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Renaissance of global symmetries

e Generalized symmetries: a mini revolution happened in the last
10 years in hep-th and condensed matter community.

e Global symmetries in QFT are defined as topological operators/
defects. In this view, people found many generalizations.
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Renaissance of global symmetries

— a particle physicist’s view

e Can generalized symmetries be used to solve particle physics
problems?

 What are the simplest applications of generalized symmetries in
particle physics? (Perhaps a more ambitious question is to find
the most striking applications.)
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* As we will see in this talk, there is a natural connection between heavy particles, SMEFT, and line
operators (with one-form global symmetry acting on them), hence to determine



Higher-form symmetries

e Free Maxwell theory with no matter:
the Gauss law is understood as electric U(1) 1-form symmetry

e Pure SU(N) gauge theory with no matter:
the center of the gauge group measures the N-ality of a Wilson

line, which is understood as electric Zy; 1-form symmetry
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explicitly, i.e. Wilson lines can be screened/trivialized by particles.
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Nevertheless, the notions of electric 1-form symmetry and Wilson lines are
still valid at low energy, i.e. below the mass scale of the heavy particles that
screen the Wilson lines. As such, the 1-form symmetry is viewed as
accidental.
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Unification of two perspectives: there is natural correspondence

between heavy particles and line operators!



Toy Model



Example: SU(2) versus SO(3) groups

* They are sometimes use interchangeably

* But we have to keep in mind they are not exactly the same, namely

SU(2 o
50(3) ~ Z( ), where Z, = (e"”, o 27

2

= 1) is the center

* The consequence of the Z, quotient:
SO(3) only has integer spin representations,

SU(2) can have both half-integer and integer spin representations

~/

In general, one can define G ~ 7L where H is a subgroup of the center

and all the allowed reps. are invariant under the H group
[Aharony, Seiberg, Tachikawa, 13]



Example: SU(2) versus SO(3) gauge theories

* Consider a low-energy theory with all the matter fields (including gauge bosons and

Dirac fermions) in the adjoint representation of SU(2). Suppose this is what has been
discovered experimentally.

* The gauge group appears to be SU(2). But this is not quite true.
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Dirac fermions) in the adjoint representation of SU(2). Suppose this is what has been
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* The gauge group appears to be SU(2). But this is not quite true.

* Instead, the gauge group can be either SU(2) or SO(3)
SU2)

« Infancier language, the gauge group G = ,wherel' =1, Z,

(The difference of the two theories can be rephrased in one-form symmetry.)

* Whenit's SO(3), since I’ = Z, acts trivially in the full theory, this implies all the heavy
particles have to be in the integer spin representations.

* Distinguishing SU(2) vs. SO(3) requires to discover at least one heavy particle in the
half-integer spin representation.

* Coming back to low-energy EFT, heavy particle can be described by high dim.
operators



The Standard Model



The Standard Model

* The matter content (+ gauge fields in the adjoints)

Table 29.1 Charges of Standard Model fields.
[l indicates that the field transforms in the fundamental representation,
and — indicates that a field is uncharged.

[IM. Schwartz QFT & SM textbook]

* The SU3), x SU(2); X U(1)y appears to be the gauge group, naively

* Nonetheless, much like the SU(2) in the toy model, we are not sure this is the genuine

gauge group. To find the genuine gauge group, we need to take a quotient to remove the
trivial group elements.



Which Standard Model?

The ambiguity comes from the following Z group acting trivially on

all SM fields. (This is analogous to the Z, center in the toy model.)
[... O’Raifeartaigh, 86; ... Tong, 17; ...]

Z6 — {Cl, aZ, a39 C(4, aS, a6 — 1} Q= (ezf% 33, €™ laxa, e%)

The generator a act on a rep. (R;, R,, Qy) as

U (Ry. Ry, Qy) = &5V RpHind R+260,) _ o215 + 555 +.0y)

Hence the condition for the Z, group acting trivially is

N(R;) = 60y mod 3 and N (R,) = 60y mod 2

All SM fields are invariant under the Z group (check it!)



Which Standard Model?

* There are four SM models from a low energy perspective, they differ by
the global form of the gauge group (or one-form sym):

G SUQB), xSUQ), x U(l)y

G:F I' I'= 24 23, 25, 1

* Here Z, and Z; are the two nontrivial subgroup of Z, which are

generated by a® and a?, respectively. It’s easy to see that they acts
trivially when

Z, : N(R,) =60, mod 2 and  R;unconstrained

7, : N(R) =60, mod3 and  R,unconstrained



Heavy Particles & SMEFT

e Distinguishing them requires to discover new particles not invariant under

Z . (In the paper we call them “Z exotics”.) One can use SMEFT if they
are heavy and have decoupling limit.

* No “Z, exotics” in tree-level UV completions, seen by cutting the following
exemplifying graph. (The result is valid for operators of all mass dimensions.)

e Considering loop-level UV completion becomes mandatory!



Heavy Particles & SMEFT

o Example: adding one heavy complex scalar

LoD (Dud")(DF¢) — M?¢'¢ — As(H'o H)(¢'T"¢) — M (H'H)(6'9)
Representation Solution
¢ (V) Y2 = St yeas
¢(Rs,-,0) ’égﬁ;”; = 1593%,%@,@
2
(-, R2,0) 2833 ~ 225¢2,, 'ggiizlégiﬁm)—sc,,'
¢ (Rs,-,Yp) Ygg 4591;1392&5[? DcHD) Zggg; 459103Gij111chszlfD_cHD)
¢ (-, Ra, Yy) Y¢2 = 15g%c§z;%czlicHD) Zggjg - _5g§c§i(cc%i:v—i;;p)
2
4 (Ra. By, 0) ) = 1593c3G<cHD—§§5<4g%)+cm/4>
/5 = - e

Y

group theoretical data

measurable Wilson coeff.



Heavy particles & SM gauge group
e Q: What is the SM gauge group?

e A: It depends on what heavy particles we will discover. There are four
scenarios as follows:

* All particles are invariant under Z, I remains undetermined as in the SM. However,
if this is the case it might be better to write G, = SU(3), X SU2); X U(1)y/Zs.

* At least one heavy particle is not invariant under Z, but invariant under Z,
(hence not invariant under Z), I can be either Z, or 1.

* At least one heavy particle is not invariant under Z, but invariant under Z,
(hence not invariant under Z), I' can be either Z; or 1.

* At least one heavy particle is not invariant under either Z, or Z; (hence not
invariant under Z), I'is 1.



Conclusion & outlook

The global form of the SM gauge group is unknown, but we can
potentially determine it by discovering heavy particles, or using SMEFT
at low energy.

Heavy particles not invariant under Z can only appear in loop-level UV
completions, hence studying models with one-loop matching becomes
mandatory and more important than one might naively expect.

Scalars that can trigger EWSB cannot be Z exotics. Easy to prove in
general, see in the supplemental slides.

Cosmological, astro-particle, and future collider studies are warranted.
(We have a chance to bound the reheating temperature from above

since Z ¢ exotic particle are stable.)

Can we find striking applications of generalized symmetries in particle
physics?



Supplemental slides



Examples of heavy particles & SM gauge group

e (R3, Ry, Oy) = (fundamental, fundamental, O) is allowed when
[' = 1 but forbidden whenI" = Z, ; ¢

e (R, R, Oy) = (fundamental, fundamental, 2/3) is allowed when
['=1or Z;, but forbidden whenI' = Z, or Z

¢ (B3, R, Oy) = (fundamental, fundamental, 1/2) is allowed when
[I"=1or Z,, but forbidden whenI" = Z; or Z;

* Some well-known realistic examples include the original KSVZ
fermions in axions models, fractionally-charged and milli-
charged particles.



Electroweak symmetry breaking
e Q: What about the scalars that can trigger EWSB?

* A: They don’t decouple and they are not Z exotics.

e Proof: 1) Since color is unbroken, the scalars must be neutral
under SU(3).. (i.e. singlet rep. has N-ality zero). 2) In the notation

of (J, Oy) the quantum numbers are subject to the following
constraints to accommodate a electric neutral component:

—71<Qy <J and J+Qy €Z

* (yis either integer or half-integer since j is, hence

0 =6Qy mod 3 » invariant under Z;

e Furthermore, let’'s compute 2/ — 60,

2(j — Qy) — 4Qy = 0 mod 2 » invariant under Z,

e Invariance under both Z, ; implies invariance under Z



One-form symmetries and Line Operators

[ ICTP lectures by Schafer-Nameki, 2023 |

e A p-form global symmetry is generated by a dimension (d — p — 1) dimensional

topological operator D,;_,_; acting on a p dimensional charged operator 0, as
in the following:

(9) (9)
. d—(p+1) ) d—(p+1) 74(0p) x O,

(2.13)

* Higher form symmetries (i.e. p > 1) are abelian.

* Screening the charge: p-form symmetry can be screened (trivialized) by p — 1
dimensional operators O,,_; which live at the end of O,

Op 2] = 01) - ™ — OP °
. C)p—l o C)p—l C)p—]

(g) (g) , .
L)dq— (p+1) L)dq_ (p+1) (1_(](()‘“) X C)p

DY 1x 0O,



One-form symmetries and Line Operators

[ ICTP lectures by Schafer-Nameki, 2023 ]

* One useful perspective is to think in terms of the equivalence relations
between charged operators O,

OI()I) ~ (91()2) < d 0p_1 at the junction between OLI) and ng) . (2.28)

e Example: in a pure Yang-Mill theory with simply-connected gauge group G,
Wilson lines of all possible charges under the center Z; are allowed. Since the
only local operators are in the adjoint which is not charged under center, all

these Z; charged Wilson lines are inequivalent and so the 1-form symmetry is
the center. Also it’s obvious that adding additional matter can trivialize some of
the Wilson lines, hence breaking the 1-form symmetry to a subgroup.

* Taking the quotient I restricts the allowed Wilson lines, but it allows for more
't Hooft lines. There are different ways of adding the lines (called choices of
“polarizations”).



Centers for simply-connected groups

G Zg q(F)

SU(N) AN 1 mod N
Spin(4N) | Zg xZy | (1,1) mod (2,2)

Spin(4N + 2) A 2 mod 4
Spin(2N + 1) Lo 1 mod 2
Es [ Z3 1 mod 3
E; ZLio 1 mod 2
Eg Zn 1 modl

Table 1: Simply-connected Lie groups G and their centers Zs, as well as the charge of the
fundamental representation F' under the generator(s) of the center.

Zea = Center(G) = {g € G: gh= hg for all h € G}. (2.18)

[ ICTP lectures by Schafer-Nameki, 2023 ]



