

Quantisation Across Bubble Walls and Friction

SISSA & INFN TRIESTE

Giulio Barni gbarni@sissa.it

based on JHEP05(2024)294 with Aleksandr Azatov, Rudin Petrossian-Byrne and Miguel Vanvlasselaer

Giulio Barni

Quantisation Across Bubble Walls and Friction

Outline

• FOPT: Why, What & bubbles dynamic

Toolkit for Quantisation across the wall (scalar example)

- Complete basis of solutions to the spatially dependent EOM
- **Q**uantisation & construction of 'In' and 'Out' asymptotic states
- Amplitudes
- Approximations (Step wall and WKB)

Gauge-fixing and spin-interpolation

- EOM + gauge fixing
- Interpolation between Higgs and longitudinal polarisation

Results & Conclusions

FOPT: Why, What & bubbles dynamic

Quantisation Across Bubble Walls and Friction

Today, there is no known FOPT of the fundamental interactions in 4d at $\mu = 0$ for any T!

apart from Higgs instability, but not conclusive...

But...

They frequently appear in **BSM** theories!

- Many phenomenological consequences: baryogenesis, dark matter, ...
- Gravitational waves: a stochastic background potentially observable at upcoming detectors (even completely decoupled sectors become interesting).

FOPT: What?

FOPT: What?

Solution w/ \Rightarrow O(d) spherical symm. \Rightarrow **Bubbles!**

Giulio Barni

FOPT: Bubble dynamic

FOPT: Why distinguish between runaway or not?

Runaway or not is important to know the equilibrium velocity!

Quantisation Across Bubble Walls and Friction

Quantisation Across Bubble Walls and Friction

Giulio Barni

• Work in the wall frame (ignore curvature). $\gamma_w(v_w)$ is the boost factor (velocity) of the wall.

- Work in the wall frame (ignore curvature). $\gamma_w(v_w)$ is the boost factor (velocity) of the wall.
- In the limit $\gamma_w \gg 1$ wall can be thought of a interacting with individual particles.

- Work in the wall frame (ignore curvature). $\gamma_w(v_w)$ is the boost factor (velocity) of the wall.
- In the limit $\gamma_w \gg 1$ wall can be thought of a interacting with individual particles.
- Translational symmetry broken $\longrightarrow z-$ momentum not conserved!

- Work in the wall frame (ignore curvature). $\gamma_w(v_w)$ is the boost factor (velocity) of the wall.
- In the limit $\gamma_w \gg 1$ wall can be thought of a interacting with individual particles.
- Translational symmetry broken $\longrightarrow z-$ momentum not conserved!

Incoming flux $\gamma_w n v_w$

- Work in the wall frame (ignore curvature). $\gamma_w(v_w)$ is the boost factor (velocity) of the wall.
- In the limit $\gamma_w \gg 1$ wall can be thought of a interacting with individual particles.
- Translational symmetry broken $\longrightarrow z-$ momentum not conserved!

- Work in the wall frame (ignore curvature). $\gamma_w(v_w)$ is the boost factor (velocity) of the wall.
- In the limit $\gamma_w \gg 1$ wall can be thought of a interacting with individual particles.
- Translational symmetry broken $\longrightarrow z-$ momentum not conserved!

- Work in the wall frame (ignore curvature). $\gamma_w(v_w)$ is the boost factor (velocity) of the wall.
- In the limit $\gamma_w \gg 1$ wall can be thought of a interacting with individual particles.
- Translational symmetry broken $\longrightarrow z-$ momentum not conserved!

- Work in the wall frame (ignore curvature). $\gamma_w(v_w)$ is the boost factor (velocity) of the wall.
- In the limit $\gamma_w \gg 1$ wall can be thought of a interacting with individual particles.
- Translational symmetry broken $\longrightarrow z$ -momentum not conserved!

- Work in the wall frame (ignore curvature). $\gamma_w(v_w)$ is the boost factor (velocity) of the wall.
- In the limit $\gamma_w \gg 1$ wall can be thought of a interacting with individual particles.
- Translational symmetry broken $\longrightarrow z-$ momentum not conserved!

Toolkit for Quantisation across the wall

Quantisation Across Bubble Walls and Friction

$$\phi,\psi$$
 scalars: $-\mathcal{L}\supsetrac{1}{2}m_{\phi}^{2}(z)\phi^{2}+rac{1}{2}m_{\psi}^{2}\psi^{2}+rac{y}{2}\psi^{2}\phi$

 $\label{eq:phi} \begin{array}{l} \to \ m_\psi = const \ {\rm does} \ {\rm not} \ {\rm feel} \ {\rm the} \ {\rm wall} \\ \to \ {\rm while} \ m_\phi \equiv m_\phi(z) \ {\rm does} \end{array}$

$$\phi,\psi$$
 scalars: $-\mathcal{L}\supsetrac{1}{2}m_{\phi}^2(z)\phi^2+rac{1}{2}m_{\psi}^2\psi^2+rac{y}{2}\psi^2\phi$

 $ightarrow m_\psi = const$ does not feel the wall ightarrow while $m_\phi \equiv m_\phi(z)$ does

$$\rightarrow$$
 EOM: $(\Box + m_{\phi}^2(z))\phi = 0$ and $\phi(z) = e^{-ik_0t + ik_{\perp}x_{\perp}}\chi(z)$

$$\phi,\psi$$
 scalars: $-\mathcal{L}\supsetrac{1}{2}m_{\phi}^{2}(z)\phi^{2}+rac{1}{2}m_{\psi}^{2}\psi^{2}+rac{y}{2}\psi^{2}\phi$

 $ightarrow m_\psi = const$ does not feel the wall ightarrow while $m_\phi \equiv m_\phi(z)$ does

$$\rightarrow$$
 EOM: $(\Box + m_{\phi}^2(z))\phi = 0$ and $\phi(z) = e^{-ik_0t + ik_{\perp}x_{\perp}}\chi(z)$

$$\chi_R(z) = \begin{cases} e^{ik^z z} + r_k e^{-ik^z z} & z \to -\infty \\ t_k e^{i\tilde{k}^z z} & z \to +\infty \end{cases}$$

$$\phi,\psi$$
 scalars: $-\mathcal{L}\supsetrac{1}{2}m_{\phi}^{2}(z)\phi^{2}+rac{1}{2}m_{\psi}^{2}\psi^{2}+rac{y}{2}\psi^{2}\phi$

 $ightarrow m_\psi = const$ does not feel the wall ightarrow while $m_\phi \equiv m_\phi(z)$ does

$$ightarrow$$
 EOM: $(\Box + m_{\phi}^2(z))\phi = 0$ and $\phi(z) = e^{-ik_0t + ik_{\perp}x_{\perp}}\chi(z)$

$$\chi_R(z) = \begin{cases} e^{ik^z z} + r_k e^{-ik^z z} & z \to -\infty \\ t_k e^{i\tilde{k}^z z} & z \to +\infty \end{cases}$$

R with $k^z \lessgtr 0$ complete basis, but not orthogonal!

10/25 June 10th, 2024

Quantisation Across Bubble Walls and Friction

$$\phi, \psi \text{ scalars: } -\mathcal{L} \supset \frac{1}{2}m_{\phi}^{2}(z)\phi^{2} + \frac{1}{2}m_{\psi}^{2}\psi^{2} + \frac{y}{2}\psi^{2}\phi \qquad \qquad \rightarrow m_{\psi} = const \text{ does not feel the wall} \\ \rightarrow \text{ while } m_{\phi} \equiv m_{\phi}(z) \text{ does}$$

$$ightarrow$$
 EOM: $(\Box + m_{\phi}^2(z))\phi = 0$ and $\phi(z) = e^{-ik_0t + ik_{\perp}x_{\perp}}\chi(z)$

$$\chi_R(z) = \begin{cases} e^{ik^z z} + r_k e^{-ik^z z} & z \to -\infty \\ t_k e^{i\tilde{k}^z z} & z \to +\infty \end{cases}$$

$$\chi_L(z) = \sqrt{\frac{k^z}{\tilde{k}^z}} \begin{cases} \frac{\tilde{k}^z}{k^z} t_k e^{ik^z z} & z \to -\infty \\ -r_k e^{i\tilde{k}^z z} + e^{-i\tilde{k}^z z} & z \to +\infty \end{cases}$$

$$\int_{-\infty}^{\infty} dz \ \chi_{I,k^z} \chi_{J,q^z}^* = 2\pi \delta_{IJ} \delta(k^z - q^z), \quad I, J \in L, R$$

Quantisation Across Bubble Walls and Friction

$$\phi, \psi \text{ scalars: } -\mathcal{L} \supset \frac{1}{2}m_{\phi}^{2}(z)\phi^{2} + \frac{1}{2}m_{\psi}^{2}\psi^{2} + \frac{y}{2}\psi^{2}\phi \qquad \qquad \rightarrow m_{\psi} = const \text{ does not feel the wall} \\ \rightarrow \text{ while } m_{\phi} \equiv m_{\phi}(z) \text{ does}$$

$$\rightarrow \text{EOM:} (\Box + m_{\phi}^{2}(z))\phi = 0 \text{ and } \phi(z) = e^{-ik_{0}t + ik_{\perp}x_{\perp}}\chi(z)$$

$$\chi_{R}(z) = \begin{cases} e^{ik^{z}z} + r_{k}e^{-ik^{z}z} & z < 0 \\ t_{k}e^{i\tilde{k}^{z}z} & z > 0 \end{cases}$$

$$\chi_{L}(z) = \sqrt{\frac{k^{z}}{\tilde{k}^{z}}} \begin{cases} \frac{\tilde{k}^{z}}{k^{z}}t_{k}e^{ik^{z}z} & z < 0 \\ -r_{k}e^{i\tilde{k}^{z}z} + e^{-i\tilde{k}^{z}z} & z > 0 \end{cases}$$

$$\text{STEP WALL APPROX.} (\text{valid in the IR})$$

$$\text{where } r_{k} = \frac{\tilde{k}^{z} - k^{z}}{\tilde{k}^{z} + k^{z}} \text{ and } t_{k} = \frac{2k^{z}}{\tilde{k}^{z} + k^{z}}$$

Quantisation Across Bubble Walls and Friction

June 10th, 2024

Scalar emission: Quantisation

Having a complete set of states $\{\phi_{R,k^z},\phi_{L,k^z}\}$ we can expand the field

$$\phi = \sum_{I=R,L} \int \frac{dk^3}{(2\pi)^3 \sqrt{2k_0}} \left(a_{I,k^z} \phi_{I,k^z} + h.c. \right) , \qquad \begin{cases} [a_{I,k^z}, a_{J,q^z}^{\dagger}] = (2\pi)^3 \delta_{IJ} \delta^{(3)}(k-q) \\ [a_{I,k^z}, a_{J,q^z}] = [a_{I,k^z}^{\dagger}, a_{J,q^z}^{\dagger}] = 0 \end{cases}$$

.

Scalar emission: Quantisation

Having a complete set of states $\{\phi_{R,k^z},\phi_{L,k^z}\}$ we can expand the field

$$\phi = \sum_{I=R,L} \int \frac{dk^3}{(2\pi)^3 \sqrt{2k_0}} \left(a_{I,k^z} \phi_{I,k^z} + h.c. \right) , \qquad \begin{cases} [a_{I,k^z}, a_{J,q^z}^{\dagger}] = (2\pi)^3 \delta_{IJ} \delta^{(3)}(k-q) \\ [a_{I,k^z}, a_{J,q^z}] = [a_{I,k^z}^{\dagger}, a_{J,q^z}^{\dagger}] = 0 \end{cases}$$

.

We can define two types of states

$$\begin{split} |k_R^z\rangle &= \sqrt{2k_0}a_{R,k^z}^\dagger |0\rangle, \\ |k_L^z\rangle &= \sqrt{2k_0}a_{L,k^z}^\dagger |0\rangle, \end{split}$$

which should be thought as independent states in any process.

Giulio Barni

Quantisation Across Bubble Walls and Friction

Scalar emission: complete basis for outgoing states

To compute $\langle \Delta p \rangle$ we need states with **definite final momentum**!

How we interpret the emission of a R movers?

Definite initial momentum, but not \hat{P} eigenstate for $t \to +\infty$

Quantisation Across Bubble Walls and Friction

Scalar emission: complete basis for outgoing states

To compute $\langle \Delta p \rangle$ we need states with definite final momentum! Then we define basis for outgoing states

$$egin{aligned} |k_R^{ ext{out}}
angle &= t_k^*\sqrt{rac{ ilde{k}z}{k^z}} \,\, |k_R^{ ext{in}}
angle - r_k^* \,\, |k_L^{ ext{in}}
angle, \ |k_L^{ ext{out}}
angle &= r_k^* \,\, |k_R^{ ext{in}}
angle + t_k^*\sqrt{rac{ ilde{k}z}{k^z}} \,\, |k_L^{ ext{in}}
angle \,\, heta(ilde{k}) \end{aligned}$$

Scalar emission: complete basis for outgoing states

To compute $\langle \Delta p \rangle$ we need states with **definite final momentum**! Then we define basis for outgoing states $\rightarrow \{\zeta_{B,k^z}, \zeta_{L,k^z}\}$

$$\zeta_R = t_k^* \sqrt{\frac{\tilde{k}^z}{k^z}} \ \chi_R - r_k^* \ \chi_L \equiv \chi_L^*,$$

$$\zeta_L = r_k^* \ \chi_R + t_k^* \sqrt{\frac{\tilde{k}^z}{k^z}} \ \chi_L \ \theta(\tilde{k}) \equiv \chi_R^*$$

Scalar emission: Amplitudes & Phase Space

We are ready to compute the **amplitudes**

$$\mathcal{S} = \mathrm{T} \exp\left(-i \int d^4 x \mathcal{H}_{\mathrm{Int}}\right) \qquad \mathcal{H}_{\mathrm{Int}} = -iy\psi^2(x)\phi(x)$$
$$\langle k_I^{\mathrm{out}} q | \mathcal{S} | p \rangle \equiv (2\pi)^3 \delta^{(3)}(p^n - k^n - q^n) i \mathcal{M}_I \stackrel{\mathrm{tree}}{=} -i \int d^4 x \langle k_I^{\mathrm{out}} q | \mathcal{H}_{\mathrm{Int}} | p \rangle$$

Scalar emission: Amplitudes & Phase Space

We are ready to compute the **amplitudes**

$$\mathcal{S} = \mathrm{T} \exp\left(-i \int d^4 x \mathcal{H}_{\mathrm{Int}}\right) \qquad \mathcal{H}_{\mathrm{Int}} = -iy\psi^2(x)\phi(x)$$
$$\langle k_I^{\mathrm{out}} q | \mathcal{S} | p \rangle \equiv (2\pi)^3 \delta^{(3)}(p^n - k^n - q^n) i \mathcal{M}_I \stackrel{\mathrm{tree}}{=} -i \int d^4 x \langle k_I^{\mathrm{out}} q | \mathcal{H}_{\mathrm{Int}} | p \rangle$$

$$\mathcal{M}_I \equiv \mathcal{M}(\psi \to \psi \phi_I) = y \int_{-\infty}^{\infty} dz \ \chi(p^z) \chi^*(q^z) \zeta_I^*(k^z)$$

Scalar emission: Amplitudes & Phase Space

We are ready to compute the **amplitudes**

$$\mathcal{S} = \mathrm{T} \exp\left(-i \int d^4 x \mathcal{H}_{\mathrm{Int}}\right) \qquad \mathcal{H}_{\mathrm{Int}} = -iy\psi^2(x)\phi(x)$$
$$\langle k_I^{\mathrm{out}} q | \mathcal{S} | p \rangle \equiv (2\pi)^3 \delta^{(3)}(p^n - k^n - q^n) i \mathcal{M}_I \stackrel{\mathrm{tree}}{=} -i \int d^4 x \langle k_I^{\mathrm{out}} q | \mathcal{H}_{\mathrm{Int}} | p \rangle$$

$$\mathcal{M}_I \equiv \mathcal{M}(\psi \to \psi \phi_I) = y \int_{-\infty}^{\infty} dz \ \chi(p^z) \chi^*(q^z) \zeta_I^*(k^z)$$

Then the averaged exchanged momentum

$$\begin{split} \langle \Delta p \rangle &= \langle \Delta p_R \rangle + \langle \Delta p_L \rangle \\ &= \int d\mathbb{P}_{\psi \to \psi \phi_{\zeta_R}} \left(p^z - q^z - \tilde{k}^z \right) + \int d\mathbb{P}_{\psi \to \psi \phi_{\zeta_L}} \left(p^z - q^z + k^z \right) \\ \int d\mathbb{P}_{\psi \to \psi \phi_I} \Delta p_I^z &= \int_{k_{\min}^{z,I}}^{k_{\max}^z} \frac{dk_z}{2\pi} \frac{1}{2k_0} \int_0^{k_{\perp,\max}^2} \frac{dk_{\perp}^2}{4\pi} \cdot \frac{1}{2p^z} \left[\frac{1}{2|q^z|} |\mathcal{M}_I|^2 \Delta p_I^z \right]_{q^z = \pm q_k^z} \end{split}$$

Quantisation Across Bubble Walls and Friction

Scalar emission: Beyond step wall \rightarrow WKB

When does the step wall approximation break?

Scalar emission: Beyond step wall \rightarrow WKB

When does the step wall approximation break?

• If the z momentum is large enough $(k^z L_w \gtrsim 1)$ there will be mostly transmission! \rightarrow WKB

Scalar emission: Beyond step wall \rightarrow WKB

 $k^z \lesssim L_w^{-1}$

When does the step wall approximation break?

• If the z momentum is large enough $(k^z L_w \gtrsim 1)$ there will be mostly transmission! \rightarrow WKB

 $L_w^{-1} \lesssim k^z \leq k_{\max}^z$

Scalar emission: Beyond step wall \rightarrow WKB

 $k^z \lesssim L_w^{-1}$

When does the step wall approximation break?

• If the z momentum is large enough $(k^z L_w \gtrsim 1)$ there will be mostly transmission! \rightarrow WKB

 $L_w^{-1} \lesssim k^z \leq k_{\max}^z$

June 10th. 2024

Total contribution for $\langle \Delta p \rangle$

The integral over the phase space thus splits into two contributions and the averaged momentum exchange very schematically takes the form

$$\langle \Delta p \rangle \sim \int^{k^z < L_w^{-1}} d^3k \, \Delta p \, |\mathcal{M}^{\text{step}}|^2 \, + \, \int_{k^z > L_w^{-1}} d^3k \, \Delta p \, |\mathcal{M}^{\text{wkb}}|^2 \, .$$

then we need to compute 3 contributions: L-**step**, R-**step** and **WKB**

$$\begin{split} \langle \Delta p_L^{\text{step}} \rangle &= \int_0^{k_{\max}^z} \frac{dk_z}{2\pi} \frac{1}{2k_0} \int_0^{k_{\perp,\max}^2} \frac{dk_{\perp}^2}{4\pi} \cdot \frac{1}{2p^z} \left[\frac{1}{2|q^z|} |\mathcal{M}_L|^2 (p^z - q^z + k^z) \right] \Theta(L_w^{-1} - k^z) \;, \\ \langle \Delta p_R^{\text{step}} \rangle &= \int_{\Delta m}^{k_{\max}^z} \frac{dk_z}{2\pi} \frac{1}{2k_0} \int_0^{k_{\perp,\max}^2} \frac{dk_{\perp}^2}{4\pi} \cdot \frac{1}{2p^z} \left[\frac{1}{2|q^z|} |\mathcal{M}_R|^2 (p^z - q^z - \tilde{k}^z) \right] \Theta(L_w^{-1} - k^z) \;, \\ \langle \Delta p^{\text{wkb}} \rangle &= \int_{\Delta m}^{k_{\max}^z} \frac{dk_z}{2\pi} \frac{1}{2k_0} \int_0^{k_{\perp,\max}^2} \frac{dk_{\perp}^2}{4\pi} \cdot \frac{1}{2p^z} \left[\frac{1}{2|q^z|} |\mathcal{M}^{\text{wkb}}|^2 (p^z - q^z - \tilde{k}^z) \right] \times \Theta \left(k^z - L_w^{-1} \right) \Theta \left(L_w^{-1} - (p^z - q^z - \tilde{k}^z) \right) \;. \end{split}$$

Vector boson emission: Abelian Higgs model

$$\mathcal{L} \supset -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + |D_{\mu}H|^2 - V(\sqrt{2}|H|) + |D_{\mu}\psi|^2 - \frac{1}{2} m_{\psi}^2 \psi^2 + \text{gauge fixing}, \qquad D_{\mu} = \partial_{\mu} + igA_{\mu} + igA_{\mu$$

Vector boson emission: Abelian Higgs model

$$\mathcal{L} \supset -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + |D_{\mu}H|^2 - V(\sqrt{2}|H|) + |D_{\mu}\psi|^2 - \frac{1}{2} m_{\psi}^2 \psi^2 + \text{gauge fixing}, \qquad D_{\mu} = \partial_{\mu} + igA_{\mu\nu} F^{\mu\nu} + |D_{\mu}H|^2 - V(\sqrt{2}|H|) + |D_{\mu}\psi|^2 - \frac{1}{2} m_{\psi}^2 \psi^2 + \frac{1}{2} m_{$$

EOM: R_{ξ} gauge

Giulio Barni

Vector boson emission: Abelian Higgs model

$$\mathcal{L} \supset -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + |D_{\mu}H|^2 - V(\sqrt{2}|H|) + |D_{\mu}\psi|^2 - \frac{1}{2} m_{\psi}^2 \psi^2 + \text{gauge fixing}, \qquad D_{\mu} = \partial_{\mu} + igA_{\mu} + igA_{\mu$$

EOM: Unitary gauge $\xi \to \infty$

$$\begin{array}{c} \partial_{z}^{2}v(z) = V'(v) \\ \Box h = -V''(v)h \\ \partial_{\nu}F^{\mu\nu} = g^{2}v^{2}(z)A^{\mu} \equiv m^{2}(z)A^{\mu} \end{array} \qquad \qquad \overbrace{\begin{array}{c}A_{\mu}^{1,2} \\ H = h + ih_{2}\end{array}}^{m} \overbrace{\begin{array}{c}A_{\mu}^{T_{1,2}}, A_{\mu}^{\lambda} \\ h + v(z)\end{array}}^{m} \overbrace{\begin{array}{c}A_{\mu}^{T_{1,2}}, A_{\mu}^{\lambda} \\ h + v(z)\end{array}}^{m} \\ \hline \end{array}$$
Transversality condition
$$\begin{cases} \partial_{\mu}(m^{2}(z)A^{\mu}) = 0 \\ 3 \text{ propagating dofs}\end{array}} \xrightarrow{m(= 0)} z$$

17/25 June 10th, 2024

ñ

(new!)

Vector boson emission: τ and λ polarisations

Generalized Lorentz condition: $\left| \partial_{\mu}(m^{2}(z)A^{\mu}) = 0 \right|$

$$k^{\mu} = (k_0, k_{\perp}, 0, k^z)$$

Vector boson emission: au and λ polarisations

Generalized Lorentz condition: $\left| \partial_{\mu}(m^2(z)A^{\mu}) = 0 \right|$

 $k^{\mu} = (k_0, k_{\perp}, 0, k^z)$

•
$$A_z = 0 \rightarrow \boxed{\partial_\mu A^\mu = 0} \Rightarrow \tau - \text{polarisations:}$$

$$\epsilon_{\mu}^{\tau_1} = (0, 0, 1, 0), \qquad \epsilon_{\mu}^{\tau_2} = (k_{\perp}, k_0, 0, 0) / \sqrt{k_0^2 - k_{\perp}^2}$$

Vector boson emission: au and λ polarisations

Generalized Lorentz condition: $\partial_{\mu}(m^2(z)A^{\mu})$

$$(m^2(z)A^\mu) = 0$$

$$k^{\mu} = (k_0, k_{\perp}, 0, k^z)$$

June 10th. 2024

• $A_z = 0 \rightarrow \partial_{\mu} A^{\mu} = 0 \Rightarrow \tau - \text{polarisations:}$

$$\epsilon_{\mu}^{\tau_1} = (0, 0, 1, 0), \qquad \epsilon_{\mu}^{\tau_2} = (k_{\perp}, k_0, 0, 0) / \sqrt{k_0^2 - k_{\perp}^2}$$

•
$$A_z \neq 0 \Rightarrow \lambda$$
-polarisation: $A^{\lambda}_{\mu} = \partial_i a + A_z$ with $i = 0, 1, 2$ $E = \sqrt{k_0^2 - k_{\perp}^2}$

$$\epsilon_{\mu}^{\lambda} = \frac{k_{\mu}}{m(z)} \times \frac{k^z}{E} + \left(0, 0, 0, \frac{m(z)}{E}\right) \quad \rightarrow \quad A_{\mu}^{\lambda} = \partial_{\mu}a + \frac{m(z)^2}{E^2}(0, 0, 0, A_z)$$

 (τ, λ) best suited for the problem, they differ from conventional (T, L) (agree only for $k_{\perp} = 0$).

EOM for
$$A_z$$
: $\left[-E^2 - \partial_z^2 + m(z)^2 - 2\left(\frac{m'}{m}\right)\partial_z + 2\left(\frac{m'}{m}\right)^2 - 2\frac{m''}{m} \right] A_z = 0$

EOM for
$$A_z$$
: $\left[-E^2 - \partial_z^2 + m(z)^2 - 2\left(\frac{m'}{m}\right)\partial_z + 2\left(\frac{m'}{m}\right)^2 - 2\frac{m''}{m} \right]A_z = 0$

 $\mathsf{Symmetric} \to \mathsf{Broken}$

EOM for
$$A_z$$
: $\left[-E^2 - \partial_z^2 + m(z)^2 - 2\left(\frac{m'}{m}\right)\partial_z + 2\left(\frac{m'}{m}\right)^2 - 2\frac{m''}{m}\right]A_z = 0$

 $\mathsf{Symmetric} \to \mathsf{Broken}$

June 10th. 2024

$$U_{\lambda}(-\infty) = m_{h,s}^2 \quad \xleftarrow{z \to +\infty}{-\infty \leftarrow z} \quad U_{\lambda}(+\infty) = \tilde{m}^2$$

Can be proven $\forall V(v)$

EOM for
$$A_z$$
: $\left[-E^2 - \partial_z^2 + m(z)^2 - 2\left(\frac{m'}{m}\right)\partial_z + 2\left(\frac{m'}{m}\right)^2 - 2\frac{m''}{m} \right]A_z = 0$

 $\mathsf{Broken} \to \mathsf{Broken}$

$$U_{\lambda}(-\infty) = m^2 \quad \xleftarrow{z \to +\infty}{-\infty \leftarrow z} \quad U_{\lambda}(+\infty) = \tilde{m}^2$$

Can be proven $\forall V(v)$

Quantisation Across Bubble Walls and Friction

 $\tau-{\rm polarisations};\;A_{\mu}^{\tau}=\sum a_{1,2}^{\tau}\epsilon_{\mu}^{\tau_1,\tau_2}\text{, only }\tau_2$ gives a contribution, then

$$a_{R,k^{z}}^{\tau_{2}} = e^{-ik_{0}t + ik_{\perp}x_{\perp}} \begin{cases} e^{ik^{z}z} + r_{k}e^{-ik^{z}z} & z < 0\\ t_{k}e^{i\tilde{k}^{z}z} & z > 0 \end{cases}$$

$$a_{L,k^{z}}^{\tau_{2}} = e^{-ik_{0}t + ik_{\perp}x_{\perp}} \sqrt{\frac{k^{z}}{\tilde{k}^{z}}} \begin{cases} \frac{\tilde{k}^{z}}{k^{z}} t_{k}e^{ik^{z}z} & z < 0\\ -r_{k}e^{i\tilde{k}^{z}z} + e^{-i\tilde{k}^{z}z} & z > 0 \end{cases}$$

where
$$k_0 = \sqrt{k_z^2 - m^2 - k_\perp^2}$$
, $\tilde{k}^z = \sqrt{k_z^2 + m^2 - \tilde{m}^2}$ and $E = \sqrt{k_0^2 - k_\perp^2}$.

au-polarisations: $A^{ au}_{\mu} = \sum a^{ au}_{1,2} \epsilon^{ au_1, au_2}_{\mu}$, only au_2 gives a contribution, then

$$a_{R,k^{z}}^{\tau_{2}} = e^{-ik_{0}t + ik_{\perp}x_{\perp}} \begin{cases} e^{ik^{z}z} + r_{k}e^{-ik^{z}z} & z < 0\\ t_{k}e^{i\tilde{k}^{z}z} & z > 0 \end{cases}$$

$$a_{L,k^{z}}^{\tau_{2}} = e^{-ik_{0}t + ik_{\perp}x_{\perp}} \sqrt{\frac{k^{z}}{\tilde{k}^{z}}} \begin{cases} \frac{\tilde{k}^{z}}{k^{z}} t_{k} e^{ik^{z}z} & z < 0\\ -r_{k} e^{i\tilde{k}^{z}z} + e^{-i\tilde{k}^{z}z} & z > 0 \end{cases}$$

where
$$k_0 = \sqrt{k_z^2 - m^2 - k_\perp^2}$$
, $\tilde{k}^z = \sqrt{k_z^2 + m^2 - \tilde{m}^2}$ and $E = \sqrt{k_0^2 - k_\perp^2}$.

Matching conditions:

$$\begin{cases} a^{\tau_2}|_{<0} = a^{\tau_2}|_{>0} \\ \partial_z a^{\tau_2}|_{<0} = \partial_z a^{\tau_2}|_{>0} \end{cases} \Rightarrow$$

 $\begin{cases} r_k = \frac{\tilde{k}^z - k^z}{\tilde{k}^z + k^z} \\ t_k = \frac{2k^z}{\tilde{k}^z + k^z} \end{cases}$

20/25 June 10th, 2024

$$\lambda$$
-polarisations: $A^{\lambda}_{\mu} = \partial_{\mu}a + rac{m(z)^2}{E^2}(0,0,0,A_z)$ where $A^z = rac{E}{m(z)}\lambda$.

$$\lambda_{R,k^{z}} = e^{-ik_{0}t + ik_{\perp}x_{\perp}} \begin{cases} e^{ik^{z}z} + r_{k}e^{-ik^{z}z} & z < 0\\ t_{k}e^{i\tilde{k}^{z}z} & z > 0 \end{cases}$$

$$\lambda_{L,k^z} = e^{-ik_0t + ik_\perp x_\perp} \sqrt{\frac{k^z}{\tilde{k}^z}} \begin{cases} \frac{\tilde{k}^z}{k^z} t_k e^{ik^z z} & z < 0\\ -r_k e^{i\tilde{k}^z z} + e^{-i\tilde{k}^z z} & z > 0 \end{cases}$$

where
$$k_0 = \sqrt{k_z^2 - m^2 - k_\perp^2}$$
, $\tilde{k}^z = \sqrt{k_z^2 + m^2 - \tilde{m}^2}$ and $E = \sqrt{k_0^2 - k_\perp^2}$.

20/25 June 10th, 2024

$$\lambda$$
-polarisations: $A^{\lambda}_{\mu} = \partial_{\mu}a + \frac{m(z)^2}{E^2}(0, 0, 0, A_z)$ where $A^z = \frac{E}{m(z)}\lambda$.

$$\lambda_{R,k^{z}} = e^{-ik_{0}t + ik_{\perp}x_{\perp}} \begin{cases} e^{ik^{z}z} + r_{k}e^{-ik^{z}z} & z < 0\\ t_{k}e^{i\tilde{k}^{z}z} & z > 0 \end{cases}$$

$$\lambda_{L,k^z} = e^{-ik_0t + ik_\perp x_\perp} \sqrt{\frac{k^z}{\tilde{k}^z}} \begin{cases} \frac{\tilde{k}^z}{k^z} t_k e^{ik^z z} & z < 0\\ -r_k e^{i\tilde{k}^z z} + e^{-i\tilde{k}^z z} & z > 0 \end{cases}$$

where $k_0 = \sqrt{k_z^2 - m^2 - k_\perp^2}$, $\tilde{k}^z = \sqrt{k_z^2 + m^2 - \tilde{m}^2}$ and $E = \sqrt{k_0^2 - k_\perp^2}$.

Matching conditions: {

$$\begin{cases} \lambda v(z)|_{<0} = \lambda v(z)|_{>0} \\ \frac{\partial_z \lambda}{v(z)}\Big|_{<0} = \frac{\partial_z \lambda}{v(z)}\Big|_{>0} \end{cases} \Rightarrow \begin{cases} r_k = \frac{\tilde{v}^2 k^z - v^2 \tilde{k}^z}{\tilde{v}^2 k^z + v^2 \tilde{k}^z} \\ t_k = \frac{2k^z v \tilde{v}}{\tilde{v}^2 k^z + v^2 \tilde{k}^z} \end{cases}$$

Vector boson emission: Quantisation

$$A^{\mu} = \sum_{I,\ell} \int \frac{d^3k}{(2\pi)^3 \sqrt{2k_0}} \left(a_{\ell,I,k}^{\text{out}} \ e^{-i(k_0t - \vec{k}_{\perp}\vec{x})} \ \zeta_{\ell,I,k}^{\mu}(z) + h.c. \right) \ ,$$

where I = R, L and $\ell = \tau_1, \tau_2, \lambda$.

Vector boson emission: Quantisation

$$A^{\mu} = \sum_{I,\ell} \int \frac{d^3k}{(2\pi)^3 \sqrt{2k_0}} \left(a_{\ell,I,k}^{\text{out}} \ e^{-i(k_0t - \vec{k}_{\perp}\vec{x})} \ \zeta_{\ell,I,k}^{\mu}(z) + h.c. \right) \ ,$$

where I=R,L and $\ell= au_1, au_2,\lambda.$ The wave modes are constructed as follow

Giulio Barni

Results: $\langle \Delta p \rangle$ in the asymptotic limit $\gamma_w \to \infty$

Relative importance of τ and λ contributions Relative importance of τ and λ contributions $Broken \rightarrow Broken$ Symm. \rightarrow Broken $q\tilde{v} = 1, \ L_w^{-1} = 2 \,[\text{arb.}]$ $q\tilde{v} = 1$ [arb.] 0.5000.50 $L_{...}^{-1} = 10$ [arb.] $\langle \Delta p^{\ell} \rangle / g^3 \tilde{v}$ $\langle \Delta p^\ell \rangle / g^3 \tilde{v}$ 0.1000.0500.10 $L_w^{-1} = 2$ [arb.] 0.050.010 0.005 $\langle \Delta n^{\lambda} \rangle$ (Δn^{λ}) 0.0010.01 0.0010.010.10.010.10.001 $\begin{array}{c} v/\tilde{v} \\ \langle \Delta p^{\tau} \rangle \simeq g^{3} \tilde{v} \, F_{\tau} \left(\frac{v}{\tilde{v}} \right) \qquad \langle \Delta p^{\lambda} \rangle \simeq g^{2} \left(\frac{v^{2} - \tilde{v}^{2}}{v^{2} + \tilde{v}^{2}} \right)^{2} L_{w}^{-1} \end{array}$ T/\tilde{v} $\langle \Delta p^{\tau} \rangle \simeq g^3 \tilde{v} \log \frac{\tilde{v}}{T} \qquad \langle \Delta p^{\lambda} \rangle \simeq g^3 \tilde{v} c_{\lambda}$

Quantisation Across Bubble Walls and Friction

June 10th, 2024

Results: Broken \rightarrow Broken with transient regimes

We are also able to capture transient regimes \rightarrow ultimately matters to determine equilibrium velocity

Main conclusions

We computed the transition radiation emission on much more solid basis, account for longitudinal emission, and analysed

- symmetric to broken, aka symmetry-breaking PTs
- broken to broken PTs
- broken to symmetric aka symmetry-restoring PTs [done in 2405.19447]
- We computed the friction from transition radiation in the most minimal theory (scalars) and in a spontaneously broken Abelian gauge theory.
- We develop the tools for computing any particle process in such backgrounds. (A step towards systematically studying QFT (EFT?) for broken translations)

Backup slides

Why emission of vector bosons?

June 10th. 2024

Vertex interactions

In the relativistic regime the friction can be computed as

$$\Delta \mathcal{P} = \int \frac{d^3 p}{(2\pi)^3} \frac{p^z}{p_0} f_A^{\text{eq}} \times \sum_{b,c} \int d\mathbb{P}_{a \to b,c} \Delta p^z$$

where \boldsymbol{b} is soft and

$$\int d\mathbb{P}_{a\to b,c} \sim \int d^2 k_{\perp} \int dx \ |\mathcal{M}(a\to b,c)|^2, \qquad x \equiv \frac{E_c}{E_a}$$

The matrix element is related to the interaction via

$$\mathcal{M}(a \rightarrow b, c) = \int dz \ \chi_a(z) \chi_b^*(z) \chi_c^*(z) V(z), \qquad V(z): \text{vertex}$$

Soft singularity in x matters! \rightarrow emission of vector bosons!

[JCAP05(2017)025]: Bodeker, Moore

$a(p) \to b(k)c(p{-}k)$	$ V^2 $
$S \rightarrow V_T S$	
$F \rightarrow V_T F$	$4g^2C_2[R]\frac{1}{x^2}k_{\perp}^2$
$V \rightarrow V_T V$	
$S \rightarrow V_L S$	
$F \rightarrow V_L F$	$\left(4g^2C_2[R]\frac{1}{x^2}m^2\right)$
$V \rightarrow V_L V$	
$F \to FV_T$	$2g^2C_2[R]\frac{1}{x}(k_{\perp}^2+m_b^2)$
$V \to FF$	$2g^2T[R]\frac{1}{x}(k_\perp^2+m_b^2)$
$S \to SV_T$	$4g^2C_2[R]k_{\perp}^2$
$F \rightarrow SF$	$y^2(k_\perp^2 + 4m_a^2)$
$S \rightarrow SS$	$\lambda^2 arphi^2$

Giulio Barni

June 10th, 2024

FOPT: Bubble dynamic (General case)

Equilibrium velocity of the bubbles (or runaway), $\gamma_w^{\rm max}$, is setted by

 $\Delta V = \Delta \mathcal{P}(\gamma_w^{\max})$

- $\bullet \ \Delta V$ is independent on the velocity of the wall
- $\Delta \mathcal{P}(\gamma_w^{\max})$ very difficult to compute in general and depends on the velocity

FOPT: Bubble dynamic (General case)

Equilibrium velocity of the bubbles (or runaway), γ_w^{\max} , is setted by

 $\Delta V = \Delta \mathcal{P}(\gamma_w^{\max})$

- $\bullet \ \Delta V$ is independent on the velocity of the wall
- $\Delta \mathcal{P}(\gamma_w^{\max})$ very difficult to compute in general and depends on the velocity

GENERAL CASE: solve coupled differential system

$$\begin{cases} p^{\mu}\partial_{\mu}f_{i} + \frac{1}{2}\partial_{z}m_{i}[\phi]\partial_{p^{z}}f_{i} = \mathcal{C}[f_{i},\phi]\\ \Box\phi + \frac{dV}{d\phi} + \sum_{i}\frac{dm_{i}^{2}[\phi]}{d\phi}\int\frac{d^{3}p}{(2\pi)^{3}}\frac{f_{i}}{2E_{i}} = 0 \end{cases}$$

Figure: Friction acting on the bubble expansion. [2102.12490]

June 10th. 2024

FOPT: Bubble dynamic (General case)

Equilibrium velocity of the bubbles (or runaway), $\gamma_w^{\rm max}$, is setted by

 $\Delta V = \Delta \mathcal{P}(\gamma_w^{\max})$

- $\bullet \ \Delta V$ is independent on the velocity of the wall
- $\Delta \mathcal{P}(\gamma_w^{\max})$ very difficult to compute in general and depends on the velocity

Relativistic case ($\gamma_w \gg 1$)

$$\begin{cases} \mathcal{C} \to 0 \text{ (ballistic regime)}, & f_i \gg f_i^{\text{eq}} \\ \Box \phi + \frac{dV_T}{d\phi} = 0 \end{cases}$$

$$\Delta \mathcal{P} = \int \frac{d^3 p}{(2\pi)^3} \frac{p^z}{p_0} f_A^{\text{eq}} \times \sum_X \int d\mathbb{P}_{A \to X} \Delta p^z$$

Figure: Friction acting on the bubble expansion. [2102.12490]

Relations between (τ, λ) and (T, L)

Relations between
$$(\tau, \lambda)$$
 and (T, L)

Conventional pol. vectors:

$$\epsilon_{T_1} = (0, 0, 1, 0), \quad \epsilon_{T_2} = \frac{1}{\sqrt{k_\perp^2 + k_z^2}} (0, k^z, 0, -k_\perp), \quad \epsilon_L = \frac{k_0}{m\sqrt{k_0^2 - m^2}} \left(\frac{k_0^2 - m^2}{k_0}, k_\perp, 0, k^z\right)$$

$$\begin{pmatrix} \epsilon_{T_1} \\ \epsilon_{T_2} \\ \epsilon_L \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{k_0 k^z}{E \sqrt{k_z^2 + k_\perp^2}} & -\frac{k_0 m}{E \sqrt{k_z^2 + k_\perp^2}} \\ 0 & \frac{k_0 m}{E \sqrt{k_z^2 + k_\perp^2}} & \frac{k_0 k^z}{E \sqrt{k_z^2 + k_\perp^2}} \end{pmatrix} \begin{pmatrix} \epsilon_{\tau_1} \\ \epsilon_{\tau_2} \\ \epsilon_{\lambda} \end{pmatrix}$$

• For $k^z, E \gg k_{\perp}, m$ mixing between τ, λ scales as m/E

• We are interested in the sum of all contributions ightarrow all computations in (au,λ) basis

Quantisation Across Bubble Walls and Friction

June 10th. 2024

Amplitude from WKB (details)

Quantisation Across Bubble Walls and Friction

Amplitude from WKB (details)

$$\mathcal{M}^{\text{wkb red.}} = \frac{V(-\infty)}{i\Delta p_z(-\infty)} - \frac{V(+\infty)}{i\Delta p_z(+\infty)}$$

Giulio Barni

Quantisation Across Bubble Walls and Friction

WKB approximation

WKB approximation

KG eom in Fourier space:

$$\chi''(z) + \frac{p_z^2}{\hbar^2}\chi(z) = 0$$

WKB ansatz: $\chi(z) = \exp\left[\frac{i}{\hbar} \left(S_0 + S_1 \hbar + S_2 \hbar^2 \dots\right)\right]$, put in the differential equation and match terms of the same order in \hbar . \implies Validity: $\hbar |S_0''(z)| \ll |S_0'(z)| \& 2\hbar |S_0'S_1'| \ll |(\partial_z p^z(z))^2|$

$$\chi(z) = \sqrt{\frac{p_s^z}{p^z(z)}} \exp\left[i\int_0^z d\hat{z} \, p^z(\hat{z}) + i\int_0^z d\hat{z} \left(\frac{1}{2}\left(\frac{\partial_z p^z}{p^z}\right)^2 - \frac{\partial_z^2 p^z}{4p_z}\right)\dots\right]$$

Sensitivity to the wall width

Quantisation Across Bubble Walls and Friction
Sensitivity to the wall width: broken to broken

Quantisation Across Bubble Walls and Friction

Sensitivity to the wall width: broken to symmetryc

Phase space for vector emission: thermal masses

Giulio Barni

Quantisation Across Bubble Walls and Friction

Phase space for vector emission: thermal masses (vectors)

When thermal corrections become important? We cut the phase space at momentum $|\vec{k}|^2 \sim g^2 T^2$, which is equivalent to use the following thermal masses for the vectors (symmetric \rightarrow broken)

$$(\tau): \begin{cases} \tilde{m} = m_{\tau}(z = +\infty) \approx g\sqrt{\tilde{v}^2 + T^2} \\ m = m_{\tau}(z = -\infty) \approx gT \end{cases}, \qquad (\lambda): \begin{cases} \tilde{m} = m_{\lambda}(z = +\infty) \approx g\sqrt{\tilde{v}^2 + T^2} \\ m = m_{\lambda}(z = -\infty) = m_{h,s}(T) \end{cases}.$$

gT is not the only scale possible. The self energy for transverse vectors receives ('magnetic mass') thermal corrections only at two loops of parametric order $\sim g^2 T$ from charged matter. For broken to broken transitions the vector masses are, for both λ and τ fields

$$mpprox g\sqrt{v^2+T^2}\;,\quad ilde{m}pprox g\sqrt{ ilde{v}^2+T^2}\;,\qquad$$
 (broken to broken) .

Giulio Barni

June 10th, 2024

Ward identity

41/25

June 10th, 2024

Quantisation Across Bubble Walls and Friction

Ward identity

If the gauge symmetry is preserved, vector bosons can couple only to conserved currents

$$\mathcal{M}^{(4,J)} \equiv \epsilon^\mu_k \mathcal{M}^{(4,J)}_\mu = (\epsilon^\mu_k + k^\mu) \mathcal{M}^{(4,J)}_\mu ~, \qquad \text{(no wall)}.$$

where the (4, J) label indicates full 4-momentum conservation, J^{μ} the conserved current and ϵ_k^{μ} the external particle's polarisation vector.

In the presence of a domain wall in the z direction, the generalised matrix element $\mathcal{M}^{(3)}$ includes an integral over z and the polarisation tensor is also a function thereof. The expression of conservation closest to the previous is

$$\mathcal{M}^{(3,J)} \equiv \int dz \; \chi^{\mu}_{\ell,I,k}(z) \mathcal{M}^{(3,J)}_{\mu}(z) = \int dz \; \left(\chi^{\mu}_{\ell,I,k}(z) + \bar{\partial}^{\mu} f(z) \right) \mathcal{M}^{(3,J)}_{\mu}(z) \; ,$$
where $\bar{\partial^{\mu}} \equiv (-ik^n, \partial^z) \; ,$ (with wall)

and f(z) is an arbitrary function. Example: $f(z) = a(z) = \frac{\partial_z (v^2 \lambda)}{E^2 v^2}$.

42/25

June 10th, 2024

Interpolation between h_2 and $A^{(\lambda)}$

Quantisation Across Bubble Walls and Friction

Interpolation between h_2 and $A^{(\lambda)}$

To understand this matching better let us look at the χ^{μ}_{λ} vector in the limit $v \to 0$

$$\begin{split} \chi_{\lambda}^{\mu} &= \left(-ik^{n}a(z), \chi_{\lambda}^{z}\right) = \left(\frac{-ik^{n}\partial_{z}(v\lambda)}{gEv^{2}}, \frac{E}{gv}\lambda\right) \\ &= \frac{\lambda}{gv}\left(-\frac{ik^{n}}{E}\left[\frac{v'}{v} + \frac{\lambda'}{\lambda}\right], E\right)_{v \to 0} = \frac{e^{-ikx}}{gv}\left(\frac{k^{n}}{E}\left[-im_{h,s} + k^{z}\right], E\right), \end{split}$$

where we have used that λ becomes a plane wave far from the wall and $v'/v \to m_{h,s}$. Note that the factor $(-im_{h,s} + k^z)/E$ is a **pure phase** if the λ dof is on shell. Let us see whether we can build exactly the same **vector but from the Goldstone field** h_2 . Indeed if we consider the vector

$$\partial^{\mu}\left(\frac{h_{2}}{gv}\right) = -\frac{e^{-ikx}}{gv}\left(k^{n}, k^{z} + i\frac{v'}{v}\right) = \frac{-iEe^{-ikx}}{gv(k^{z} - im_{h,s})}\left(\frac{k^{n}}{E}\left[-im_{h,s} + k^{z}\right], E\right).$$

So we can see that the two vectors χ^{μ}_{λ} and $\partial_{\mu}(h_2/gv)$ are exactly the same apart from the constant phase factor, so indeed λ field in the $z \to -\infty$ limit corresponds to the Goldstone boson.

Giulio Barni

June 10th. 2024

Total pressure: fitting formulas

Total pressure: fitting formulas

$\mathsf{Symmetric} \to \mathsf{Broken}$

$$\lim_{\gamma_w \to \infty} \mathcal{P}_{\text{th.}} \simeq \frac{\zeta(3)\gamma_w T^3}{\pi^2} \times g^3 \tilde{v} \left[0.135 \log\left(\frac{\tilde{v}}{T} + 2.26\right) - 0.085 - 0.2 \frac{\log\left(\frac{\tilde{v}}{T} + 2.26\right)}{\tilde{v}/T} + \frac{0.19}{\tilde{v}/T} \right]$$

 $\mathsf{Broken} \to \mathsf{Broken}$

$$\lim_{\gamma_w \to \infty} \mathcal{P}_{v \neq 0}^{\lambda} \sim 0.05 \frac{\zeta(3) \gamma_w T^3}{\pi^2} \times g^2 \frac{(v^2 - \tilde{v}^2)^2}{(v^2 + \tilde{v}^2)^2} \times L_w^{-1}.$$

Giulio Barni

Quantisation Across Bubble Walls and Friction

Considering a conserved current $\partial_{\mu}J^{\mu} = 0$, its conservation imposes that any interaction which can be written in the form

$$J^{\mu}\partial_{\mu}f \quad \Rightarrow \quad \langle final | \mathcal{S}_{f} | initial \rangle = \int d^{4}x \;\; \partial_{\mu}f(x)J^{\mu}(x) = 0 \;,$$

Considering a conserved current $\partial_{\mu}J^{\mu} = 0$, its conservation imposes that any interaction which can be written in the form

$$J^{\mu}\partial_{\mu}f \quad \Rightarrow \quad \langle final | \mathcal{S}_{f} | initial
angle = \int d^{4}x \;\; \partial_{\mu}f(x)J^{\mu}(x) = 0 \;,$$

For example let us consider $f = \chi_{1,2}^{\tau}(z)$, where $\chi_{1,2}^{\tau}$ are the wave functions for the τ polarisations. Then the matrix element will be equal to

$$J^{\mu} \propto (p+q)^{\mu} \quad \Rightarrow \quad \mathcal{M} = \frac{(p+q)_{\mu}k^{\mu}}{\Delta p} + r_{k}^{\tau} \frac{(p+q)_{\mu}k_{r}^{\mu}}{\Delta p_{r}} - t_{k}^{\tau} \frac{(p+q)_{\mu}\tilde{k}^{\mu}}{\Delta\tilde{p}}$$
$$= (p+q)_{z}(1+r_{k}^{\tau}-t_{k}^{\tau}) = 0 .$$

where $k_r^{\mu} \equiv (k^m, -k^z), \quad \tilde{k}^{\mu} \equiv (k^m, \tilde{k}^z).$

Giulio Barni

Quantisation Across Bubble Walls and Friction

Considering a conserved current $\partial_{\mu}J^{\mu} = 0$, its conservation imposes that any interaction which can be written in the form

$$J^{\mu}\partial_{\mu}f \quad \Rightarrow \quad \langle final | \mathcal{S}_f | initial \rangle = \int d^4x \;\; \partial_{\mu}f(x)J^{\mu}(x) = 0 \;,$$

Similarly we can choose $f = \alpha(z) = \frac{1}{gv^2 E} \partial_z(v\lambda)$, of the λ . Using the expression for reflection and transmission coefficients we can compute the amplitude for the processes $J^{\mu} \to \chi^{\mu}_{\lambda}$ corresponding to the interaction $J_{\mu}\chi^{\mu}_{\lambda}$. The computation goes as follows

$$\begin{aligned} J^{\mu} \propto (p+q)^{\mu} \quad \Rightarrow \quad \mathcal{M} &= \frac{k^{z}}{gEv} \frac{(p+q)_{\mu}k^{\mu}}{\Delta p} - \frac{k^{z}}{Egv} r_{k}^{\lambda} \frac{(p+q)_{\mu}k_{r}^{\mu}}{\Delta p_{r}} - \frac{\tilde{k}^{z}}{gE\tilde{v}} t_{k}^{\lambda} \frac{(p+q)_{\mu}\tilde{k}^{\mu}}{\Delta \tilde{p}} \\ &= \frac{(p+q)_{z}}{E} \underbrace{\left(\frac{k^{z}}{gv} - \frac{k^{z}}{gv} r_{k}^{\lambda} - \frac{\tilde{k}^{z}}{g\tilde{v}} t_{k}^{\lambda}\right)}_{=0} = 0 \ , \end{aligned}$$

The terms cancelling each other in the brackets are **growing in energy**, which makes crucially important the calculation of exact values of reflection and transmission coefficients.

Giulio Barni

Quantisation Across Bubble Walls and Friction

Non-conserved currents

Non-conserved currents

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + |D_{\mu}H|^2 - V(|H|) + |D_{\mu}\phi|^2 - m_{\psi}^2|\phi|^2 + (\kappa\phi^2H + h.c.)$$

where $Q_{U(1)}(H) = 1, Q_{U(1)}(\phi) = -1/2$. The divergence of the current becomes equal to:

$$\partial_{\mu}J^{\mu}_{\phi} = \sqrt{2}v(z)\left(\kappa^{*}\phi^{*2} - \kappa\phi^{2}\right) , \quad J^{\mu}_{\phi} = i(\phi^{*}\partial^{\mu}\phi - \phi\partial^{\mu}\phi^{*}) .$$

The interaction between the λ polarisation and J^{μ}_{ϕ} and can be written as follows:

$$gQ_{\phi}J^{\mu}_{\phi}A^{(\lambda)}_{\mu} \to Q_{\phi}\left[-\sqrt{2}\left(\kappa^{*}\phi^{*2}-\kappa\phi^{2}\right)\frac{1}{Ev(z)}\partial_{z}\left(v(z)\lambda(z)\right) - \frac{g^{2}v(z)}{E}\lambda(z)J_{z}\right]$$

We can see that on top of the term λJ_z present in the conserved current case, there is an additional interaction. However **this interaction is not growing with energy**, and in the limit $v(z) \rightarrow 0$, it is finite.

Symmetry-restoring PT

Quantisation Across Bubble Walls and Friction

Results: Broken \rightarrow Symmetric

Negative pressure?

Quantisation Across Bubble Walls and Friction

Negative pressure?

→ If some particle lose its mass, then → $\mathcal{P}_{LO} \sim -\Delta m^2 T^2$, so what about \mathcal{P}_{NLO} ? → We have found that $\psi \rightarrow \psi A^{\mu}$ in symmetry restoring PTs produces $\mathcal{P}_{NLO} > 0$ And in general?

$$\Delta p \ge \Delta p_{\rm Min} = p^z - q^0 - k^0 = p^z - p^0 = -\frac{m_a^2}{2p^z} + \mathcal{O}\left(\frac{1}{p_z^2}\right) , \tag{1}$$

which is the leading order minimum. Although this **absolute minimum** is negative, vanish for $p^z \to \infty$. A lower bound on the average momentum transfer is

$$\langle \Delta p \rangle = \int d\Pi_{\rm BTPH} \ |\mathcal{M}|^2 \ \Delta p \ge \Delta p_{\rm Min} \int d\Pi_{\rm BTPH} \ |\mathcal{M}|^2 = \Delta p_{\rm Min} \ \mathbb{P} \ , \tag{2}$$

 \mathbb{P} is an integrated probability for a physical process and it cannot grow arbitrarily to infinity with incoming particle energy $p_0 \approx p^z$ (less it break unitarity), and we conclude that

$$\langle \Delta p \rangle > -\frac{m_a^2}{2p^z} , \quad \text{for} \quad p^z \to \infty .$$
 (3)

54/25

June 10th. 2024

Quantisation Across Bubble Walls and Friction