ANOMALIES & BORDISMS OF NON-SUPERSYMMETRIC STRINGS

 $Z[X_d]$

 $\mathcal{A}[Y_{d+1}]$

Matilda Delgado

ifl

Based on: [2310.06895] I. Basile, A. Debray, M.D., M. Montero

Matilda	Delgado
---------	---------

06/24

BIG PICTURE

Our world is non-supersymmetric

Matilda	Delgado
---------	---------

Our world is non-supersymmetric

(at least at low energies)

06/24

BIG PICTURE

Our world is non-supersymmetric

(at least at low energies)

It is crucial for phenomenology to understand Quantum Gravity in setups without supersymmetry!

Matilda	Delgado
---------	---------

String theory is a theory of Quantum Gravity

String theory is a theory of Quantum Gravity

At low energies it looks *similar* to our world:

It has GR, chiral matter and gauge symmetries

String theory is a theory of Quantum Gravity

At low energies it looks *similar* to our world:

It has GR, chiral matter and gauge symmetries

It is often said that String Theory needs supersymmetry

BIG PICTURE

String theory is a theory of Quantum Gravity

At low energies it looks similar to our world:

It has GR, chiral matter and gauge symmetries

It is often said that String Theory needs supersymmetry

There are multiple string theories that have non-supersymmetric spacetimes

String theory is a theory of Quantum Gravity

At low energies it looks *similar* to our world:

It has GR, chiral matter and gauge symmetries

It is often said that String Theory needs supersymmetry

There are multiple string theories that have non-supersymmetric spacetimes

They are less understood/less studied because we have less computational control w/o SUSY

BIG PICTURE

String theory is a theory of Quantum Gravity

At low energies it looks *similar* to our world:

It has GR, chiral matter and gauge symmetries

It is often said that String Theory needs supersymmetry

There are multiple string theories that have non-supersymmetric spacetimes

They are less understood/ less studied because we have less computational control w/o SUSY

In ten dimensions, there are three of them

They	They all have low-energy effective actions that are schematically given by:															Wha	at do	we k	now	abou	ut the	əm?					
$S \sim$	$\frac{1}{2\kappa}$	$\frac{1}{2}$	dx	10	$\overline{-g}$	(R	$-\frac{1}{2}$	$(\partial \phi$	$(b)^2 -$	$\frac{1}{4}$	$\mathrm{tr} F$	$ ^{2}$ -	- T	$e^{a\phi}$.	+ • •	.)											
	Δħ	- J				\	۷			4						/											
																										_	
																										_	

They all have low-energy effective actions that are schematically given by: What do we know about them? $S \sim \frac{1}{2\kappa^2} \int dx^{10} \sqrt{-g} \left(R - \frac{1}{2} (\partial \phi)^2 - \frac{1}{4} \text{tr} |F|^2 - T e^{a\phi} + \cdots \right)$ **Dynamical Gravity**

06/24

ANOMALIES

In theories coupled to gauge fields and dynamical gravity, there can generally be gauge/gravitational anomalies.

Anomalies in gauge symmetries are a BIG problem (unlike anomalies in global symmetries)

06/24

ANOMALIES

In theories coupled to gauge fields and dynamical gravity, there can generally be gauge/gravitational anomalies.

Anomalies in gauge symmetries are a BIG problem (unlike anomalies in global symmetries)

An anomaly is a lack of invariance of the path integral under a gauge transformation or diffeomorphism:

$$Z[X_d] \Longrightarrow \tilde{Z}[X_d] \neq Z[X_d]$$

06/24

ANOMALIES

In theories coupled to gauge fields and dynamical gravity, there can generally be gauge/gravitational anomalies.

Anomalies in gauge symmetries are a BIG problem (unlike anomalies in global symmetries)

An anomaly is a lack of invariance of the path integral under a gauge transformation or diffeomorphism:

$$Z[X_d] \Longrightarrow \tilde{Z}[X_d] \neq Z[X_d]$$

 Local anomalies = "usual ones", associated to gauge transformations that can be made arbitrarily small Think triangle (n-gon) diagrams —> Cancelled by Green-Schwarz mechanism VVVV

06/24

ANOMALIES

In theories coupled to gauge fields and dynamical gravity, there can generally be gauge/gravitational anomalies.

Anomalies in gauge symmetries are a BIG problem (unlike anomalies in global symmetries)

An anomaly is a lack of invariance of the path integral under a gauge transformation or diffeomorphism:

$$Z[X_d] \Longrightarrow \tilde{Z}[X_d] \neq Z[X_d]$$

- Local anomalies = "usual ones", associated to gauge transformations that can be made arbitrarily small Think triangle (n-gon) diagrams —> Cancelled by Green-Schwarz mechanism VVVV
- Global anomalies = associated to a transformation that cannot be deformed to the identity Example: Witten's SU(2) anomaly [Witten '82]

06/24

ANOMALIES

In theories coupled to gauge fields and dynamical gravity, there can generally be gauge/gravitational anomalies.

Anomalies in gauge symmetries are a BIG problem (unlike anomalies in global symmetries)

An anomaly is a lack of invariance of the path integral under a gauge transformation or diffeomorphism:

$$Z[X_d] \Longrightarrow \tilde{Z}[X_d] \neq Z[X_d]$$

- Local anomalies = "usual ones", associated to gauge transformations that can be made arbitrarily small Think triangle (n-gon) diagrams —> Cancelled by Green-Schwarz mechanism VVVV
- Global anomalies = associated to a transformation that cannot be deformed to the identity Example: Witten's SU(2) anomaly [Witten '82]

 $Z[X_d]$

GLOBAL ANOMALIES

Review in: [Gardía-Etxebarria, Montero '18]

 $\mathcal{A}[Y_{d+1}]$

 $Z[X_d]$

GLOBAL ANOMALIES

Review in: [Gardía-Etxebarria, Montero '18]

 $\mathcal{A}[Y_{d+1}]$

The modern way of computing **global gauge and gravitational** anomalies of a theory on X_d is through a (d+1)-dimensional *anomaly theory* on Y_{d+1} such that $\partial Y_{d+1} = X_d$

The anomaly theory is **engineered** to give the **exact (opposite) anomaly** of the one you started with.

> Non-collapsible path in configuration space of gauge field / metric

GLOBAL ANOMALIES

Review in: [Gardía-Etxebarria, Montero '18]

The modern way of computing **global gauge and gravitational** anomalies of a theory on X_d is through a (d+1)-dimensional *anomaly theory* on Y_{d+1} such that $\partial Y_{d+1} = X_d$

The anomaly theory is **engineered** to give the **exact (opposite) anomaly** of the one you started with.

To each anomalous dof in Z, you associate a contribution to the anomaly theory such that:

 $\mathcal{A}(Y_{d+1})Z[X_d]$ is anomaly-free

 $\mathcal{A}[Y_{d+1}]$ $Z[X_d]$

Non-collapsible path in configuration space of gauge field / metric

 $\mathcal{A}[Y_{d+1}]$

 $Z[X_d]$

GLOBAL ANOMALIES

Review in: [Gardía-Etxebarria, Montero '18]

The modern way of computing **global gauge and gravitational** anomalies of a theory on X_d is through a (d+1)-dimensional *anomaly theory* on Y_{d+1} such that $\partial Y_{d+1} = X_d$

The anomaly theory is **engineered** to give the **exact (opposite) anomaly** of the one you started with.

To each anomalous dof in Z, you associate a contribution to the anomaly theory such that:

 $\mathcal{A}(Y_{d+1})Z[X_d]$ is anomaly-free

In QG, allow for topology-change

⇒ "Dai-Freed anomalies" Account for the possibility of a transformation that involves topology change Non-collapsible path in configuration space of gauge field / metric

[García-Etxebarria, Montero '18]

[García-Etxebarria, Montero '18]

GLOBAL ANOMALIES

So we've constructed an anomaly theory in (d+1) dimensions that gives us the **exact (opposite) anomaly** of the one in our theory:

 $\mathcal{A}(Y_{d+1})Z[X_d]$ is anomaly-free

The reason is the anomaly is much easier to detect in the anomaly theory.

[García-Etxebarria, Montero '18]

GLOBAL ANOMALIES

So we've constructed an anomaly theory in (d+1) dimensions that gives us the **exact (opposite) anomaly** of the one in our theory:

 $\mathcal{A}(Y_{d+1})Z[X_d]$ is anomaly-free

The reason is the anomaly is much easier to detect in the anomaly theory. Here's why:

How do we choose Y_{d+1} ?

GLOBAL ANOMALIES

So we've constructed an anomaly theory in (d+1) dimensions that gives us the **exact (opposite) anomaly** of the one in our theory:

 $\mathcal{A}(Y_{d+1})Z[X_d]$ is anomaly-free

The reason is the anomaly is <mark>much easier to detect in the anomaly theory</mark>. Here's why:

```
How do we choose Y_{d+1}?
```

The anomaly $\mathcal{A}(Y_{d+1})$ should not depend on the choice of $|Y_{d+1}|$!

[García-Etxebarria, Montero '18]

GLOBAL ANOMALIES

So we've constructed an anomaly theory in (d+1) dimensions that gives us the **exact (opposite) anomaly** of the one in our theory:

 $\mathcal{A}(Y_{d+1})Z[X_d]$ is anomaly-free

The reason is the anomaly is much easier to detect in the anomaly theory. Here's why:

```
How do we choose Y_{d+1}?
```

The anomaly $\mathcal{A}(Y_{d+1})$ should not depend on the choice of $|Y_{d+1}|$!

You should be able to deform any two choices of $|Y_{d+1}|$ into one another!

GLOBAL ANOMALIES

So we've constructed an anomaly theory in (d+1) dimensions that gives us the **exact (opposite) anomaly** of the one in our theory:

 $\mathcal{A}(Y_{d+1})Z[X_d]$ is anomaly-free

The reason is the anomaly is <mark>much easier to detect in the anomaly theory</mark>. Here's why:

```
How do we choose Y_{d+1}?
```

The anomaly $\mathcal{A}(Y_{d+1})$ should not depend on the choice of $|Y_{d+1}|$!

You should be able to deform any two choices of Y_{d+1} into one another!

 X_d W_{d+1} \tilde{X}_d

The two d-dimensional manifolds can be deformed into each other

-> They are in the same **bordism class**!

[García-Etxebarria, Montero '18]

GLOBAL ANOMALIES

So we've constructed an anomaly theory in (d+1) dimensions that gives us the **exact (opposite) anomaly** of the one in our theory:

 $\mathcal{A}(Y_{d+1})Z[X_d]$ is anomaly-free

The reason is the anomaly is <mark>much easier to detect in the anomaly theory</mark>. Here's why:

```
How do we choose Y_{d+1}?
```

The anomaly $\mathcal{A}(Y_{d+1})$ should not depend on the choice of $|Y_{d+1}|$!

You should be able to deform any two choices of Y_{d+1} into one another!

 \Rightarrow the anomaly is a bordism invariant !

The two d-dimensional manifolds can be deformed into each other -> They are in the same **bordism class**!

[García-Etxebarria, Montero '18]

GLOBAL ANOMALIES

 \Rightarrow the anomaly is a bordism invariant !

So now we *"just"* have to compute the relevant 11-dimensional bordism groups!

[García-Etxebarria, Montero '18]

GLOBAL ANOMALIES

 \Rightarrow the anomaly is a bordism invariant !

So now we "just" have to compute the relevant 11-dimensional bordism groups!

So what **11D cobordism groups** are the relevant ones for these three theories?

[García-Etxebarria, Montero '18]

GLOBAL ANOMALIES

 \Rightarrow the anomaly is a bordism invariant !

So now we "just" have to compute the relevant 11-dimensional bordism groups!

So what **11D cobordism groups** are the relevant ones for these three theories?

All three theories only make sense on backgrounds that satisfy the non-trivial **Bianchi identity** associated to H :

$$dH \sim \mathrm{tr}F^2 - \mathrm{tr}R^2 = 0$$

[García-Etxebarria, Montero '18]

GLOBAL ANOMALIES

 \Rightarrow the anomaly is a bordism invariant !

So now we "just" have to compute the relevant 11-dimensional bordism groups!

So what **11D cobordism groups** are the relevant ones for these three theories?

All three theories only make sense on backgrounds that satisfy the non-trivial **Bianchi identity** associated to H :

$$dH \sim \mathrm{tr}F^2 - \mathrm{tr}R^2 = 0$$

twisted string bordism

[García-Etxebarria, Montero '18]

GLOBAL ANOMALIES

 \Rightarrow the anomaly is a bordism invariant !

So now we "just" have to compute the relevant 11-dimensional bordism groups!

So what **11D cobordism groups** are the relevant ones for these three theories?

All three theories only make sense on backgrounds that satisfy the non-trivial **Bianchi identity** associated to H :

$$dH \sim \mathrm{tr}F^2 - \mathrm{tr}R^2 = 0$$

➡ twisted string bordism

Not many of them are known, we computed

$$\Omega_{11}^{string-Sp(16)}, \ \Omega_{11}^{string-Spin(16)^2}, \ \Omega_{11}^{string-U(32)}$$

using the Adams spectral sequence.

[García-Etxebarria, Montero '18]

GLOBAL ANOMALIES

We fii	nd:													
					/									

[García-Etxebarria, Montero '18]

*

GLOBAL ANOMALIES

We find:

$$\Omega_{11}^{string-Sp(16)} = 0 \quad \Omega_{11}^{string-Spin(16)^2} = 0 \quad \Omega_{11}^{string-U(32)} = 0$$

All 3 bordism groups are completely trivial *up to a subtlety for the Sagnotti string

i.e. all GLOBAL ANOMALIES VANISH !

Matilda Delgado	b
-----------------	---

[García-Etxebarria, Montero '18]

*

GLOBAL ANOMALIES

We find:

$$\Omega_{11}^{string-Sp(16)} = 0 \quad \Omega_{11}^{string-Spin(16)^2} = 0 \quad \Omega_{11}^{string-U(32)} = 0$$

All 3 bordism groups are completely trivial *up to a subtlety for the Sagnotti string

i.e. all GLOBAL ANOMALIES VANISH !

Huge consistency check!

➤ NO GLOBAL ANOMALIES! 🔽

06/24

➤ NO GLOBAL ANOMALIES! 🔽

But that's not all ...

 \Rightarrow We use anomaly inflow to gain insight into the worldvolume theory of 5-branes in these theories V

06/24

► NO GLOBAL ANOMALIES!

But that's not all ...

 \rightarrow We use anomaly inflow to gain insight into the worldvolume theory of 5-branes in these theories $\sqrt{2}$

→ We also computed lower-dimensional cobordism groups for these theories!!

$\Omega_0^{\operatorname{String}-Sp(16)} \cong \mathbb{Z}$	$\Omega_6^{\operatorname{String}-Sp(16)} \cong \mathbb{Z}_2$
$\Omega_1^{\operatorname{String}-Sp(16)} \cong \mathbb{Z}_2$	$\Omega_7^{\operatorname{String}-Sp(16)} \cong \mathbb{Z}_4$
$\Omega_2^{\text{String-}Sp(16)} \cong \mathbb{Z}_2$	$\Omega_8^{\operatorname{String-}Sp(16)} \cong \mathbb{Z}^{\oplus 3} \oplus \mathbb{Z}_2$
$\Omega_3^{\operatorname{String}-Sp(16)} \cong 0$	$\Omega_9^{\operatorname{String}-Sp(16)} \cong (\mathbb{Z}_2)^{\oplus 3}$
$\Omega_4^{\operatorname{String}-Sp(16)} \cong \mathbb{Z}$	$\Omega_{10}^{\text{String-}Sp(16)} \cong (\mathbb{Z}_2)^{\oplus 3}$
$\Omega_5^{\text{String-}Sp(16)} \cong \mathbb{Z}_2$	$\Omega_{11}^{\text{String-}Sp(16)} \cong 0.$

Example: Sugimoto

06/24

➤ NO GLOBAL ANOMALIES! 🔽

But that's not all ...

 \blacktriangleright We use anomaly inflow to gain insight into the worldvolume theory of 5-branes in these theories \swarrow

→ We also computed lower-dimensional cobordism groups for these theories!!

$\Omega_0^{\operatorname{String}-Sp(16)} \cong \mathbb{Z}$	$\Omega_6^{\operatorname{String}-Sp(16)} \cong \mathbb{Z}_2$
$\Omega_1^{\text{String-}Sp(16)} \cong \mathbb{Z}_2$	$\Omega_7^{\operatorname{String}-Sp(16)} \cong \mathbb{Z}_4$
$\Omega_2^{\text{String-}Sp(16)} \cong \mathbb{Z}_2$	$\Omega_8^{\text{String-}Sp(16)} \cong \mathbb{Z}^{\oplus 3} \oplus \mathbb{Z}_2$
$\Omega_3^{\operatorname{String}-Sp(16)} \cong 0$	$\Omega_9^{\operatorname{String}-Sp(16)} \cong (\mathbb{Z}_2)^{\oplus 3}$
$\Omega_4^{\operatorname{String}-Sp(16)} \cong \mathbb{Z}$	$\Omega_{10}^{\text{String-}Sp(16)} \cong (\mathbb{Z}_2)^{\oplus 3}$
$\Omega_{5}^{\mathrm{String}} \cdot Sp(16) \cong \mathbb{Z}_2$	$\Omega_{11}^{\text{String-}Sp(16)} \cong 0.$

Example: Sugimoto

By the **Cobordism Conjecture** we know they all have to vanish in QG. [McNamara, Vafa '19]

This predicts the existence of **new extended objects** in these theories, that can trivialize these classes! On the quest to characterizing these new extended objects:

[Andriot, Angius, Blumenhagen, Buratti, Carqueville, Cribiori, Calderon-Infante, DeBiasio, Debray, Delgado, Dierigl, Friedrich, Garcia-Etxebarria, Hebecker, Heckman, Huertas, Kneissl, Makridou, Montero, McNamara, Lust, Torres, Uranga, Vafa, Valenzuela, Velazquez, Walcher, Wang...'19-'24]

Matilda Delgado	IFT UAM-CSIC	SUSY 24	06/24	50
	T	.UVNKCI		
		HANNJ:		