

Deconstructing flavor anomalously

Javier M. Lizana IFT Madrid

Based on: 2402.09507

(with Javier Fuentes-Martin)

SUSY 2024, IFT, Madrid

Javier M. Lizana | Deconstructing flavor anomalously

Deconstructing flavor anomalously

The flavor puzzle

• Flavor puzzle: very hierarchical structures

New Physics bounds

Flavor symmetries of SM

• Flavor symmetry $U(3)^5$, only broken by Yukawas:

$$\mathscr{L} = -\frac{1}{4}F^{a}_{\mu\nu}F^{a\,\mu\nu} + \bar{\psi}_{a}\not{D}\psi_{a} + |D_{\mu}H|^{2} - V(H) + (Y_{ab}\bar{\psi}^{a}_{L}H\psi^{b}_{R} + h.c.)$$
$$U(3)^{5} = U(3)_{q} \times U(3)_{u} \times U(3)_{d} \times U(3)_{\ell} \times U(3)_{e} \qquad \text{Largest breaking}$$

- $Y_{u,d,e}$ very hierarchical:
- Protection in FCNC (GIM).

Flavor symmetries of SM

• To leading order:

 $U(3)^{5} \xrightarrow{\text{Top Yuk.}} U(2)_{q} \times U(2)_{u} \times U(3)_{d} \times U(3)_{\ell} \times U(3)_{e}$ $U(3)^{5} \xrightarrow{\text{U}(2)^{5}}_{\text{3rd fam. Yuk.}}$

• Protection in FCNC (GIM).

A good way to improve flavor bounds on NP is to preserve the same flavor symmetries.

Flavor deconstruction as origin of the flavor hierarchies

Deconstructing flavor anomalously

Javier M. Lizana | Deconstructing flavor anomalously

$$\begin{array}{ccc} G_l \times G_h \times G_U & & & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Splitting SM fields, our BSM model can have the required accidental symmetries

• Careful with gauge anomalies: deconstruction family by family

Otherwise...

$$\sum_{f \sim G_{l,h}} y_f \neq 0$$

$$\begin{array}{c} G_1 \times G_2 \\ \downarrow \sim 10^{2-3} \, \text{TeV} \\ G_l \times G_h \times G_U \\ \downarrow \quad \downarrow \quad \downarrow \\ 1,2 \quad 3 \quad \text{All} \end{array} \xrightarrow{\langle \Phi \rangle \neq 0} G_{\text{SM}} = SU(3)_c \times SU(2)_L \times U(1)_Y$$

• Multiscale picture for flavor:

$$E \qquad \Lambda_1 \sim 10^{4-5} \,\mathrm{TeV} \qquad \Lambda_2 \sim 10^{2-3} \,\mathrm{TeV} \qquad \Lambda_3 \sim \mathcal{O}(\mathrm{TeV}) \quad v \approx 246 \,\,\mathrm{GeV}$$

$$y_{2nd} \sim \Lambda_{3rd} / \Lambda_{2nd} \qquad y_{3nd} \sim 1$$

[Berezhiani, Rattazz, <u>hep-ph/9212245</u>; Dvali, Shiftman, <u>hep-ph/0001072</u>; Panico, Pomarol, <u>1603.06609</u>; Bordone, Cornella, Fuentes-Martin, Isidori, <u>1712.01368</u>; Barbieri, <u>2103.15635</u>]

• Deconstructions: $\mathscr{L} \supset \overline{\psi}_L Y H \psi_R$

 $U(1)_Y = [U(1)_{B-L} \times U(1)_R]_{\text{diag}}$ $SU(4)_{PS} \supset SU(3)_c \times U(1)_{B-L}$

$$SU(4)_{PS}^{l} \times SU(4)_{PS}^{h} \times \dots \qquad Y \sim \begin{pmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & \times \end{pmatrix}$$
$$SU(2)_{L}^{l} \times SU(2)_{L}^{h} \times \dots \qquad Y \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ \times & \times & \times \end{pmatrix}$$
$$U(1)_{R}^{l} \times U(1)_{R}^{h} \times \dots \qquad Y \sim \begin{pmatrix} 0 & 0 & \times \\ 0 & 0 & \times \\ 0 & 0 & \times \end{pmatrix}$$

• Higher scale NP can generate suppressed extra elements

An example to play: 4321

Accidental $U(2)_q \times U(2)_u \times U(2)_d \times U(2)_\ell \times U(2)_e$ symmetry

An example to play: 4321

Accidental $U(2)_q \times U(2)_u \times U(3)_d \times U(2)_\ell \times U(3)_e$ symmetry

Deconstructing flavor anomalously

Javier M. Lizana | Deconstructing flavor anomalously

WZW terms to cure gauge anomalies

- Anomalies: $\delta \Gamma = \mathscr{A}(A)$
- Chern-Simons (CS) in 5d cancels the anomaly:

$$\omega_{CS}(A)$$
 / $\delta\omega_{CS} = -\mathscr{A}$

• Wess-Zumino-Witten (WZW) terms:

$$\omega'_{WZW}(A, \alpha) / d\omega'_{WZW} = -d\omega_{CS} & \delta\omega'_{WZW} = 0$$

$$\omega_{WZW} = \omega'_{WZW} + \omega_{CS} \Rightarrow d\omega_{WZW} = 0 & \delta\omega_{WZW} = -\mathcal{A}$$

Total derivative: it describes dynamics in 4d

[Wess, Zumino, 1971, Witten, 1983]

UV to cure gauge anomalies

- Introducing new fermionic degrees of freedom: anomalons? (typically, fractional charges or unjustified suppressed masses).
- If the breaking to the SM is triggered by a composite sector:

$$G_h \times G_l \times G_U \xrightarrow{\langle \Phi \rangle \neq 0} G_{\rm SM}$$

... via this sector (like in QCD).

• Tempting: no extra scalars and radiatively stable.

[Fuentes-Martín, Stangl, <u>2004.11376</u>, Chung, Goertz, <u>2311.17169</u>, Fuentes-Martín, JML, <u>2402.09507</u>]

The QCD example

 If there is no Higgs 				$U(1)_{Y} \qquad SU(2)_{L} \times U(1)_{Y} \to U(1)_{E}$		
		$SU(3)_c$	$SU(2)_L$	$SU(2)_R$	$U(1)_{B-L}$	$\left \left\langle \bar{u}_L u_R + \bar{d}_L d_R \right\rangle \sim \Lambda_{\rm QCD} \right $
	(u_L, d_L)	3	2	1	1/6	It confines at Λ_{QCD}
	(u_R, d_R)	3	1	2	1/6	and pions eaten by EW gauge bosons
	(ν_L, e_L)	1	2	1	-1/2	
	(ν_R, e_R)	1	1	2	-1/2	$\sum q_{B-L} \neq 0$

LH leptons

Anomaly contribution from leptons (e.g, in $SU(2)_L - SU(2)_L - U(1)_Y$) only cancelled by quarks

Same mechanism to BSM

Realization in 4321

 $SU(4)_{PS}^{h} \times SU(3)_{c}^{l} \times SU(2)_{L} \times U(1)_{X} \times \frac{SU(N_{\text{HC}})}{\langle \bar{\zeta}_{L} \zeta_{R} \rangle \neq 0} \xrightarrow{G_{\text{SM}} \times \frac{SU(N_{\text{HC}})}{\langle \bar{\zeta}_{L} \zeta_{R} \rangle \neq 0}$

ks		$SU(N_{\rm HC})$	$SU(4)_{PS}^h$	$SU(4)_{PS}^l$	$U(1)_R$
quar	ζ_L		1	4	
) per-	ζ_R		4	1	
4 hy	(q_L^3, ℓ_L^3)	1	4	1	0
•	(t_R, ν_R^3)	1	4	1	1/2
	(b_R, τ_R)	1	1	4	-1/2
	$(q_L^{1,2}, \ell_l^{1,2})$	1	1	4	0
	$(u_R^{1,2}, \nu_R^{1,2})$	1	1	4	1/2
	$(d_R^{1,2}, e_R^{1,2})$	1	1	4	-1/2

 $SU(4)_{PS}^{l} \times SU(4)_{PS}^{h}$ are the *flavor* symmetries of the hyper-quarks

[Fuentes-Martín, Stangl, 2004.11376; Fuentes-Martín, JML, 2402.09507]

Realization in 4321

 $SU(4)_{PS}^{h} \times SU(3)_{c}^{l} \times SU(2)_{L} \times U(1)_{X} \times \frac{SU(N_{\rm HC})}{\langle \bar{\zeta}_{L} \zeta_{R} \rangle \neq 0} \xrightarrow{G_{\rm SM}} \frac{SU(N_{\rm HC})}{\langle \bar{\zeta}_{L} \zeta_{R} \rangle \neq 0}$

ks S		$SU(N_{\rm HC})$	$SU(4)^h_{PS}$	$SU(4)_{PS}^{l}$	$U(1)_R$	$SU(4)_{PS}^l \times SU(4)_{PS}^h$
duar	ζ_L		1	4		are the flavor
) per	ζ_R		4	1		symmetries of the
4 hyl	(q_L^3, ℓ_L^3)	1	4	1	0	
•	(t_R, ν_R^3)	1	4	1	1/2	Cubic anomalies: SU(A) ^{<i>l</i>,<i>h</i>}
	(b_R, τ_R)	1	1	4	-1/2	$\zeta^{SU(4)}_{PS}$
	$(q_L^{1,2}, \ell_l^{1,2})$	1	1	4	0	Ş
	$(u_R^{1,2}, \nu_R^{1,2})$	1	1	4	1/2	\wedge
	$(d_R^{1,2}, e_R^{1,2})$	1	1	4	-1/2	
	$(N_{\rm HC}-1) \times \chi_L$	1	4	1	0	
	$(N_{\rm HC}-1) \times \chi_R$	1	1	4	0	$SU(4)_{PS}^{l,h}$ $SU(4)_{PS}^{l,h}$

[Fuentes-Martín, Stangl, 2004.11376; Fuentes-Martín, JML, 2402.09507]

Realization in 4321

 $SU(4)_{PS}^{h} \times SU(3)_{c}^{l} \times SU(2)_{L} \times U(1)_{X} \times \frac{SU(N_{\text{HC}})}{\langle \bar{\zeta}_{L} \zeta_{R} \rangle \neq 0} \xrightarrow{\longrightarrow} G_{\text{SM}} \times \frac{SU(N_{\text{HC}})}{\langle \bar{\zeta}_{L} \zeta_{R} \rangle \neq 0}$

ks		$SU(N_{\rm HC})$	$SU(4)^h_{PS}$	$SU(4)_{PS}^l$	$U(1)_R$	$SU(4)_{PS}^l \times SU(4)_{PS}^h$
quai	ζ_L		1	4	$-1/2N_{\rm HC}$	are the <i>flavor</i>
) – J	ζ_R		4	1	$-1/2N_{\rm HC}$	symmetries of the
4 hy	(q_L^3, ℓ_L^3)	1	4	1	0	
7	(t_R, ν_R^3)	1	4	1	1/2	Mixed anomalies: U(1)
	(b_R, τ_R)	1	1	4	-1/2	$\langle \zeta \rangle$
	$(q_L^{1,2}, \ell_l^{1,2})$	1	1	4	0	ξ
	$(u_R^{1,2}, \nu_R^{1,2})$	1	1	4	1/2	
	$(d_R^{1,2}, e_R^{1,2})$	1	1	4	-1/2	
	$(N_{\rm HC}-1) \times \chi_L$	1	4	1	0	، ^ک ر
	$(N_{\rm HC}-1) \times \chi_R$	1	1	4	0	$SU(4)_{PS}^{l,h} \qquad SU(4)_{PS}^{l,h}$
			Anoi	maly free!		$\sum_{f \sim SU(4)_{PS}^{l,h}} q_f^R = 0$

UV completion for charge quantisation

hyper-quarks à la Pati-Salam!!

Other applications

 Another useful flavor symmetry to address simultaneously quark and lepton hierarchies:

$$U(2)_q \times U(3)_u \times U(3)_d \times U(3)_\ell \times U(2)_e$$

[Antusch, Greljo, Stefanek, Thomsen, 2311.09288]

Possible to achieve by deconstructing anomalously the EW group.

[Work in progress]

• Connection with composite Higgs scenarios?

[Work in progress]

Conclusions

- An interesting way to address flavor hierarchies at a (relatively) low scale is by deconstructing the gauge group.
- In some cases it is interesting to do an anomalous charging of the SM fermions: mixed anomalies with the U(1) group.
- We have proposed a mechanism for charging same-family fermions into different factors of a deconstructed gauge theory in a way that gauge anomalies are avoided.
- The mechanism relies in the inclusion of a strongly-coupled sector, responsible of both anomaly cancellation and the breaking of the non-universal gauge symmetry.

Thank you!

Backup

• Examples:

 $SU(3)_c^h \times SU(3)_c^l \times SU(2)_I \times U(1)_V$ [Chivukula, Simmons, Vignaroli, <u>1302.1069</u>]

 $SU(4)_{PS}^{h} \times SU(3)_{c}^{l} \times SU(2)_{I} \times U(1)_{X}$

[Bordone, Cornella, Fuentes-Martin, Isidori, 1712.01368; Greljo, Stefanek, 1802.04274; Crosas, Isidori, JML, Selimović, Stefanek, 2203.01952; Allwicher, Isidori, JML, Selimović, Stefanek, 2302.11584]

 $SU(4)_{PS}^{h} \times SU(2)_{R}^{h} \times SU(3)_{c}^{l} \times U(1)_{V}^{l} \times SU(2)_{L}$ [Davighi, Isidori, <u>2303.01520</u>]

 $U(1)_V^h \times U(1)_V^l \times SU(3)_c \times SU(2)_L$

[Fernández-Navarro, King, 2305.07690; Davighi, Stefanek, 2305.16280]

 $SU(2)_I^h \times SU(2)_I^l \times SU(3)_c \times U(1)_V$

[Davighi, Gosnay, Miller, Renner 2312.13346; [Capdevila, Crivellin, JML, Pokorski, 2401.00848]

Multiscale flavor

[Dvali, Shiftman, <u>hep-ph/0001072</u>,Panico, Pomarol, <u>1603.06609</u> Bordone, Cornella, Fuentes-Martin, Isidori, <u>1712.01368</u> Barbieri, <u>2103.15635</u>]

• Minimally broken U(2) emerges naturally in a multiscale origin of the flavor hierarchies:

[Panico, Pomarol, <u>1603.06609</u>; Fuentes-Martin, Isidori, Pages, Stefanek <u>2012.10492</u>; Fuentes-Martin, Isidori, JML, Selimovic, Stefanek, <u>2203.01952</u>]

Javier M. Lizana | Deconstructing flavor anomalously