Gamma rays from Neutralino annihilation in the 2020s

Martin Vollmann – Uni Tuebingen – 14.6.2024

If Dark Matter is WIMPs (e.g. MSSM neutralinos)

Signal in the gamma-ray sky (from Dark Matter Annihilation)

Theoretical prediction is complicated (Sommerfeld effect, radiative effects, ...)

<u>This talk</u>:

Most accurate calculation to date

Barbara Jäger^D, Martin Vollmann^D

Institute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany

October 18, 2023

October 18, 2023

arXiv:2310.11067

Sommerfeld effect for continuum gamma-ray spectra from Dark Matter annihilation

Outline

Motivation

Indirect detection

Continuum gamma rays for MSSM neutralinos

Numerics

Sommerfeld effect

Conclusions

Motivation

Why SUSY Dark Matter?

DARK MATTER

SUPERSYMMETRY

ELECTROWEAK interactions

Split (high-scale) SUSY

- 125GeV Higgs favoured
- Unification of gauge couplings
- CP SUSY problems (EDMs)
- TeV-scale WIMP —> Cherenkov telescopes!

• Naturalness

Outline

Motivation

Indirect detection

Continuum gamma rays for MSSM neutralinos

Numerics

Sommerfeld effect

Conclusions

Indirect detection

Dark Matter halo

×

.

Solar system

Credit: ESO/L. Calçada

Gamma-ray flux formula

 $ho_{
m DM}$

Example Milky Way-like galaxy from Aquarius (Aq-A-1) N-body simulation

Example (Ad break) Draco dwarf galaxy with diffSph [2401.05255]

+58°05'-Draco +58°00'-Dec +57 ° 55' -+57°50'-HDZ/gNFW (Geringer +57°45'--Sameth et al 2015) 17h20' 17h19' 17h21'

$dJ/d\Omega$ [GeV² cm⁻⁵ sr⁻¹]

R.A.

https://github.com/mertio1/diffsph

diffSph (2401.05255)

attah

Gamma-ray flux formula

 $= \frac{1}{8\pi m_{\gamma}^2} \times J \times \frac{\mathrm{d}\,\sigma v}{\mathrm{d}E_{\gamma}}$ Φ

The problem: Obtain the annihilation spetrum

2000-2010s

Fixed-order $2 \rightarrow 2$ (tree) + Parton Shower

d N^{MC}_{bb} $d\sigma v$ dE_{γ} $(\sigma v)_{\bar{b}b}$ dE_{γ}

 $dN_{\tau^+\tau^-}^{MC}$ $(\sigma v)_{\tau^+\tau^-}$ E_{γ}

2000-2010s

Fixed-order $2 \rightarrow 2$ (tree) + Parton Shower

Helicity suppression If $m_{DM} \gg m_b, m_\tau$ (and $v \ll c$):

$$\langle \sigma v \rangle_{b\bar{b}} \propto \frac{m_b^2}{m_{DM}^2} \to 0$$

$dN_{\overline{b}b}^{MC}$ $d\sigma v$ $\bar{b}b$ E_{γ} E_{γ}

d N^{MC}

2000-2010s

Fixed-order 2 → 3 (tree) + Parton Shower

Bringmann et al 0710.3169

2000-2010s

Fixed-order 2 → 3 (tree) + Parton Shower

 χ_1^0

Internal bremsstrahlung Lift helicity suppression

° 2→2 process
$$\langle \sigma v \rangle_{b\bar{b}} \propto \frac{m_b^2}{m_{DM}^2} \to 0$$

° 2→3 process $\langle \sigma v \rangle_{b\bar{b}v} \neq 0$

Bringmann et al 0710.3169

2020s (before 2310.11067 came out)

Fixed-order 2 → 2 + Parton Shower + Sommerfeld factor

Fixed-order 2 → 3 + Parton Shower + Sommerfeld factor Incomplete (missing shower for e.g. $\chi^0 \chi^0 \to H^{\pm} W^{\mp}$)
 Helicity-suppressed cross sections still suppressed
 ...

• Only extrapolations from our endpoint factorization formulas available and for pure wino/higgsino

<u>Goal</u>: Account for Internal bremsstrahlung + Sommerfeld effect in the MSSM

Outline

Motivation

Indirect detection

Continuum gamma rays for MSSM neutralinos

Numerics

Sommerfeld effect

Conclusions

Sommerfeld effect

Resummation Breakdown of perturbative expansion when $m_{\gamma} \gg m_W$

Tree (LO)

 $1-\log(NLO)$

2-loop (NNLO)

Resummation Breakdown of perturbative expansion when $m_{\chi} \gg m_W$

Tree (LO)

1-loop (NLO)

2-loop (NNLO)

Resummation Goal: factor out the "gorillas"

dov $= f\left(\alpha_{ew} \times \mathbf{n}\right) \times \left(\# \alpha_{ew}^3 + \mathcal{O}(\alpha_{ew}^4)\right)$ dE_{ν}

Sommerfeld factor Reframe the question: QFT @ Quantum Mechanics

Non-relativistic Yukawa potential-like interactions!!!!

Sommerfeld factor How to compute it? Illustrative example

$$\begin{aligned} \left(-\frac{1}{m_{\chi}}\frac{\mathrm{d}^{2}}{\mathrm{d}x^{2}}+V(x)\right)\psi(x) &= E\psi(x)\\ j(x) &= \frac{i}{m_{\chi}}[\psi(x)\psi'^{*}(x)-\psi^{*}(x)\psi'(x)] = \mathrm{const.}\\ \psi_{-}(x) &= e^{ikx}+re^{-ikx}\\ &= (1-|r|^{2})v = (1-\sigma_{r})v \end{aligned}$$

$$\psi_{-}(x) = e^{ikx} + re^{-ikx}$$
$$j_{-} = (1 - |r|^{2})v = (1 - \sigma_{r})v$$

Unitarity:

 $j_{-} = j_{+} \rightarrow \sigma_r + \sigma_t = 1$ (only scattering)

Sommerfeld factor How to compute it? Illustrative example

$$\left(-\frac{1}{m_{\chi}}\frac{\mathrm{d}^2}{\mathrm{d}x^2} + V(x) + \frac{i}{2}\sigma_a^{(0)}v\delta(x)\right)\psi(x) = E\psi(x)$$

Unitarity-violating ter

σ_{a}	, ,		_
	-	_	

$$\operatorname{srm} \quad \to \ j_{+} = j_{-} + |\psi(0)|^{2} \sigma_{a} v$$

$$\sigma_t + \boldsymbol{\sigma_a} = 1$$

 $|\psi(\mathbf{0})|^{\mathbf{2}}\sigma_{a}^{(0)}$

Sommerfeld factor Putting all things together

 $d\sigma v$ Particle pairs

QFT perturbation theory

Outline

Motivation

Indirect detection

Continuum gamma rays for MSSM neutralinos

Numerics

Sommerfeld effect

Conclusions

Continuum gamma rays for MSSM neutralinos

The MSSM in a nutshell Neutralino/chargino sector

Charginos

Neutralinos

 $V(r) \sim \frac{\alpha}{r} + \frac{\alpha_{ew}e^{-m_Wr}}{r} + \frac{\alpha_{ew}e^{-m_Zr}}{r} + \dots$

Charginos

Neutralinos

$V(r) \rightarrow V_{IJ}(r)$

Charginos

Neutralinos

$v_{(\hat{11})(\hat{11})}$	$v_{(\hat{11})(\hat{12})}$	$v_{(\hat{11})(\hat{13})}$	$v_{(\hat{11})(\hat{14})}$	$v_{(\hat{11})(\hat{22})}$	$v_{(\hat{11})(\hat{23})}$	$v_{(\hat{11})(\hat{24})}$	$v_{(\hat{11})(\hat{33})}$	$v_{(\hat{11})(\hat{34})}$	$v_{(\hat{11})(\hat{44})}$	$v_{(\hat{11})\langle 1\bar{1}\rangle}$	$v_{(\hat{11})\langle 1\bar{2}\rangle}$	$v_{(\hat{11})\langle 2\bar{1}\rangle}$	$v_{(11)}$
$v_{(\hat{12})(\hat{11})}$	$v_{(\hat{12})(\hat{12})}$	$v_{(\hat{12})(\hat{13})}$	$v_{(\hat{12})(\hat{14})}$	$v_{(\hat{12})(\hat{22})}$	$v_{(\hat{12})(\hat{23})}$	$v_{(\hat{12})(\hat{24})}$	$v_{(\hat{12})(\hat{33})}$	$v_{(\hat{12})(\hat{34})}$	$v_{(\hat{12})(\hat{44})}$	$v_{(\hat{12})\langle 1\bar{1}\rangle}$	$\mathcal{V}_{(\hat{12})\langle 1\bar{2}\rangle}$	$v_{(\hat{12})\langle 2\bar{1}\rangle}$	$v_{(12)}$
$v_{(\hat{13})(\hat{11})}$	$v_{(\hat{13})(\hat{12})}$	$v_{(\hat{13})(\hat{13})}$	$v_{(\hat{13})(\hat{14})}$	$v_{(\hat{12})(\hat{22})}$	$v_{(\hat{13})(\hat{23})}$	$v_{(\hat{13})(\hat{24})}$	$v_{(\hat{13})(\hat{33})}$	$v_{(\hat{13})(\hat{34})}$	$v_{(\hat{13})(\hat{44})}$	$v_{(\hat{13})\langle 1\bar{1}\rangle}$	$v_{(\hat{13})\langle 1\bar{2}\rangle}$	$v_{(\hat{13})\langle 2\bar{1}\rangle}$	$v_{(13)}$
$v_{(\hat{14})(\hat{11})}$	$v_{(14)(12)}$	$v_{(14)(13)}$	$v_{(14)(14)}$	$v_{(\hat{12})(\hat{22})}$	$v_{(\hat{14})(\hat{23})}$	$v_{(\hat{14})(\hat{24})}$	$v_{(\hat{14})(\hat{33})}$	$v_{(14)(34)}$	$v_{(14)(44)}$	$v_{(14)\langle 1\bar{1}\rangle}$	$v_{(14)\langle 1\bar{2}\rangle}$	$v_{(14)\langle 2\overline{1}\rangle}$	$v_{(14)}$
$v_{(\hat{22})(\hat{11})}$	$v_{(\hat{22})(\hat{12})}$	$v_{(\hat{22})(\hat{13})}$	$v_{(\hat{22})(\hat{14})}$	$v_{(\hat{22})(\hat{22})}$	$v_{(\hat{22})(\hat{23})}$	$v_{(\hat{22})(\hat{24})}$	$v_{(\hat{22})(\hat{33})}$	$v_{(\hat{22})(\hat{34})}$	$v_{(\hat{22})(\hat{44})}$	$v_{(\hat{22})\langle 1\bar{1}\rangle}$	$v_{(\hat{22})\langle 1\bar{2}\rangle}$	$\hat{v}_{(\hat{22})\langle\hat{21}\rangle}$	$v_{(22)}$
$v_{(23)(11)}$	$v_{(23)(12)}$	$v_{(23)(13)}$	$v_{(23)(14)}$	$v_{(23)(22)}$	$v_{(23)(23)}$	$v_{(23)(24)}$	$v_{(23)(33)}$	$v_{(23)(34)}$	$v_{(23)(44)}$	$v_{(23)\langle 1\overline{1}\rangle}$	$v_{(23)\langle 1\bar{2}\rangle}$	$v_{(23)\langle 2\overline{1}\rangle}$	$v_{(23)}$
$v_{(24)(11)}$	$v_{(24)(12)}$	$v_{(24)(13)}$	$v_{(24)(14)}$	$v_{(24)(22)}$	$v_{(24)(23)}$	$v_{(24)(24)}$	$v_{(24)(33)}$	$v_{(24)(34)}$	$v_{(24)(44)}$	$\hat{v}_{(24)\langle 1\bar{1}\rangle}$	$\hat{v}_{(24)\langle 1\bar{2}\rangle}$	$\hat{v}_{(24)\langle 2\bar{1}\rangle}$	$v_{(24)}$
$v_{(\hat{33})(\hat{11})}$	$v_{(\hat{33})(\hat{12})}$	$v_{(\hat{33})(\hat{13})}$	$v_{(\hat{33})(\hat{14})}$	$v_{(\hat{33})(\hat{22})}$	$v_{(\hat{33})(\hat{23})}$	$v_{(\hat{33})(\hat{24})}$	$v_{(\hat{33})(\hat{33})}$	$v_{(\hat{33})(\hat{34})}$	$v_{(\hat{33})(\hat{44})}$	$v_{(\hat{33})\langle 1\bar{1}\rangle}$	$v_{(\hat{3}\hat{3})\langle 1\bar{2}\rangle}$	$v_{(\hat{3}\hat{3})\langle 2\bar{1}\rangle}$	V(33)
$v_{(\hat{34})(\hat{11})}$	$v_{(\hat{34})(\hat{12})}$	$v_{(\hat{34})(\hat{13})}$	$v_{(\hat{34})(\hat{14})}$	$v_{(\hat{34})(\hat{22})}$	$v_{(\hat{34})(\hat{23})}$	$v_{(\hat{34})(\hat{24})}$	$v_{(\hat{34})(\hat{33})}$	$v_{(\hat{34})(\hat{34})}$	$v_{(\hat{34})(\hat{44})}$	$v_{(34)\langle 1\bar{1}\rangle}$	$\hat{v}_{(34)\langle 1\bar{2}\rangle}$	$\hat{v}_{(34)\langle 2\bar{1}\rangle}$	$v_{(34)}$
$v_{(\hat{44})(\hat{11})}$	$v_{(44)(12)}$	$v_{(44)(13)}$	$v_{(44)(14)}$	$v_{(44)(22)}$	$v_{(44)(23)}$	$v_{(44)(24)}$	$v_{(44)(33)}$	$v_{(44)(34)}$	$v_{(44)(44)}$	$\mathcal{V}_{(44)\langle 1\overline{1}\rangle}$	$\mathcal{V}_{(\hat{4}\hat{4})\langle 1\bar{2}\rangle}$	$\mathcal{V}_{(\hat{44})\langle 2\bar{1}\rangle}$	$v_{(44)}$
$\mathcal{V}_{\langle 1\bar{1}\rangle(\hat{11})}$	$v_{\langle 1\bar{1}\rangle(12)}$	$v_{\langle 1\bar{1}\rangle(1\bar{3})}$	$v_{\langle 1\bar{1}\rangle(1\bar{4})}$	$\mathcal{V}_{\langle 1\bar{1}\rangle(22)}$	$v_{\langle 1\bar{1}\rangle(2\bar{3})}$	$\mathcal{V}_{\langle 1\bar{1}\rangle(24)}$	$v_{\langle 1\bar{1}\rangle(3\bar{3})}$	$v_{\langle 1\bar{1}\rangle(34)}$	$v_{\langle 1\bar{1}\rangle(44)}$	$\mathcal{V}_{\langle 1\overline{1}\rangle\langle 1\overline{1}\rangle}$	$\mathcal{V}_{\langle 1\bar{1}\rangle\langle 1\bar{2}\rangle}$	$\mathcal{V}_{\langle 1\bar{1}\rangle\langle 2\bar{1}\rangle}$	$v_{\langle 1\overline{1}\rangle}$
$\mathcal{V}_{\langle 1\bar{2}\rangle(\hat{11})}$	$v_{\langle 1\bar{2}\rangle(1\bar{2})}$	$v_{\langle 1\bar{2}\rangle(\hat{13})}$	$v_{\langle 1\bar{2}\rangle(1\bar{4})}$	$\mathcal{V}_{\langle 1\bar{2}\rangle(\hat{22})}$	$v_{\langle 1\bar{2}\rangle(2\bar{3})}$	$\mathcal{V}\langle 1\bar{2}\rangle(\hat{24})$	$v_{\langle 1\bar{2}\rangle(\hat{33})}$	$v_{\langle 1\bar{2}\rangle(3\bar{4})}$	$v_{\langle 1\bar{2}\rangle(4\bar{4})}$	$\mathcal{V}_{\langle 1\bar{2}\rangle\langle 1\bar{1}\rangle}$	$\mathcal{V}\langle 1\bar{2}\rangle\langle 1\bar{2}\rangle$	$\mathcal{V}_{\langle 1\bar{2}\rangle\langle 2\bar{1}\rangle}$	$v_{\langle 1\bar{2} \rangle}$
$\mathcal{V}\langle 2\bar{1}\rangle(\hat{11})$	$v_{\langle 2\bar{1}\rangle(12)}$	$v_{\langle 2\bar{1}\rangle(1\bar{3})}$	$v_{\langle 2\bar{1}\rangle(1\bar{4})}$	$v_{\langle 2\bar{1}\rangle(22)}$	$v_{\langle 2\bar{1}\rangle(2\bar{3})}$	$\mathcal{V}\langle 2\bar{1}\rangle(\hat{24})$	$v_{\langle 2\bar{1}\rangle(\hat{3}3)}$	$v_{\langle 2\bar{1}\rangle(3\bar{4})}$	$v_{\langle 2\bar{1}\rangle(4\bar{4})}$	$v_{\langle 2\bar{1}\rangle\langle 1\bar{1}\rangle}$	$\mathcal{V}\langle 2\bar{1}\rangle\langle 1\bar{2}\rangle$	$\mathcal{V}_{\langle 2\bar{1}\rangle\langle 2\bar{1}\rangle}$	$v_{\langle 2\overline{1}}$
$\mathcal{V}_{\langle 2\bar{2}\rangle(\hat{1}1)}$	$v_{\langle 2\bar{2}\rangle(\hat{12})}$	$v_{\langle 2\bar{2}\rangle(\hat{13})}$	$v_{\langle 2\bar{2}\rangle(14)}$	$\mathcal{V}_{\langle 2\bar{2}\rangle(\hat{22})}$	$\mathcal{V}_{\langle 2\bar{2}\rangle(2\bar{3})}$	$\mathcal{V}_{\langle 2\bar{2}\rangle(2\bar{4})}$	$v_{\langle 2\bar{2}\rangle(\hat{3}3)}$	$\mathcal{V}_{\langle 2\bar{2}\rangle(\hat{3}4)}$	$v_{\langle 2\bar{2}\rangle(\hat{44})}$	$\mathcal{V}\langle 2\bar{2}\rangle\langle 1\bar{1}\rangle$	$\mathcal{V}_{\langle 2\bar{2}\rangle\langle 1\bar{2}\rangle}$	$\mathcal{V}_{\langle 2\bar{2}\rangle\langle 2\bar{1}\rangle}$	$v_{\langle 2\bar{2} \rangle}$

V(r) =

 $\rangle \langle 2\bar{2} \rangle$ $2)\langle 2\bar{2}\rangle$ $\langle 2\bar{2} \rangle$ $\langle 2\bar{2} \rangle$ $2\rangle\langle 2\bar{2}\rangle$ $\langle 2\bar{2} \rangle$ $\rangle \langle 2\bar{2} \rangle$ $\langle 2\bar{2} \rangle$ $\langle 2\bar{2} \rangle$ $\langle 2\bar{2} \rangle$ $\bar{1}\rangle\langle 2\bar{2}\rangle$ $\bar{2}\rangle\langle 2\bar{2}\rangle$ $\bar{1}\rangle\langle 2\bar{2}\rangle$ $\langle 2\bar{2} \rangle$

Sommerfeld effect in the MSSM

 $d\sigma v$ dE_{γ}

14×14 matrix

105 independent terms

Jäger Vollmann 2023 arXiv: 2310.11067

The MSSM in a nutshell Neutralino/chargino sector

Charginos

Neutralinos

Pure wino

Neutralinos

Charginos

$$V(r) = \begin{pmatrix} 0 & -\sqrt{2}\alpha_2 \frac{e^{-m_W r}}{r} \\ -\sqrt{2}\alpha_2 \frac{e^{-m_W r}}{r} & -\frac{\alpha}{r} - \alpha_2 c_W^2 \frac{e^{-m_Z r}}{r} \end{pmatrix}$$

Further properties:

•
$$m_{\chi_1^0}^{\text{wimp}} \simeq 3 \text{ TeV}$$

• $\frac{m_{\chi_1^+} - m_{\chi_1^0}}{m_{\chi_1^0}} \simeq 5.5 \times 10^{-5}$

• No couplings to quarks or gluons

Pure higgsino

Mediators

$$V(r) = \begin{pmatrix} 0 & -\frac{\alpha_2}{4c_W^2} \frac{e^{-mZ^r}}{r} & -\frac{\alpha_2}{2\sqrt{2}} \frac{e^{-mW^r}}{r} \\ -\frac{\alpha_2}{4c_W^2} \frac{e^{-mZ^r}}{r} & 0 & -\frac{\alpha_2}{2\sqrt{2}} \frac{e^{-mW^r}}{r} \\ -\frac{\alpha_2}{2\sqrt{2}} \frac{e^{-mW^r}}{r} -\frac{\alpha_2}{2\sqrt{2$$

Further properties:

•
$$m_{\chi_1^0}^{\text{wimp}} \simeq 1 \text{ TeV}$$

• $\frac{m_{\chi_1^+} - m_{\chi_1^0}}{m_{\chi_1^0}} \simeq 3.5 \times 10^{-4}$

• No couplings to quarks or gluons

• Small admixture with wino/bino required in order to avoid direct-detection constraints

Outline

Motivation

Indirect detection

Continuum gamma rays for MSSM neutralinos

Numerics

Sommerfeld effect

Conclusions

Numerics

Without further due...

 $E_{\gamma} \; [\text{GeV}]$

Meme legend

Lighter winos/higgsinos Kinematic $W^+W^-\gamma$ threshold "lifted" by the Sommerfeld effect

What's going on?

What's going on ? Charginos are electrically charged / Sommerfeld resonances

What's going on? Sommerfeld resonances

What's going on? Sommerfeld resonances

What's going on? Sommerfeld resonances

Possible approaches

Possible approaches

All-order 2 → N **next-to-leading** (prime) Sudakov logs + Parton Shower + Sommerfeld factor

Possible approaches

All-order 2 → N **next-to-leading** (prime) Sudakov logs + Parton Shower + Sommerfeld factor

Electroweak resummation of neutralino dark-matter annihilation into high-energy photons

M. BENEKE^a, S. LEDERER^a, and C. PESET^b

^aPhysik Department T31, James-Franck-Straße 1, Technische Universität München, D-85748 Garching, Germany

> ^bDpto. de Física Teórica & IPARCOS, Universidad Complutense de Madrid, E-28040 Madrid, Spain

Resummation <u>Goal</u>: factor out the "gorillas"

 $\frac{\mathrm{d}\,\sigma v}{\mathrm{d}\,E_{v}} = f\left(\alpha_{ew} \times \mathbf{n}\right) \times \left(\#\alpha_{ew}^{3} + \mathcal{O}(\alpha_{ew}^{4})\right)$

"safe" to use perturbation theory

Sudakov double-log resummation Soft-collinear effective field theory approach

$$\left[\frac{\mathrm{d}(\tilde{\sigma v})}{\mathrm{d}E_{\gamma}}\right]_{IJ} = \frac{1}{(\sqrt{2})^{n_{id}}} \frac{1}{4} \frac{2}{\pi m_{\chi}} \sum_{i,j} C_i(\mu) C_j^*(\mu) \times Z_{\gamma}^*(\mu)$$

Ş	\leq	Ş
\leq	\leq	\leq
\sim	\sim	\sim

 $Z_{\gamma}^{33}(\mu,\nu) \times \left[\mathrm{d}\omega J^{\mathrm{SU}(2)}(4m_{\chi}(m_{\chi}-E_{\gamma}-\omega/2),\mu) \tilde{W}_{IJ}^{ij}(\omega,\mu,\nu) \right]$

Endpoint $\rightarrow m_{\chi}^2 \ll 4m_{\gamma}^2$

Outline

Motivation

Indirect detection

Continuum gamma rays for MSSM neutralinos

Numerics

Sommerfeld effect

Conclusions

Conclusions

Conclusions

- Cherenkov telescopes are excelent instruments to search for TeV-scale SUSY
- bremsstrahlung, resonances, spectral lines, radiative electroweak effects, ...
- Incorporated all these effects (consistently) for the first time! •
 - neutralinos
 - See **2310.11067**
- Effects can lead to qualitative differences with respect to previous calculations
 - Thorough explorations in the remaining 2020s are thus crucial

• Beautiful and complex phenomenology for indirect detection: Sommerfeld effect, internal

Most complete theoretical prediction for the continuum gamma-ray spectrum from MSSM

