Searches for supersymmetry in non-minimal models

Yvonne Ng

2024-6-13

SUSY24@The Institute of Theoretical Physics, Madrid, Spain

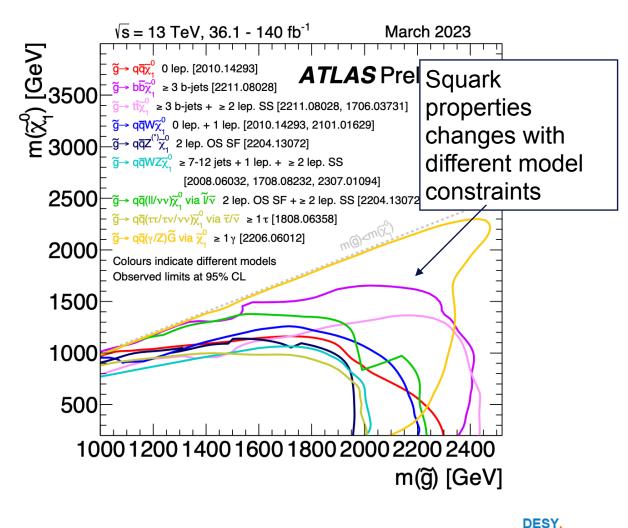
HELMHOLTZ

Introduction: Non-Minimal Supersymmetric Models

SUSY has many parameters (105 parameters+ 19 from SM), educated but ad hoc assumptions are made.

R-parity conservation

Minimal flavor violation


No additional CP violation sources

Other models with loosened requirements are still wellmotivated. E.G. non-minimal flavor violation, R-Parity Violating

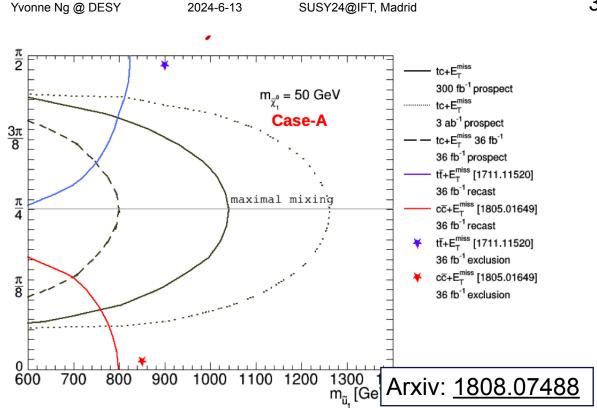
This talk will discuss a list of analyses recently published within ATLAS in this class

Long-lived particle signature ATLAS results will be covered in a <u>dedicated talk by Vasiliki Mitsou</u>

Non-minimal SUSY model argues that limits on simplified models **are not** limits of SUSY!

Mixed top-charm quark

Vanilla simplified MSSM assumes minimum flavor violation: Yukawa couplings -> Well Constrained


Super-CKM: allow for generational mixing between squark /quark terms

Terms constrained by precise measurement in K, B, D physics and Higgs data

Possible decay terms $i_i \to t \tilde{\chi}_1^0$, $\tilde{u}_i \to c \tilde{\chi}_1^0$ with i = 1, 2,

 θ_{tc} [rad]

Final states: <u>tc+MET presented in the</u> previous talk in strong production talk by <u>Edmund Ting</u>, ttMET, ccMET

top-charm mixing parameter phase space from flavor violating SUSY

R-Parity Violating Non-minimal Models

R-Parity Conservation is introduced to prevent rapid proton decay

R-Parity Violation can do the same if some interaction strength is small or forbidden E.G. B-L symmetry

RPV changes the landscape for SUSY

Single SUSY particles production

The lightest SUSY particle (LSP) decays into SM particles

SUSY particles with a lifetime (Long lived particles)

Dark matter candidate particles: axions, axino or gravitinos

R-parity violating terms in MSSM

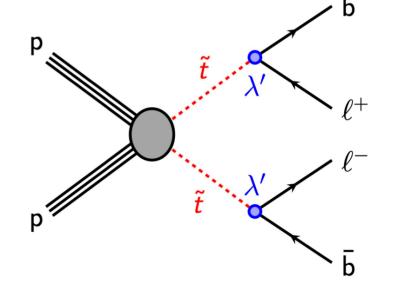
$$\mathcal{W}_{\rm RPV} = \frac{\lambda_{ijk}}{2} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \frac{\lambda''_{ijk}}{2} \bar{U}_i \bar{D}_j \bar{D}_k + \kappa_i L_i H_u,$$

Lepton Number Violation Baryon Number Violation

R=(-1)^{3(B-L)+2s}

R parity is directly related to Baryon/lepton number

SUSY-2018-37


RPV Stop Search with B-L Symmetry

Final state: direct pair production of the stop decaying through an R-parity violating two 2 charged leptons and two b-jets

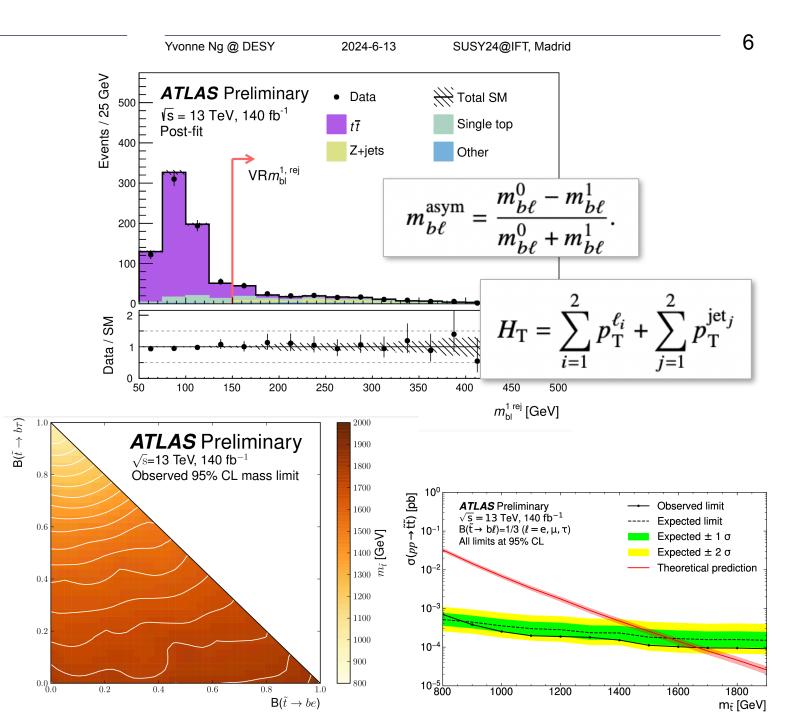
Minimal Supersymmetric Standard Model (MSSM) with an <u>additional B-L gauge symmetry</u>. -> Consistent on proton stability and the bounds on lepton violation observed.

LSP stop predicted from the model and searched for.

First full run 2 result(139fb-1)!

t and anti-t (t *) decay to charged lepton and b quark through RPV coupling (λ)

Results


Cuts on kinematic variables: HT m_{II} m_{asym} m_{bl} to improve signal sensitivity

Variable bin-width signal region

Two exclusion fits for each stop mass + lepton BR combination

Result: No excess found, but mass limit improved upon early run 2 results

 $\begin{array}{l} 1400 \ GeV \rightarrow 1800 \ GeV \ for \ BR(\tilde{t} \rightarrow \mu) = 100\% \\ 1500 \ GeV \rightarrow 1900 \ GeV \ for \ BR(\tilde{t} \rightarrow e) = 100\% \\ 600 \ GeV \rightarrow 1100 \ GeV \ for \ BR(\tilde{t} \rightarrow \tau) = 90\% \end{array}$

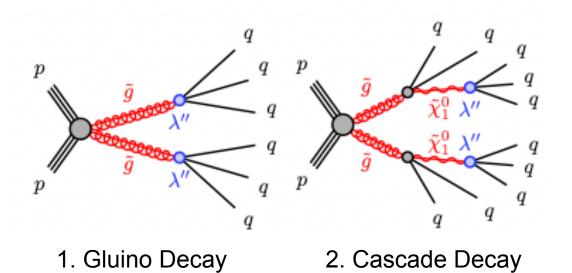
RPV in Many Jets final state

R-parity Violating have looser limits compared to similar RPC searches.

Prompt gluino-pair production using simplified models

1. Direct decay into 3 jets

2. Cascade decay via neutralino to 5 jets


All jet originated from either light quark(UDS) or can contain a heavy flavor jet(UDB)

Dominant SM background: multijet prodution

Two methods to improve S/B ratio:

"Jet Counting": requiring many high PT jets

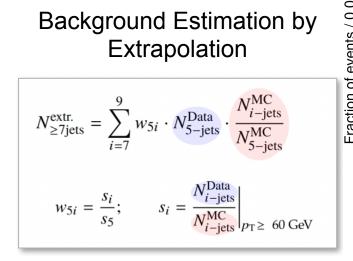
"Mass resonance" aims to reconstruct the gluino mass with machine-learning methods

0.6 events ATLAS Data $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ 0.5 Pythia Multijet Fraction of $p_{_{T}}(j) \geq 100 \; GeV$ $m(\tilde{g}) = 1.0 \text{ TeV}$ $m(\tilde{g}) = 1.5 \text{ TeV}$ 0.4 $m(\tilde{g}) = 2.0 \text{ TeV}$ ومراجع والمراجع 0.3 0.2 0.1 0 2 3 Jet Multiplicities 25 / 0.05 ATLAS events / $\sqrt{s} = 13 \text{ TeV}, 140 \text{ fb}^{-1}$ 0.2 $p_{_{T}}(j) \geq 100 \; GeV$ $n_{iets} \ge 6$ đ Fraction (0.15 Data Pythia Multijet m(ĝ) = 1.0 TeV 0.1 ••••• m(g̃) = 1.5 TeV $m(\tilde{q}) = 2.0 \text{ Te}$ 0.05 0.5 0.8 0.9 0.2 0.3 0.4 0.6 0.7 C- Parameters C-parameter

Results: Jet Counting Method

Background is estimated by extrapolation from the low jet multiplicity region to a high jet multiplicity region.

Cuts to improve sensitivity:


1. C-parameter: a measure of isotropy of the energy distribution in events.

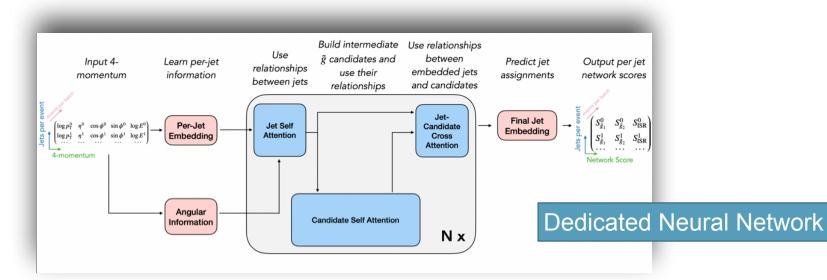
2. Number of b-tags, Giving sensitivity to models including b-jets in the decays

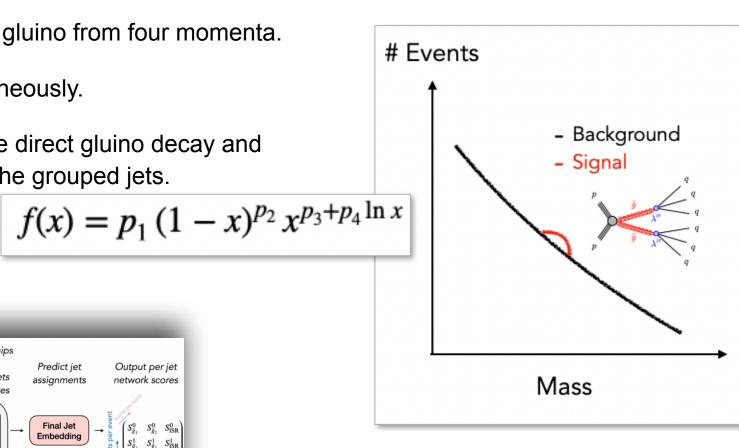
Multiple signal region for different b-tag selections based on signal contamination

Multiple Signal Regions

	n _{jets}	$p_{\mathrm{T}}(j)$ [GeV]	С	n _{b-jets}
SR1		180		-
SR2	≥ 7	220	≥ 0.90	-
SR3		240		-
SR4	≥ 8	180	≥ 0.85	-
SR5	≥ 8	210	≥ 0.85	-
SR1bj	≥ 7	180	≥ 0.85	≥ 2
SR2bj	≥ 8	180	≥ 0.85	≥ 2

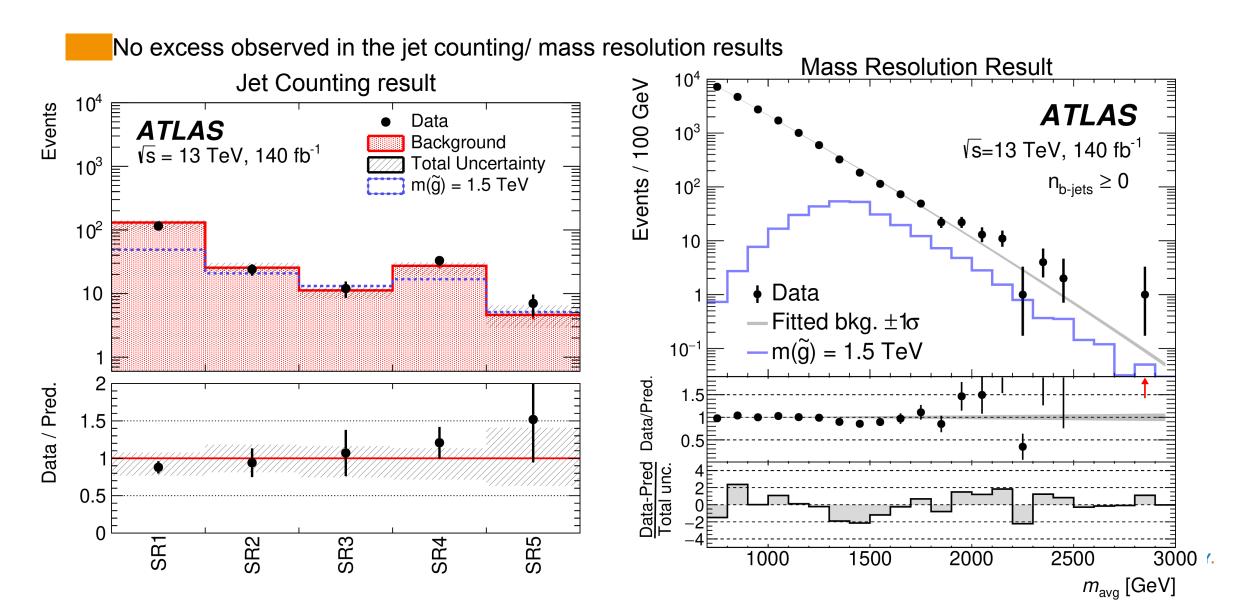
Mass Resonance Method


Dedicated neural network to reconstruct gluino from four momenta.

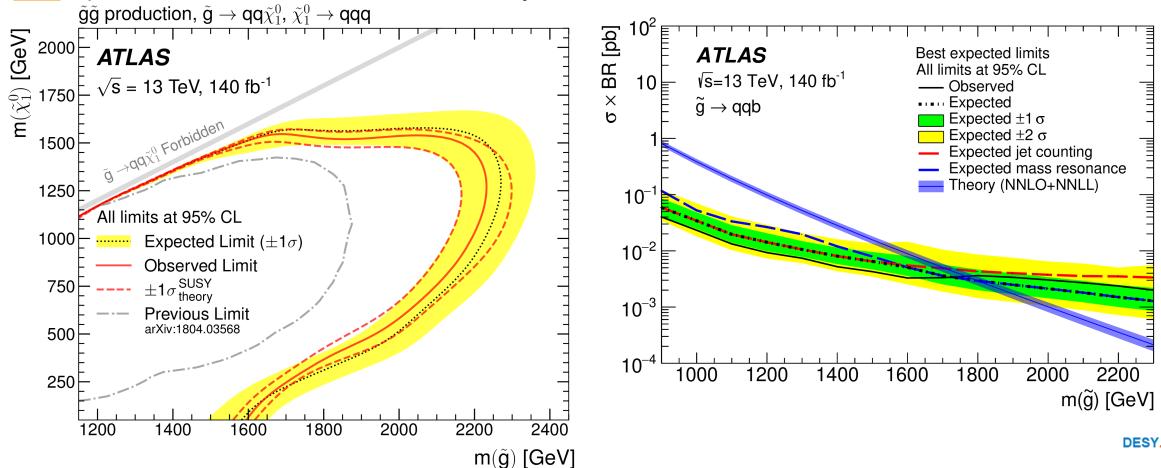

Training on all 5 mass points simultaneously.

Uses ML to identify 3 jets from the direct gluino decay and reconstruct the gluino mass from the grouped jets.

Background estimation with fit functions


Bumphunt to search for signal

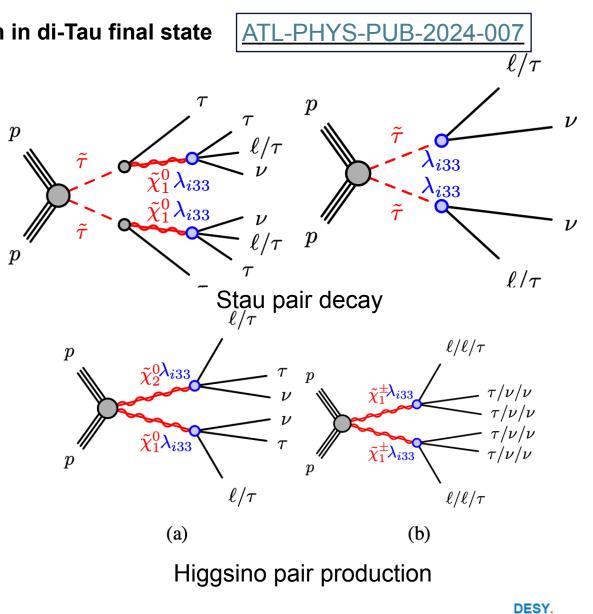
DESY.


Model Independent Results

Model dependent limit

No excessed found for either mass spectrum or jet counting results

Improvement from results in Run 1 and early Run 2; No excess is found.

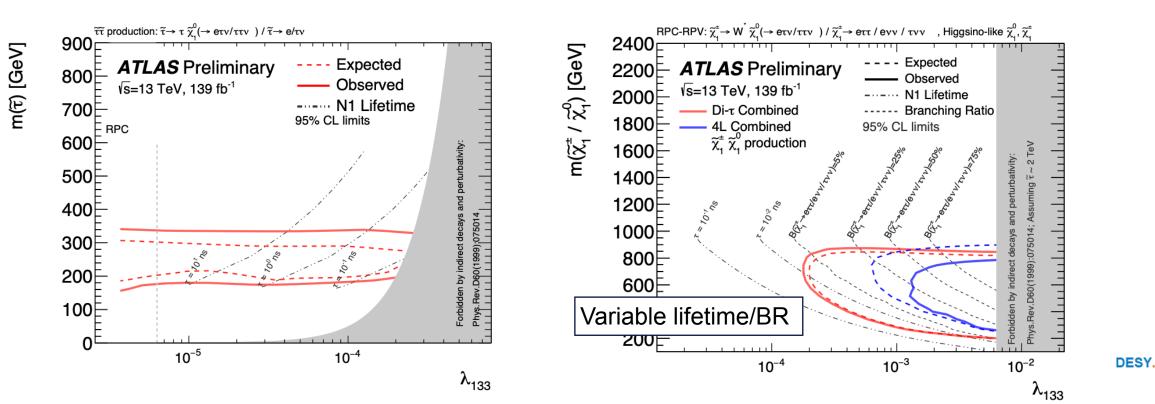


Reinterpretation of RPV SUSY with variable decay length in di-Tau final state

Reinterpretation of SUSY search with two taus and with four electrons, muons, or taus performed previously. <u>Ditau</u>, <u>4 lepton analysis</u>

Model reinterpreted for SUSY models with *R*-parity violating(RPV) couplings with lifetime

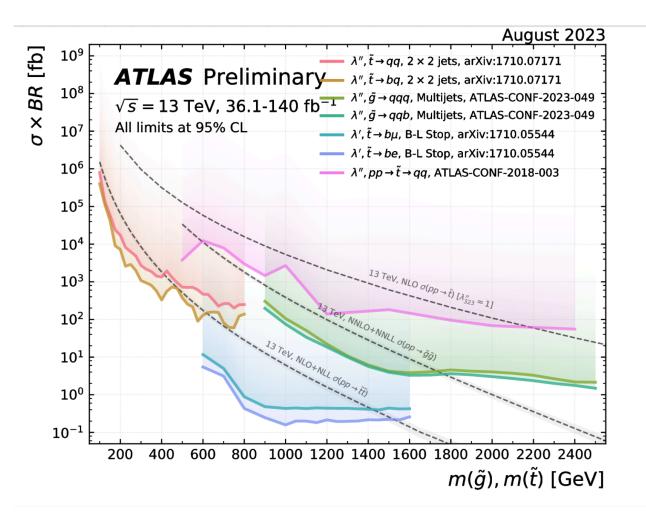
Signal models: Staus/Higgsinos pair decay into SM particles.



Results

Limit set on λ_{133} and λ_{233} from the Higgsino and stau decay channels.

Systematics of displaced taus estimated by Zjet and ttbar samples


First result in this channel/RPV Model

Summary

- 3 latest ATLAS results in non-minimal SUSY model are presented
- Novel ways of challenging existing model
- More full run 2 and early run3 results to be expected soon!

See SUSY <u>Public Result Page</u> and <u>ATLAS</u> <u>Summary Plots</u> for more information

Back up slides

Mass Resonance Method

Searches for supersymmetry in non-minimal models

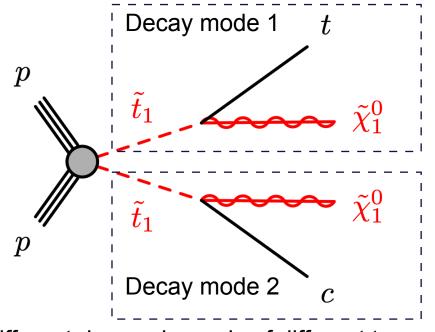
Stop to t c MET

Final state of two top-squark production to top/neutralino production

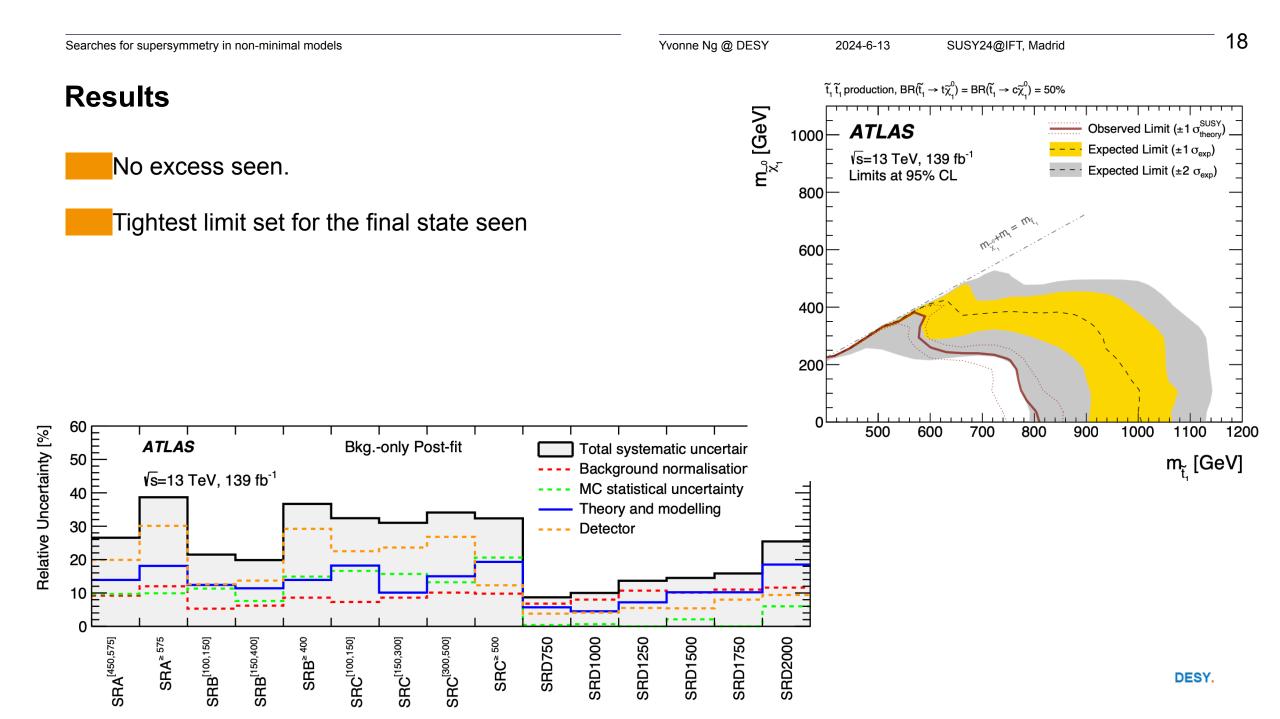
Motivated by: extended MSSM, non-minimal flavor violation in the 2nd and 3rd squark sector.

Long list of variables to help with signal/background optimization

Different Signal region defined by differnet mass splitting of the topsquark/neutralino pair


Bulk (SRA): large mass difference between stop and neutralino

Intermediate (SRB, SRC): small mass difference between stop and neutralino


Compressed (SRD with ISR): mass difference between stop and neutralino=top mass

SUSY-2019-23

ANA-SUSY-2018-37

3 different decay channels of different topsquark decaying mode combinations

RPV SUSY with leptons and jets final state

Setting limit on R-parity violating SUSY models on RPV decay with at least 1 isolated lepton


RPV decay with at least 1 isolated lepton (electron/muon) and 8-15 jets of various on the transverse momentum threshold.

These final states are common in baryon number violating(2 leptons of the same charge) or baryon-number violating RPV models (1 lepton event)

Multi-variate discriminants used.

This is the first RPV SUSY electroweak production decaying to quarks.

Bkg estimation sensitive to the normalization of the 4 top quark production

2106.09609

Yvonne Ng @ DESY 2024-6-13 SUSY24@IFT, Madrid

Methods and Results

Signal regions

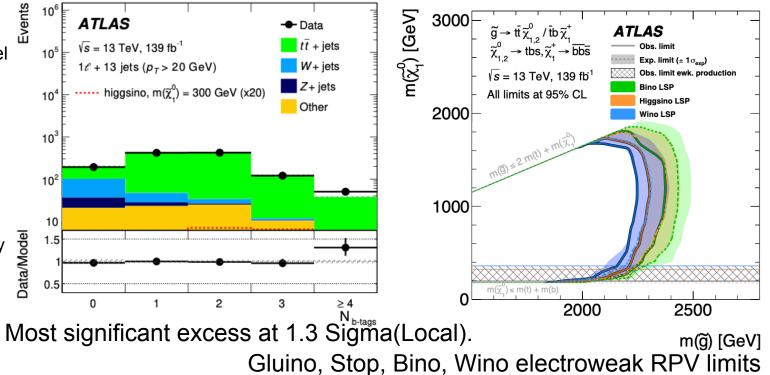
A. 1 lepton category: 1 isolated muon/electronB. 2 leptons same charge category: suppressed electron charge flip by a BDT.

Two ways of doing the analysis:

- 1. jet counting analysis(Strong production)
- 2. Electroweak analysis(Electroweak production)

NN was introduced for the Electroweak analysis for improved signal/background discrimination. Two-level (high level/ low level) distance correlation training ensures b-jet multiplicity invariance is achieved.

SM-> 4 top measured as a background process.


Results: No significant excess.

Interpreted results featuring gluino, stop, or electrowekino pair production in PRV supersymmetry scenarios.

I	LSP		Branch	ing ratios	Cross-section [fb]				
t	type	stop		gluino			for direct production		
		$t\tilde{\chi}^0_{1,2}$	$b ilde{\chi}_1^{\pm}$	$tt\tilde{\chi}^0_{1,2}$	$bb ilde{\chi}^0_{1,2}$	$tb\tilde{\chi}_1^{\pm}$	$ ilde{\chi}_1^{\pm} ilde{\chi}_1^0$	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$	$ ilde{\chi}_2^0 ilde{\chi}_1^0$
I	Bino	100%	0%	100%	0%	0%	0	0	0
V	Wino	33%	67%	17%	17%	66%	387	0	0
H	Higgsino	50%	50%	50%	0%	50%	91	91	52

Different LSP type, branching ratio of models

26 floating parameters in the background model; 41 in EWK analysis

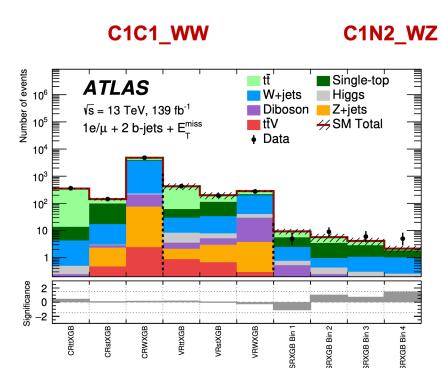
ANA-SUSY-2018-37

 $\tilde{\chi}_1^{\pm}$

 $\tilde{\chi}_2^0$

Search for direct production of electroweakinos in final states with one lepton, jets and missing transverse momentum

Final state: electroweakinos decay into 1 lepton, jets and MET


Targeting direct EWK production of chargino-neutralino pairs and chargino pairs, decaying into LSP via W/Z and on-shell Higgs bosons.

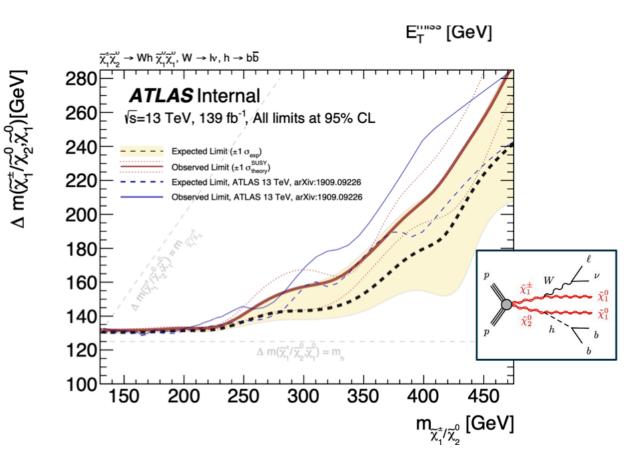
LSPs (Lightest SUSY Particles), specifically the lightest neutralino χ^0 and its decay mechanisms, in the adopted simplified SUSY model, could explain the observed discrepancy in the g-2 measurement with respect to the SM predictions and itself plays an important role as a Dark Matter candidate The three decay channels studied

W

 $\tilde{\chi}_1^{\pm}$

 $\tilde{\chi}_2^0$

C1N2_Wh

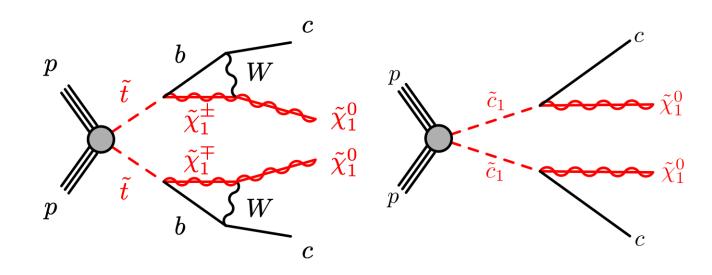

Data-driven bkg estimation from CR

Results

BDT-based C1N2_{Wh} search for LSP exceeds previous constraints by up to 40 GeV in the range of 200 – 260 GeV and 280 – 470 GeV in $\tilde{\chi}1\pm/\tilde{\chi}20$ mass.

Searches exploiting large radius jets to identify hadronically decaying W and Zbosons improve on the previous ATLAS limits by around 100 GeV in $m(\tilde{\chi}1\pm)$ for a massless $\tilde{\chi}10$.

No excess identified

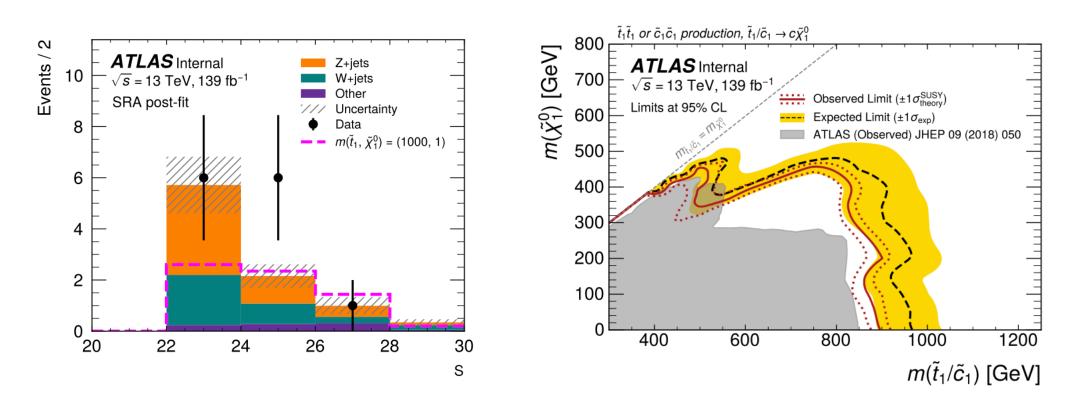

Search for supersymmetry in final states with missing transverse momentum and charm-tagged jets

Final state of charm and MET

Looking at SUSY models where top or charm squarks (\tilde{t}/\tilde{c}) are the lightest squarks with masses less than about one TeV

2 signal regions: High-Mass and Compressed

Recursive Jigsaw Reconstruction for top/ charm pair production improvement



ANA-SUSY-2018-25

Results

No excess found

Stringent limit set on the model

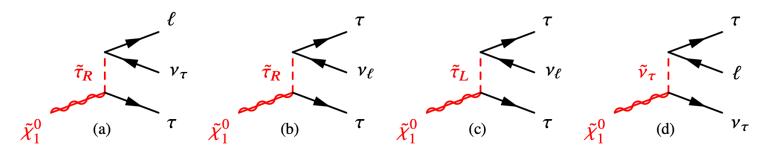


Figure 1: LSP possible decay channels

		1					
SR-C1C1-LM	SR-C1C1-HM	SR-C1N2OS-LM	SR-C1N2OS-HM				
<i>b</i> -jet veto							
Z/h veto							
$= 2$ "medium" $\tau_{\rm h}$	ad (OS)	\geq 2 "medium" τ_{had} (OS)					
≥ 1 "tight" τ_{had}	-	\geq 1 "tight" τ_{had}	-				
$60 \text{ GeV} < E_{\text{T}}^{\text{miss}} < 150 \text{ GeV}$	$E_{\rm T}^{\rm miss} > 150 {\rm GeV}$	$60 \text{ GeV} < E_{\text{T}}^{\text{miss}} < 150 \text{ GeV}$	$E_{\rm T}^{\rm miss} > 150 {\rm GeV}$				
$m_{\rm T2} > 80 {\rm ~GeV}$	$m_{\rm T2} > 85 {\rm GeV}$	$m_{\rm T2} > 70 {\rm ~GeV}$	$m_{T2} > 85 \text{ GeV}$				
$ \Delta \Phi(\tau_1,\tau_2) > 1.6$	$m_{\mathrm{Tsum}} > 400 \mathrm{GeV}$	$N_{\rm jets} < 3$	$m_{\mathrm{Tsum}} > 400 \mathrm{~GeV}$				

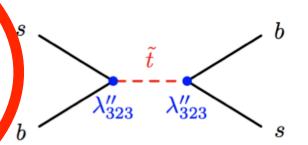
.

R-Parity Conservation (RPC) SUSY vs R-Parity Violation (RPV) SUSY

ATLAS usually uses simplified models where the LSP is either stable (RPC) or decay promptly to SM particles (RPV)

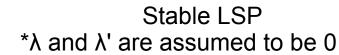
Both allows for searches for promptly decay final state objects

0


R-partity Violation terms allowed for tuning -> LSP with a life time

Between R-parity conservation/Maximal Violation....

Lepton Number Violation Baryon Number Violation


Stop -> neutralino decay example

A gap where RPC and RPV meets (Our Effort)

26

RPV: $O(1) \lambda''_{323}$ LSP prompt decay to SM **DESY.** particle

RPC:

SUSY-2018-37

A search for *R*-parity violating supersymmetric decays of the top squark to a *b*-jet and a lepton in ATLAS experiment $\sqrt{}$

https://cds.cern.ch/record/2897962/files/SUSY-2018-37-002.pdf

A search is presented for direct pair production of the stop, the supersymmetric partner of the top quark, in a decay through a R-parity-violating coupling to a charged lepton and a b-jet. The final state has two

charged leptons and two *b*-jets. Limits are set on this production in a Minimal Supersymmetric Standard

Model with an additional B - L gauge symmetry. This model violates lepton number but not baryon

number, and is consistent with proton stability and the bounds on lepton number violation

SUSY-2022-07

