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Outline 

Reconstruct the DM parameters with DD experiments

Combine different data in a fast and simple way using 
Machine Learning.



Outline 

Reconstruct the DM parameters with DD experiments

Combine different data in a fast and simple way using 
Machine Learning.

● Bayesian analysis with ML analysis to obtain posteriors

● Data sample generation:
DM-nucleon interaction with NR-EFT
Simulate the expected signal

● Parameter space that can be reconstructed



Bayesian Analysis
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Bayesian Analysis
Bayes theorem:

Posterior probability of the 
parameters Θ of interest 

given the data X
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(likelihood)
Prior probability of 
the parameters Θ

Probability of the data 
X also call evidence

Parameters
(σi
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Data

Number of 
events

ore.g.

Traditional methods:
need to assume a 
likelihood function



Bayesian Analysis
Likelihood-to-evidence ratio:

Conditional probabilities



Bayesian Analysis
Likelihood-to-evidence ratio:

Conditional probabilities

compute the 
posterior



Bayesian Analysis with SWYFT
SWYFT ⟶ Sampling-based inference tool that estimates likelihood-to- 
evidence ratio with ML algorithms to obtain marginal and joint posteriors

(σj, өj, mj
DM) j

Parameters Data

You can consider 
uncertainties:

 - DM halo model,
 - Nuclear response 
functions,
 - Detector response …
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evidence ratio with ML algorithms to obtain marginal and joint posteriors
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Binary classifier (DNN, CNN, …)
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Binary classifier (DNN, CNN, …)

Bayesian Analysis with SWYFT
SWYFT ⟶ Sampling-based inference tool that estimates likelihood-to- 
evidence ratio with ML algorithms to obtain marginal and joint posteriors

Matching (parameter, data) ⟶ label 1

Scrambled (parameter, data) ⟶ label 0

(σj, өj, mj
DM)  ,

j

  (σk, өk, mk
DM)  ,

m

)

)

(

( output

1 - output

label 1

label 0

output ∈ [0,1]



Bayesian Analysis with SWYFT
SWYFT ⟶ Sampling-based inference tool that estimates likelihood-to- 
evidence ratio with ML algorithms to obtain marginal and joint posteriors

output
output

compute the 
posterior



Trained binary classifierNew data sample xnew Posterior P(σ|xnew)

For another data sample ⟶ we do not need to train everything again, use the same classifier

Bayesian Analysis with SWYFT
SWYFT ⟶ Sampling-based inference tool that estimates likelihood-to- 
evidence ratio with ML algorithms to obtain marginal and joint posteriors
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Posterior using an experimental dataset X1 (e.g. images) non-informative 

prior
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Combined Bayesian Analysis
Posterior using an experimental dataset X1 (e.g. images) non-informative 

prior

Posterior using an experimental dataset X2 (e.g. spectra) use the previous  
posterior as prior

Product of likelihood-to-evidence ratios 



Combined Bayesian Analysis

Product of likelihood-to-evidence ratios 

each one obtained training SWYFT 
with only the Xi dataset

To include new data you do not need to re-train everything. Train with your 
new data and include r (Xnew, Θ)

To remove a dataset do not include r (Xold, Θ)



Data sample 
generation



For DM particles with spin up to ½ , the effective DM-nucleon 
scattering interaction Lagrangian

DM-nucleon effective field theory (NR-EFT)

nucleon basis
cp: proton
cn: neutron 

isospin basis
c0: isoscalar
c1: isovector

Change to polar coordinates:

i=14 possible 
interactions

O1: spin-independent (SI) 
O4: spin-dependent (SD)

usually shown assuming isoscalar interactions

cp=cn    c0=1 and c1=0



For each operator
2 parameters:

- amplitude (cross-section)
- phase

+ DM mass

(σi, өi, mDM)

For DM particles with spin up to ½ , the effective DM-nucleon 
scattering interaction Lagrangian

DM-nucleon effective field theory (NR-EFT)

nucleon basis
cp: proton
cn: neutron 

isospin basis
c0: isoscalar
c1: isovector

Change to polar coordinates:

i=14 possible 
interactions

O1: spin-independent (SI) 
O4: spin-dependent (SD)



Universe 2021, 7(8), 313 Phys. Rev. Lett. 131, 041003 (2023)

XENONnTDM signal



XENONnT 20ty simulator
We specify background 

and signal characteristics
Data Representation: 

O1: σ=10-47cm2

ө=π/2     (cp=cn)
m=50GeV

CEνENs: differential rate 
compute with SNuDD

WIMPs: differential rate compute with 
WimPyDD for a particular operator, 

(σi, өi, mDM), and standard DM halo model

cS1 vs cS2 plane number of eventsdifferential rate



XENONnT 20ty simulator
We specify background 

and signal characteristics
Data Representation: 

cS1 vs cS2 plane number of eventsdifferential rate

Nuclear Recoil 
isoenergy curves

O1: σ=10-47cm2

ө=π/2     (cp=cn)
m=50GeV

CEνENs: differential rate 
compute with SNuDD

WIMPs: differential rate compute with 
WimPyDD for a particular operator, 

(σi, өi, mDM), and standard DM halo model



Results



Compute the posterior for a 
new pseudo experiment

For example:

P(σ|x)

σtrue=10-46cm2

this is a gaussian as 
an example, not the 

actual posterior!

Posterior



Compute the posterior for a 
new pseudo experiment

We define a σth threshold:

σth=10-49cm2 ⟶ NO SIGNAL!

Then, we can reconstruct σ if:

σth

σ=10-46cm2

this is a gaussian as 
an example, not the 

actual posterior!

Posterior



Compute the posterior for a 
new pseudo experiment

We define a σth threshold:

σth=10-49cm2 ⟶ NO SIGNAL!

Then, we can reconstruct σ if:

σth

σ=3.10-47cm2

this is a gaussian as 
an example, not the 

actual posterior!

Posterior



Compute the posterior for a 
new pseudo experiment

We define a σth threshold:

σth=10-49cm2 ⟶ NO SIGNAL!

Then, we can reconstruct σ if:

σth

σ=6.10-48cm2

this is a gaussian as 
an example, not the 

actual posterior!

Posterior



Data:
cS1 vs cS2 plane
differential rate
total number of 
events

Posteriors for:

O1 (SI)
mDM≃100GeV ⟶ fixed
ө=π/2        ⟶ fixed

Results
σth σth



Results: parameter reconstruction 

XENONnT  1 ton year 
expected exclusion limit 
(90% C.L.)

XENONnT  20 ton year 
proyected expected 
exclusion limit (90% C.L.)

1ν neutrino floor

For O1    with fixed θ=π/2
Exclusion:



Results: parameter reconstruction 

rate
ML (SWYFT):::

Reconstruction of 
the cross-section σDM

σDM can be 
reconstructed

For O1    with fixed θ=π/2



Results: parameter reconstruction 

rate
rate + diff. rate

ML (SWYFT):::

Reconstruction of 
the cross-section σDM

σDM can be 
reconstructed

For O1    with fixed θ=π/2



Results: parameter reconstruction 

rate
rate + diff. rate
rate + diff. rate + cS1-cS2

ML (SWYFT):::

Reconstruction of 
the cross-section σDM

σDM can be 
reconstructed

For O1    with fixed θ=π/2



Results: parameter reconstruction 

rate
rate + diff. rate
rate + diff. rate + cS1-cS2

ML (SWYFT):::

Reconstruction of 
the cross-section σDM

For O1    with fixed θ=π/2

a m
DM

 lower limit 
can be reconstructed

Reconstruction of 
the mass mDM

rate + diff. rate + cS1-cS2



Results: parameter reconstruction 
For O1    with fixed θ=π/2

 (m
DM

, σ
DM

) 
can be 

reconstructed
rate
rate + diff. rate
rate + diff. rate + cS1-cS2

ML (SWYFT):::

Reconstruction of 
the cross-section σDM

Reconstruction of 
the mass mDM

rate + diff. rate + cS1-cS2



     total number of events
    Data: + differential rate

+ cS1 vs cS2 plane
This panel is the usually 

shown SI parameter space

O1 operator
XENONnT 20tyResults: parameter reconstruction 



O4 operator
XENONnT 20tyResults: parameter reconstruction 

     total number of events
    Data: + differential rate

+ cS1 vs cS2 plane



Python package
CADDENA ⟶ https://github.com/Martindelosrios/CADDENA

Load the dataset

Pick one as the 
‘observation'

https://github.com/Martindelosrios/CADDENA


Python package
CADDENA ⟶ https://github.com/Martindelosrios/CADDENA

Load the already 
trained ML algorithms

Set a prior

https://github.com/Martindelosrios/CADDENA


Python package
CADDENA ⟶ https://github.com/Martindelosrios/CADDENA

Plot the posterior 
distributions

Compute the 
posteriors

https://github.com/Martindelosrios/CADDENA


We developed a Bayesian analysis to explore the reach of direct detection 
experiments that can be applied to any DM model (NR-EFT)

The ML implementation (SWYFT) is fundamental:
- fast estimation of posteriors,
- simple way to include-combine-remove data.

O1 (SI) and O4 (SD) presented here as examples

We computed the parameter space where mDM and σ that can be reconstructed,
 using:  total number of events - differential rate - full cS1,cS2 space.

Next:
Apply to other NR-EFT operators ⟶ combine operators
Different DD experiments ⟶ combine experiments

Conclusions



Thank you!



Back-up



Bayesian Analysis
Marginalization (traditional method):

one needs to assume 
a functional form for 

the likelihood

If you want to 
study only one 
parameter Θ0

The full posterior 
has to be 
computed



Bayesian Analysis with SWYFT
SWYFT ⟶ Sampling-based inference tool that estimates likelihood-to- 
evidence ratio with ML algorithms to obtain marginal and joint posteriors

output
output

output
output

compute the 
posterior



σ=10-47cm2

ө=π/2     (cp=cn)
m=50GeV

NR-EFT: O1

XENONnT simulator

We specify background 
and signal characteristics

differential rate compute with 
WimPyDD for a particular 
operator, (σi, өi, mDM), and 
standard DM halo model

differential rate 
compute with SNuDD

XENONnT 20tyDM signal



We generate a 10k pseudo 
experiments per operator 
varying σ, ө, and mDM

XENONnT 20ty

NR-EFT: O1
σ=10-47cm2

ө=π/2     (cp=cn)
m=50GeV

Data Representation: cS1 vs cS2 plane



NR-EFT: O1
σ=10-47cm2

ө=π/2     (cp=cn)
m=50GeV

Data Representation: number of events



Nuclear Recoil 
isoenergy

curves

7.5 to 12.5 keVNR

27.5 to 32.5 keVNR

NR-EFT: O1
σ=10-47cm2

ө=π/2     (cp=cn)
m=50GeV

Data Representation: differential rate



Data:
cS1 vs cS2 plane

cS1 vs cS2
σth

Results

Posteriors for:

O1 (SI)
mDM≃100GeV     ⟶ fixed
σ=2.4 10-47cm2     ⟶ fixed

reconstruction 
depends on ө



Comparison 
with 
Multinest  

Posterior distributions for:

O1 (SI)

mDM≃50GeV     ⟶ fixed

σ=2. 10-47cm2     ⟶ fixed

ө=π/2     ⟶ fixed

Multinest (cS1-cS2)

rate
rate + diff. rate
rate + diff. rate + cS1-cS2

ML (SWYFT):::



Results: parameter reconstruction 

Posterior distributions for:

O1 (SI)
mDM≃50GeV     ⟶ fixed
σ=2. 10-47cm2     ⟶ fixed
ө=π/2     ⟶ fixed

Multinest (cS1-cS2)

rate
rate + diff. rate
rate + diff. rate + cS1-cS2

ML (SWYFT):::



Results: parameter reconstruction 

Posterior distributions for:

O1 (SI)
mDM≃50GeV     ⟶ fixed
σ=5. 10-47cm2     ⟶ fixed
ө=π/2     ⟶ fixed

Multinest (cS1-cS2)

rate
rate + diff. rate
rate + diff. rate + cS1-cS2

ML (SWYFT):::



For DM particles with spin up to ½ , the effective DM-nucleon scattering 
interaction Lagrangian

DM-nucleon non-relativistic effective field theory (NR-EFT)

i=14 possible 
interactions

momentum transfer, spin 
operators, relative velocity



For DM particles with spin up to ½ , the effective DM-nucleon scattering 
interaction Lagrangian

DM-nucleon non-relativistic effective field theory (NR-EFT)

i=14 possible 
interactions

nucleon basis
cp: proton
cn: neutron 

isospin basis
c0: isoscalar
c1: isovector

O1: spin-independent (SI) 
O4: spin-dependent (SD) 

usually shown assuming 
isoscalar interactions

cp=cn    c0=1 and c1=0 



For DM particles with spin up to ½ , the effective DM-nucleon scattering 
interaction Lagrangian

DM-nucleon non-relativistic effective field theory (NR-EFT)

i=14 possible 
interactions

Change to polar coordinates:

Natural choice for the EFT parameter space 
because the interaction cross section:

For SI (O1) 1

DM-nucleon 
reduced mass



Contact interaction between a spin ½ DM and nucleon

DM-nucleon non-relativistic effective field theory (NR-EFT)

at low momenta. 

Idem for the nucleon spinor

ξ Pauli spinors

at leading order in p/m



Another interaction

DM-nucleon non-relativistic effective field theory (NR-EFT)

the dominant contribution in 
the non-relativistic limit 
comes from the spatial indices

Since Ŝi=σi/2



Data analysis to obtain posteriors
SWYFT ⟶ Sampling-based inference tool that estimates likelihood to evidence 
ratio with ML algorithms to obtain marginal and joint posteriors

MCMC
x=f(parameters)

L(x, f(parameters))

All parameters space
> # samples

NO

SWYFT
x=f(parameters)

Data Driven

Only Interesting 
parameters

YES

Forward Model

Likelihood

Samples

Amortization







MARGINAL



Depending
on which 

parameter is 
scrambled



Results

σth

These are all the posteriors 
for 

mDM≃100GeV  ⟶ fixed
ө=π/2 ⟶ fixed

red ⟶ σ not reconstructed
~no signal,
~similar posteriors

black ⟶ σ reconstructed 

Data:
entire cS1 vs cS2 plane

cS1 vs cS2


