the event = a single reconstructed baryon
- $\Psi_{D:}$ Missing momentum since dark-sector particles escape detection
- Kinematic constraints limit the search for $0.94 \, GeV < m_{\Psi_D} < 4.34 \, GeV$

Selection

• B_{Tag}

- Beam Energy substituted mass
- $-\Delta E = E_{beam} E_{BTag}$
- Spherical event topology
- Signal Baryon
 - BDT built from bkg rejection variables, baryon (and B_{Tag} and) reconstruction quality variables with small correlation with missing mass

-data

 $\times 10^3$

 $^{27}_{beam}$

#Events / (1.0 MeV/c²)

20

15

10

 $B^0\overline{B}^0$

cc

5.25 5.26 5.27 5.28 5.29 5.3

m_{ES} [GeV/c²]

- Signal

-B⁺B

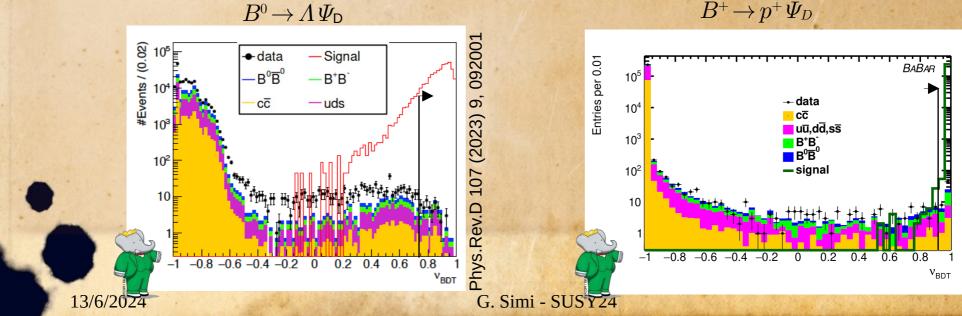
-uds

9,09200

(2023)

Rev.D 107

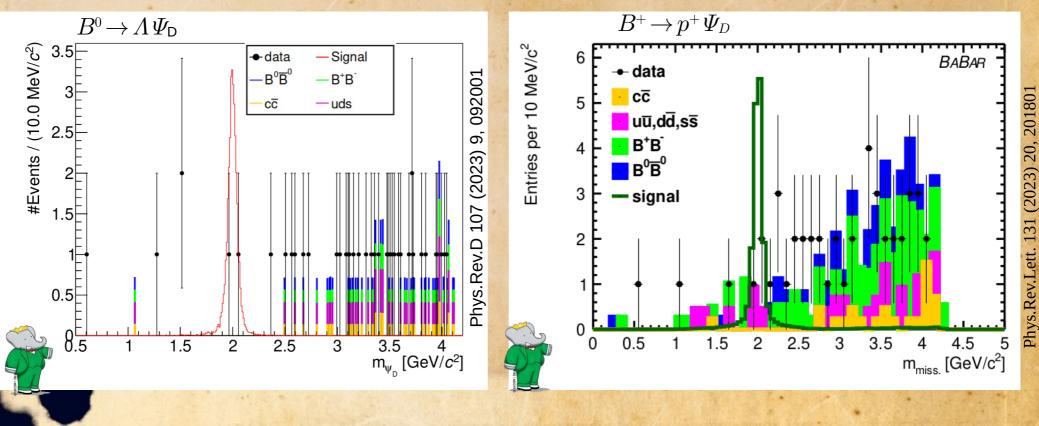
201801


20,

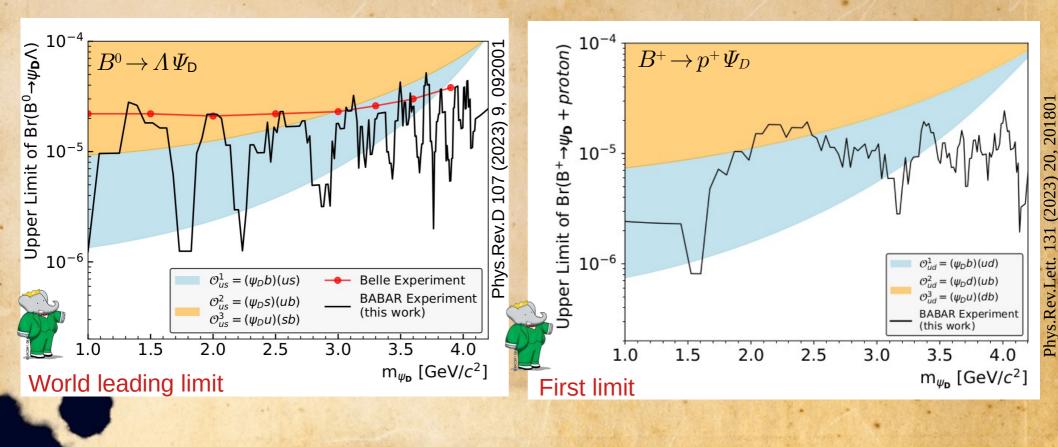
(2023)

131

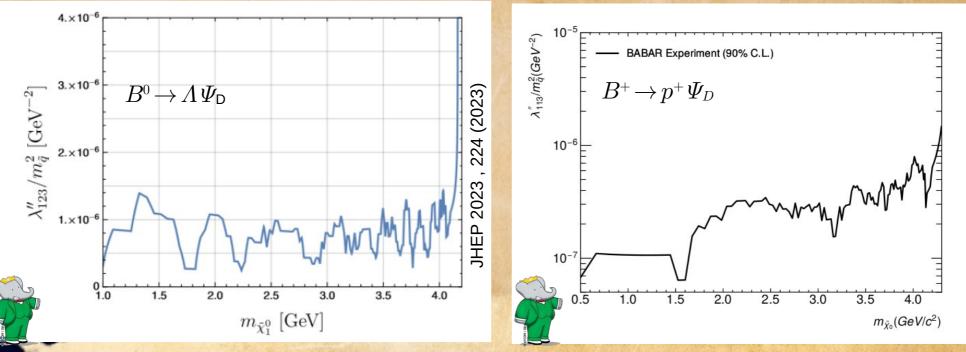
Phys.Rev.Lett.


13

Results


- Total data used 389ifb
- 10% of data used to optimize analysis
- Signal is extracted from the missing mass distribution fitted to a Crystal Ball

- Scan is performed on the missing mass with step size equal to the resolution
- Largest systematic uncertainty from data/MC corrections (efficiency)


Results

- Upper limits (black line) computed assuming Poisson distribution
- 95% exclusion limits (black line) obtained scanning the missing mass distribution for many values
- Global significance at 1σ level
- Colored bands are the allowed regions consistent with observed baryon asymmetry: large regions excluded

Results: limits on RPV SUSY models

- Since all we are requiring is missing mass these results can be reinterpreted to constrain other models, including the R Parity Violating (RPV) supersymmetry process $B^+ \rightarrow \tilde{\chi}_0 + p$ where $\tilde{\chi}_0$ is the lightest neutralino. It violates R parity since it produces only one neutralino.
 - BF bounds are interpreted as limits on λ''_{113} vs neutralino mass

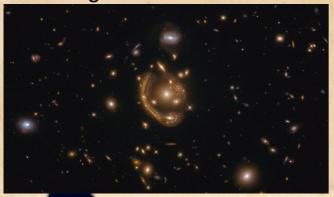
13/6/2024

Phys.Rev.Lett. 131 (2023) 20, 201801

d/s

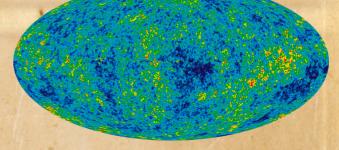
Conclusions

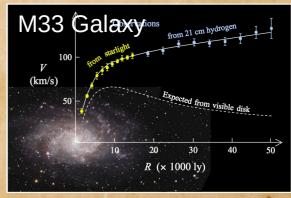
- BaBar continues to produce excellent physics results and is well suited to search for dark matter candidates
- We performed a model independent search searched for Heavy Neutral Leptons (mostly sterile)
 - Could explain simultaneously BAU and DM origin
 - No signal observed but set the world leading limits for the mixing strength with the tau in the region around 1 GeV/c²
 - Largest systematic coming from hadronic tau decays
- We performed a search for dark matter candidates in exotic B decays to a baryon a dark sector anti-baryon
 - No signal is observed and we put limits on the BF
 - In the context of DM and BAU B-mesogenesys models we have put stringent limits on some operators
 - In the context of SUSY these limits can be recast as limits on RPV SUSY models

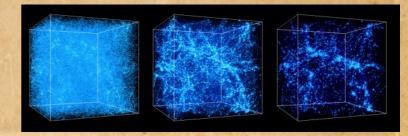

BACKUP

Dark Matter in the Universe

Cosmic microwave bkg


- Many experimental evidences of Dark matter
 - Lambda CDM: 5% Baryonic Matter, 27%
 Dark Matter, 68% Dark Energy
 - Rotational curve of galaxies
 - Large scale structure formation
 - Bullet galaxy cluster
 - Gravitational lensing


lensing


Dark matter Bullet cluster

[simulated] structure formation

G. Simi - SUSY24